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4D Ultrasound: Healthy LV
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Outline:

❖ Incorporate Physics Knowledge and AI to design new 
interpretable models – Trustworthy Epidemiological Models for 
COVID-19 Prediction & Intervention

❖ Interpretable AI enables data-driven scientific discovery with 
uncertainty quantification capability – ALZHEIMER’s Disease 
Prediction

❖ Scalable training large-scale Deep Neural Network 

 



How to incorporate Physics Knowledge and AI to 
design new interpretable models? - Interpretable 
AI for Science

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer- 

and fractional-order epidemiological models using physics-informed neural networks, Nature Computational 

Science, 1, 744-753, 2021

2. Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy 

data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS 

Computional Biology 17(9): e1009334. https://doi.org/10.1371/journal.pcbi.1009334



New York City COVID-19 related Event Timeline 

 



New York City COVID-19 related Event Timeline 

 Calibrate piecewise-constant model parameters to capture local epidemiological dynamics



Epidemiological Model Development

Fixed 

parameters:

eps = 0.75

delta = 0.6

d_E = 1/2.9
d_P = 1/2.3

d_I = 1/2.9

d_A = 1/7

d_H = 1/6.9

d_Q = 1/10

β: Transmission rate

p: Hospitalization rate

q: Death from hospital rate



Calibrated COVID-19 Transmission Rate for New York City

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics



Forecasting with Uncertainties and Scenarios



A general framework for building a trustworthy data-driven epidemiological model

Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for 

building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak 
in New York City, PLoS Computional Biology 17(9): e1009334. 
https://doi.org/10.1371/journal.pcbi.1009334



Physics Informed Neural Networks (PINNs)

A (non-local) differential operator with parameters 𝝀

(Fractional) Model:

ℒ𝝀𝑢 = 𝑓

Solution/DataPhysics

𝑢∗, 𝑓∗

Forward

Inverse

● ℒ𝝀

A flexible computational tool to study model uncertainty 

Incorporate data and different models 

Accurate fitting to data

Inferring model parameters and discovering unobserved dynamics

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and 

predictability of integer- and fractional-order epidemiological models using physics-
informed neural networks, Nature Computational Science, 1, 744-753, 2021



Different Epidemiological Models

Integer-Order Models (simple to complex models)

𝕀𝟏 𝕀𝟐 𝕀𝟑model model model

𝔽𝟏 𝔽𝟐 𝔻𝟏model model model

Fractional-Order and Time-Delay Models (add memory effects)



PINNs for (Fractional) Epidemiological Models
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Fitting the data accurately Discovering unobserved dynamics

PINN Results: Model Uncertainty based on NYC dataset

Inferring model parameters



Fractional Order Models Introduce Memory in the Dynamics

Memory: The derivative at time 𝑡 depends on the weighted 

values of the function          from initial point 𝒕 = 𝟎 up to 

current time 𝒕.  

Caputo fractional derivative of order 𝜅 ∈ (0,1): a convolution type integro-differential operator

𝑡 = 0

𝑡
𝑡𝑖𝑚𝑒

𝑠

ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

• Fractional order 𝜅 is the notion of memory effect 

• Smaller 𝜅 can induce a delay in the dynamics 

• 𝜅 = 𝜅(𝑡) can be time varying

Different Compartments May Have Different Memory Effects!
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Fractional Order SIR     V.S.      Integer Order SIR

S I R
𝛽𝐼/𝑁 𝛾

𝜅1 = 0.89 𝜅2 = 0.99 𝜅3 = 0.87

𝜅<1 cause a delay almost integer,

no delay 

𝜅<1 cause a delay 

𝔽𝟏model



Summary

This is the first work to employ structural and practical identifiability tools to 

study COVID-19 model identifiability based on the available data.

A general data-driven epidemiological modeling framework is developed, which 

seamlessly integrates model identifiability, model sensitivity analysis, model 
calibration, model prediction with confidence intervals, and evaluating control 

strategies under uncertainties.

We treat beta (transmission rate), p (proportion of isolated individuals), and q 

(proportion of disease-related deaths) as time-dependent piece-wise model 
parameters and calibrate them using the available New York City COVID-19 

dataset.

The developed COVID-19 model is employed to evaluate the effects of 

vaccination deployment scenarios.

We developed a flexible computational framework using physics-informed 

neural networks (PINNs) to study model uncertainty and discover time-

dependent parameters. 



Outline:

❖ Incorporate Physics Knowledge and AI to design new interpretable 
models – Trustworthy Epidemiological Models for COVID-19 
Prediction & Intervention

❖ Interpretable AI enables data-driven scientific discovery with 
uncertainty quantification capability – ALZHEIMER’s Disease 
Prediction

❖ Scalable training large-scale Deep Neural Network 

 



Interpretable AI:

Jiuhai Chen, Lulu Kang, Guang Lin, Gaussian process assisted active learning of physical laws, 

Technometrics, in press, 2020. 

https://doi.org/10.1080/00401706.2020.1817790

Sheng Zhang, Guang Lin, Robust subsampling-based threshold sparse Bayesian regression to tackle 

high noise and outliers for data-driven discovery of differential equations, Journal of Computational 

Physics, 428: 109962, 2021. 

https://doi.org/10.1080/00401706.2020.1817790
https://doi.org/10.1080/00401706.2020.1817790


Haoyang Zheng, Jeffrey Petrella, P. Murali Doraiswamy, Guang Lin*, Wenrui Hao, 

Data-driven causal model discovery and personalized prediction in Alzheimer’s disease, 

Nature NPJ Digital Medicine, 5, 137, 2022.



Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Dr. Alois Alzheimer (1864-1915)

Dr. Alzheimer was the physician who first reported on a patient 
(Auguste) with dementia, later termed as "Alzheimer's Disease".

Distinctive plaques and neurofibrillary tangles in the brain 
histology 

Background - Alzheimer's Disease



Most common dementia

In 2020, over 55 million 
people have AD

By 2050, the number could 
increase to 150 million

 

Why AD is important?

4/22/24          ‹8/73›



• Can we build data-driven model with ADNI dataset?

• Can we build an interpretable model?

• Can we design personalized model for each treatment?

Challenges and Motivation

4/22/24          ‹13/73›







1. We build the first data-driven cascade model for the Alzheimer’s disease

2. We design personalized model to calibrate dynamics for each patient and provide 
personalized treatment.

Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Contribution



Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Population Model



Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Population Model



Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Sensitivity Analysis



Zheng Haoyang, et al. "Data-driven causal model discovery and 

personalized prediction in Alzheimer's disease." NPJ digital medicine 

2022

Personalized Treatment



Our model

Previous model



▪ We learn population model to describe the population dynamics and distinguish patients at 
different stages

▪ Sensitivity analysis determine the sensitive parameters, which are calibrated in personalized 
model

▪ Personalized model calibrate the parameter to better demonstrate dynamics tailored for each 
patient

▪ Data-driven model discovery with spatial-temporal 

measurements

▪ Current CSF data summarize from MRI scans to

estimate levels of biomarkers

▪ We hope to directly use MRI scans to learn the diffusion 

process of biomarkers

Future Plans

Summary

4/22/24          ‹21/73›



Outline:

❖ Incorporate Physics Knowledge and AI to design new interpretable 
models – Trustworthy Epidemiological Models for COVID-19 
Prediction & Intervention

❖ Incorporate Physics Knowledge into AI to predict multiscale problems: 
NH-PINN

❖ Interpretable AI enables data-driven scientific discovery with 
uncertainty quantification capability – ALZHEIMER’s Disease 
Prediction

❖ Scalable training large-scale Deep Neural Network 

 



Visualization the Loss Landscape of Deep Neural Nets

The loss landscape of modern deep neural nets [Li et al., 2018]



Gradient Descent Fails

Credit to losslanscape.com

Reinforcement Learning in AlphaGo



Scalable training large-scale Deep Neural Network:

Question: How can we design efficient optimization/sampling 

algorithms to train large-scale deep neural networks?

Goal: Enable Fast training large-scale DNN.

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse 

deep learning, 2019 Conference on Neural Information Processing Systems (NIPS), 

Dec. 8 – Dec. 14, 2019, Vancouver, Canada. 
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“…Because I had worked in the closest possible ways with

 physicists and engineers, I knew that our data can never be precise…”

Norbert Wiener

In Math We Trust: Interpretable, Trustworthy 
Machine Learning
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