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The Four Waves of Rl

First Wave

Second Wave

Third Wave

Fourth Wave

c. 1970s - 1990s

c. 2000s - present

est. 2020s - 2030s

est. 2030s —

Good at reasoning, but no
ability to learn or
generalize.

* GOFAI - "Good OlId
Fashioned AL."

» Symbolic, heuristic, rule
based.

* Handcrafted knowledge,
"expert systems."

Good at learning and
perceiving, but minimal
ability to reason or
generalize.

« Statistical learning, "deep
neural nets, CNNs, RNNs.

* Advanced text, speech,
language and vision
processing.

Excellent at perceiving,
learning and reasoning,
and able to generalize.

» Contextual adaptation,
able to explain decisions.

» Can converse in natural
language.

* Requires far fewer data
samples for training.

 Able to learn and function
with minimal supervision.
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@amdéﬁ

Able to perform any
intellectual task that a
human can.

* AGI (Artificial General
Intelligence), possibly
leading to ASI (Artificial
Superintelligence) and the
"Technological Singularity."
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Six Kin Development (adapted from DARPA's "Three Waves of Al")




How Data Science, Artificial Intelligence, and
Digital Twins Could Help US Predict the Future
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How to Build Robust Al in Real-World
Environment?

-Funded by NSF/Simons Foundation Research
Grant on Mathematlcal and Scientific Foundation
of Deep Learning (Scale-MoDL)
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Machine Learning Driven Contouring System for
High-Frequency Four-Dimensional Cardiac
Ultrasound and Photoacoustic Imaging

» Guang Lin, Full Professor School of Mechanical Engineering &
Department of Mathematics, Purdue University

» Craig J Goergen, Leslie A. Geddes Associate Professor, Weldon
School of Biomedical Engineering, Purdue University

» PRF technology number 69227-02 and 66849
» Trask Grant: Innovation Sparks (Life Science and Medical Devices)
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Guang Lin’s Group’s Main Research

Interpretable Al:

Discovery of Physical

Laws from Noisy Data

1. Nature Computational
Science, 1-10, 2021

2. Nature Digital Medicine,
2023

3. Proceeding of the Royal
Society of London, 2018

Biology, 2021

Uncertainty
Quantification for

Reliable Al

+ NeurlPS19,
NeurlPS20, ICML20,
ICLR21, WSDM21,
ICLR22, TMLR22,
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preserving Al for .-{"*
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Langevin Dynamics
* Fed-DeepONet
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Al for Science &
Engineering:
Al for Material

Discovery

* Nature Computational
Material, 23

* Scientific Report 22

Al for Workforce

Development:
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Outline:

Incorporate Physics Knowledge and Al to design new
interpretable models — Trustworthy Epidemiological Models for
COVID-19 Prediction & Intervention

Interpretable Al enables data-driven scientific discovery with
LFJ)ncgrtainty quantification capability — ALZHEIMER's Disease
rediction

Scalable training large-scale Deep Neural Network



How to incorporate Physics Knowledge and Al to
design new interpretable models? - Interpretable
Al for Science

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-
and fractional-order epidemiological models using physics-informed neural networks, Nature Computational

Science, 1, 744-753, 2021
2. Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy

data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS
Computional Biology 17(9): e1009334. https://doi.org/10.1371/journal.pcbi.1009334
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Number of daily cases

New York City COVID-19 related Event Timeline

N &
«° A .
e RO Mask Indoor dining Indoor dining
& g% o mandate reopens closes
000 I ! I 09 /3:.) /2 Vaccination
03/21/20 04/17/20 06/08/20 Reopening 0 begins
phases 1-4
12/14/20
5250 -
3500 -
1750 -
0
> > s a5 e @
> £ o ® i Q o A CAN
A . G A R S &



New York City COVID-19 related Event Timeline

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics
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Epidemiological Model Development
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Calibrated COVID-19 Transmission Rate for New York City
Calibrate piecewise-constant model parameters to capture local epidemiological dynamics
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Forecasting with Uncertainties and Scenarios
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A general framework for building a trustworthy data-driven epidemiological model

Unique parameters Prediction only

1)) (1) (1) (Iv)

Sensitivity
analysis analysis

Data acquisition MY Epidemiological NS Identifiability Identifiable?
and event model

timeline development

(VII) (VD)

(V)
Forecasting with Model Model
uncertainties robustness

. : calibration
and scenarios analysis

Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for
building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak
in New York City, PLoS Computional Biology 17(9): e1009334.

https://doi.org/10.137 1/journal.pcbi. 1009334



Physics Informed Neural Networks (PINNSs)

Forward
Physics Solution/Data
(Fractional) Model:
L/lu — f u*’f*

@ ()
i
T~ iational
I Lenl Loss

Inverse

® 1 A (non-local) differential operator with parameters A

A flexible computational tool to study model uncertainty
Incorporate data and different models

Accurate fitting to data

Inferring model parameters and discovering unobserved dynamics

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and

predictability of integer- and fractional-order epidemiological models using physics-
informed neural networks, Nature Computational Science, 1, 744-753, 2021




Different Epidemiological Models

Integer-Order Models (simple to complex models) B |

nodel[ 4 W model], Ny model 3 : S L]

Fractional-Order and Time-Delay Models (add memory effects) I
nodel [F4 model [, model D




PINNSs for (Fractional) Epidemiological Models

Fitting data and discovering unobserved compartments

Inferring model parameters || Solving system of ODEs
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PINN Results: Model Uncertainty based on NYC dataset
Discovering unobserved dynamics

Fitting the data accurately
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Fractional Order Models Introduce Memory in the Dynamics

Caputo fractional derivative of order k € (0,1): a convolution type integro-differential operator
1 f 1 du(s)
r1—-x)J, (t—s)¢ ds

Memory: The derivative at time t depends on the weighted (=0

K

Fu(t) = §DF u(t) =

S

history of the function

values of the function from initial point ¢ = 0 up to

current time t. * Fractional ordc?r K is the notlop of memory.effect
* Smaller k can induce a delay in the dynamics
* Kk = k(t) can be time varying

Different Compartments May Have Different Memory Effects! modellF
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model [Fq

Fractional Order SIR V.S. Integer Order SIR
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Summary

This is the first work to employ structural and practical identifiability tools to
study COVID-19 model identifiability based on the available data.

A general data-driven epidemiological modeling framework is developed, which
seamlessly integrates model identifiability, model sensitivity analysis, model
calibration, model prediction with confidence intervals, and evaluating control
strategies under uncertainties.

We treat beta (transmission rate), p (proportion of isolated individuals), and q
(proportion of disease-related deaths) as time-dependent piece-wise model
parameters and calibrate them using the available New York City COVID-19
dataset.

The developed COVID-19 model is employed to evaluate the effects of
vaccination deployment scenarios.

We developed a flexible computational framework using physics-informed
neural networks (PINNs) to study model uncertainty and discover time-
dependent parameters.



Outline:

Incorporate Physics Knowledge and Al to design new interpretable
models — Trustworthy Epidemiological Models for COVID-19
Prediction & Intervention

Interpretable Al enables data-driven scientific discovery with
gncgrtainty quantification capability — ALZHEIMER’s Disease
rediction

Scalable training large-scale Deep Neural Network



Interpretable Al:

Question: Can we use available observation data to
discover the physical laws?

Goal: Enable Data-driven Scientific Discovery?

S. Zhang, G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proceedings of the Royal Society of London. Series
A, mathematical, physical and engineering sciences, in press, 2018.

Jiuhai Chen, Lulu Kang, Guang Lin, Gaussian process assisted active learning of physical laws,
Technometrics, in press, 2020.

https://do1.org/10.1080/00401706.2020.1817790

Sheng Zhang, Guang Lin, Robust subsampling-based threshold sparse Bayesian regression to tackle

high noise and outliers for data-driven discovery of differential equations, Journal of Computational
Physics, 428: 109962, 2021.



https://doi.org/10.1080/00401706.2020.1817790
https://doi.org/10.1080/00401706.2020.1817790

ALZHEIMER'S DISEASE PREDICTION

Haoyang Zheng, Jeffrey Petrella, P. Murali Doraiswamy, Guang Lin*, Wenrui Hao,
Data-driven causal model discovery and personalized prediction in Alzheimer’s disease,
Nature NPJ Digital Medicine, 5, 137, 2022.



Background - Alzheimer's Disease

Dr. Alois Alzheimer (1864-1915)

Alois Alzheimer i Auguste Deter |

Dr. Alzheimer was the physician who first reported on a patient
(Auguste) with dementia, later termed as "Alzheimer's Disease".

Distinctive plaques and neurofibrillary tangles in the brain
histology

Zheng Haoyang, et al. "Data-driven causal model discovery and
personalized prediction in Alzheimer's disease." NPJ digital medicine
2022
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Why AD is important?

Leading Causes of Death in Perspective
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Most common dementia

In 2020, over 55 million
people have AD

By 2050, the number could
increase to 150 million

Alzheimer's Disease Projections
Cost of Care (in Billions)
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Challenges and Motivation

e Can we build data-driven model with ADNI dataset?

* Can we build an interpretable model?

* Can we design personalized model for each treatment?
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AD prediction

How to apply patient data (ADNI

dataset) to optimize ODEs?

PURDUE

UNIVERSITY

School of Mechanical Engineering
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Initialized ODE model
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Contribution

» 1. We build the first data-driven cascade model for the Alzheimer’s disease
» 2. We design personalized model to calibrate dynamics for each patient and provide
personalized treatment.

( d(’:s‘g = Wao + Wa1Ag + W42A§3
. & = wro + Wn T+ wrat? + wrsAg + W”Aﬁ + WrsAgT;
& = wno + WniN + waN? + wisT + waa®? + wisTN;
| % = weo + war C + weaC + wesN + weaN? + wesNG,

Zheng Haoyang, et al. "Data-driven causal model discovery and
personalized prediction in Alzheimer's disease." NPJ digital medicine

2022

) PURDUE School of Mechanical Engineering

UNIVERSITY




" Table 1. Population parameters w" of the calibrated causal models
Po p u I atlo n M Od e I based on the ADNI dataset.
Biomarkers Parameters Included subjects
CN, LMCI, AD LMCI, AD
A'B Wao 0 0
Wt 0917 0.745
Was -0.873 -0.749
T Wro 0 0
W 0.788 0.689
W -0.246 -0.679
Wr3 0.002 0.000
Do — Wao + warAp + WaAZ; Wra 3.066 0.185
% = Wro + W T+ wpt? + wr3Ag + Wr4A§ + wrsAgT; Wrs -3.650 -0.101
‘;—2" = wno + wniN + wnaN? + wisT + waT?2 + wisTN; N Wiko 0 0
9% = Weo + war €+ weaC + wesN + wealN? + wesNC, o 1627 0899
ds ’ Wiz -1.253 -0.927
Wz 0.018 0.554
Wi 2342 1.792
Wis -4015 -2.127
C Wco 0 0
Wer 0.159 0.134
Wes 0.202 -0.067
Wes 0.010 0.004
Wea 0.019 0.007
Wes -0.176 -0.008

Zheng Haoyang, et al. "Data-driven causal model discovery and
personalized prediction in Alzheimer's disease." NPJ digital medicine
2022

PURDUE | School of Mechanical Engineering
: UNIVERSITY




Population Model
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Sensitivity Analysis
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Table 2. The prediction accuracy summary for CN subjects using different numbers of longitudinal biomarker datapoints (n).
PseudolDs (n) DPS Diff Model Accuracy
CSF Abeta42 CSF tTau HIPPv ADAS13
114) 0.13 ODE 98.3% 93.6% 99.4% 92.6%
Sigmoid 74.0% 79.8% 70.5% 84.8%
2(4) 3.00 ODE 99.8% 93.2% 98.7% 93.0%
Sigmoid 93.9% 61.5% 90.7% 80.4%
3(5) 0.52 ODE 86.6% 98.8% 95.9% 85.3%
Sigmoid 90.3% 82.6% 71.1% 56.9%
4 (5) 0.59 ODE 98.8% 96.1% 88.3% 96.6%
Sigmoid 76.8% 76.9% 86.1% 66.7%
5(5) 0.39 ODE 97.8% 90.0% 99.7% 94.8%
Sigmoid 84.3% 79.5% 79.9% 81.9%
6 (4) 0.46 ODE 96.3% 93.6% 90.9% 92.7%
Sigmoid 75.4% 91.1% 91.2% 84.0%
71(4) 0.55 ODE 99.8% 88.2% 98.7% 90.3%
Sigmoid 96.5% 86.0% 92.0% 72.3%
8 (4) 0.63 ODE 95.9% 98.9% 92.0% 92.6%
Sigmoid 85.8% 86.8% 91.7% 96.6%
9 (4) 0.71 ODE 99.6% 96.1% 97.1% 87.5%
Sigmoid 89.4% 80.3% 79.2% 69.5%
10 (5) 1.04 ODE 83.4% 81.2% 98.7% 85.5%
Sigmoid 88.3% 78.4% 74.4% 80.1%
11 (6) 1.04 ODE 98.2% 99.8% 86.5% 85.1%
Sigmoid 75.7% 76.3% 67.6% 726 %
12 (4) 0.40 ODE 94.6% 91.3% 96.5% 91.7%
Sigmoid 89.7% 81.5% 88.9% 75.1%
13 (6) 0.88 ODE 97.0% 92.8% 96.1% 98.8%
Sigmoid 97.4% 85.4% 85.3% 84.3%
14 (4) 0.75 ODE 98.4% 99.1% 99.1% 87.1%
ignoid 90.9% 79.7% 88.6% 79.8%
15 (4) O lg Od éI 99.6% 96.8% 90.9% 81.5%
i i g5 l% 81 5% 5!
age - 0.78 £ 0.64 96.3% + 4.9% 94.0% + 5.0% 95.2% + 4.4% 90.3% + 4.8%
Aﬁ revious 86.8% + 7.6% 81.4%+7.4% 82.6% + 8.2% 76.3% +10.1%

PURDUE School of Mechanical Engineering

UNIVERSITY




Summary

= We learn population model to describe the population dynamics and distinguish patients at
different stages

= Sensitivity analysis determine the sensitive parameters, which are calibrated in personalized
model

= Personalized model calibrate the parameter to better demonstrate dynamics tailored for each
patient

Future Plans

= Data-driven model discovery with spatial-temporal
measurements

= Current CSF data summarize from MRI scans to
estimate levels of biomarkers

= We hope to directly use MRI scans to learn the diffusion
process of biomarkers
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Outline:

Incorporate Physics Knowledge and Al to design new interpretable
models — Trustworthy Epidemiological Models for COVID-19
Prediction & Intervention

Incorporate Physics Knowledge into Al to predict multiscale problems:
NH-PINN

Interpretable Al enables data-driven scientific discovery with
LFJ)ncgrtainty quantification capability — ALZHEIMER's Disease
rediction

Scalable training large-scale Deep Neural Network



Visualization the Loss Landscape of Deep Neural Nets

The loss landscape of modern deep neural nets [Li et al., 2018]



Gradient Descent Fails

Credit to losslanscape.com



Scalable training large-scale Deep Neural Network:

Question: How can we design efficient optimization/sampling
algorithms to train large-scale deep neural networks?

Goal: Enable Fast training large-scale DNN.

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse
deep learning, 2019 Conference on Neural Information Processing Systems (NIPS),
Dec. 8 — Dec. 14, 2019, Vancouver, Canada.

NeurIPS'19, NeurIPS20, ICML"20, ICLR21, JCP"20, ]¢P'2 la, JCP'21b



Scalable algorithms for Bayesian deep learning via
Stochastic Gradient Monte Carlo and Beyond

Guang Lin*
Joint work with W. Deng, Y. Wang, Q. Feng, L. Gao, G. Karagiannis, F. Liang
August 13, 2021

1Du*=~.|::-artmf'.n’cs of Mathematics & School of Mechanical Engineering, Purdue University

NeurIPS'19, NeurIPS20, ICML'20, ICLR'21, JCP'20, JCP"21a, JCP'21b



Markov chain Monte Carlo

Uncertainty quantification is crucial for Al safety problems and

reinforcement learning, which draws our attention to Markov chain
Monte Carlo (MCMC), which is known for

e Multi-modal sampling — Accurate predictive confidence interval

e Non-convex optimization — Better point estimate



Langevin diffusion

A famous sampling algorithm is called Langevin diffusion.

dB: = —VU(B:)dt + V2rdW,,

where 3; is the parameter at time t, U(-) is the energy function, W; is a

Brownian motion and 7 is the temperature.

, ; o e o u(B)
As t — o0, (B¢ converges to the stationary Gibbs distribution Ce™ "

—1=0.2
— 1=1
—1=5

(a) Gibbs measures at three dif-
ferent temperatures 7.



Stochastic gradient Langevin dynamics

However, evaluating gradient in big data problems is too costly.

To tackle this issue, Max Welling, etc [Welling and Teh, 2011] proposed
the stochastic gradient Langevin dynamics algorithm (SGLD)

Bk+1 = Bk — NV G(ﬁk) + N(0,2nTl). (1)

As t — oo and n — 0, 3; converges weakly to the stationary Gibbs
T v(B)
distribution Ce™ 77 .




Stochastic gradient Langevin dynamics

Sample from a multi-modal distribution

SGLD

ter=150




Acceleration strategies for MCMC

Most popular strategies to accelerate MCMC:

e Simulated annealing [Kirkpatrick et al., 1983]
e Replica exchange MCMC [Swendsen and Wang, 1986]



Replica Exchange SGLD
Wei Deng, et al., ICML 2020



Replica exchange Langevin diffusion

Consider two Langevin diffusion processes with 71 > m

dgt) = —vu(BM)dt + vV2rdwi
dp:? = —vU(p

Moreover, the positions of the two particles swap with a probability

58D, 8P = e(F %) (vBD)-uE?)

In other words, a jump process is included in a Markov process

2)

P(Besar = (B2, B8 = (B, 8Y)) = rs(BY, 3P dt
P(Besar = (B, B 18: = (B, 8Y)) =1 - rS(BY, B dt



7::(;.\I_:1it;|ti()n :

Exploitatio

Figure 1: Trajectory plot for replica exchange Langevin diffusion.



Why the naive numerical algorithm fails

Consider the scalable stochastic gradient Langevin dynamics algorithm
[Welling and Teh, 2011]

ﬁk+1 = /6/( — Tk VL IBk T 27]k7'1€k
ﬁk+1 (2) — Mk VL ﬁk + \/27)k72£k .

Swap the chains with a naive swapping rate fS(B/(<1+)1=B§<2J21)"7k§1
s(BY,,3®.) = o[22 (1B L)-05)) (2)

Exponentiating the unbiased estimators Z(B,((J)rl) leads to a large bias.

$In the implementations, we fix rn, = 1 by default.



A corrected algorithm

Assume L(8) ~ N(L(8),0?) and consider the geometric Brownian
motion of {S;}:c[0 1) in each swap as a Martingale

5S¢ = e(%_%ﬁ (lz(é(l))—i(ﬁm)—(%‘%)cﬂt)

(3 (- (4 5)Pervaw)

%2 LA & T2

(3)

Taking the derivative of gt with respect to t and W4, I1t6's lemma gives,

3 dS, 1d2S, dS; I 1N =
d6.—= | =2t 4. = dt dW, =v2 (= — =) 65.dW,.
; (dt +2th2) g e = V2| —— | a5,

By fixing t = 1 in (3), we have the suggested unbiased swapping rate

g — o(F-%) (BN-TEMN-(£-5)’)



Replica exchange Stochastic gradient Langevin dynamics

SGLD Replica exchange SGLD

ter=150 lker=525

o q i {_S;WEFG:H @ é -

10



Acceleration via replica exchange

A
E — reSGLD
=

Figure 2: Acceleration via replica exchange (swaps/ interactions)
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Accelerating convergence via variance reduction

Can we do better?

14



Exponential acceleration via
variance reduction

Wei Deng et al., ICLR 2021



Accelerating convergence via variance reduction

The desire to obtain more effective swaps drives us to design more

efficient energy estimators.

To reduce the variance of the noisy energy estimator

L(B|ﬁ(h)) — N D icB L(X;|ﬁ(h)) for h € {1,2}, we consider an unbiased

n

estimator L(B|B(h)) for Z:ﬁil L(X;|§(h)) and a constant ¢, we see that a
new estimator L(B|3"), which follows

N
L(B|B") = L(BIB™) + ¢ (L(BIE“”) -) L(xfé‘(”))) . (8

=1

is still the unbiased estimator for Zf‘il L(x;|3™).

15



Accelerating convergence via variance reduction

By decomposing the variance, we have

Var(L(B|B™)) = Var (L(B|ﬁ“‘))) + c2Var (L(B|§“ﬂ)) +2cCov (L(B\,@“‘)], L(B|§“‘>)) .

In such a case, Var(Z(B|ﬁ(h})) achieves the minimum variance

(1-— pz)Var(L(Bm(h))) given c* ::_Cw(L‘E,i'(ﬁ;;)g((ﬁ)'?m)), where Cov(-, )

denotes the covariance and p is the correlation coefficient.

16



Accelerating convergence via variance reduction

To make variance reduction work, it requires two crucial components.

e [o propose a correlated control variate B\
— Update Bh — ﬁﬁ:ﬁq every m iterations
e The optimal ¢ is unknown.
— Set ¢ = —1 for highly correlated energy estimators.

— Set adaptive c¢ for the less correlated.

17



Reduction of Variance

VR-reSGLD may lead to a more efficient energy estimator with a much
smaller variance.

Lemma (Variance-reduced energy estimator)

Under the smoothness and dissipativity assumptions, the variance of the

variance-reduced energy estimator Z(B|B(h)), where h € {1,2}, is upper
bounded by

Var (L(B|8™)) < min {0 (m ”) var< ZL x18M)) }

where the detailed O(-) constants is shown in the appendix
[Deng et al., 2021].

18



A smaller variance implies more effective swaps

The variance-reduced energy estimator Z(B\ﬁ(h}) doesn't directly affect
E[g-r;,m,n] within the support [0, co]. However, the unbounded support is
not appropriate for numerical algorithms, and only the truncated
swapping rate S, , , = min{l, gn_m‘n} Is considered. As such, the

truncated swapping rate becomes significantly smaller.

Lemma (Variance reduction for larger swapping rates)

Given a large enough batch size n, the variance-reduced energy estimator

I( By | 5&“) yields a truncated swapping rate that satisfies

E[S,.m.n] ~ min {1, S(a(l),a(z))(o(%) + e—o(mi”+fz)) } (5)

19



Acceleration via variance-reduced replica exchange

3 — SGLD
g —reSGLD
— VR-reSGLD

Acceleratio

Figure 3: Acceleration via variance-reduced replica exchange.
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1D simulation of Gaussian mixture

Nt
: —— WVR=SGLD ] — [eSGLD Rl e =
— Ground truth SGLD
2 1 = —— (Garound truth <
® &
| N I g A —= s | B g
= z o
- = 5
] . — sen
= RNl o = = o o | — VRreSEL {m=15) g
= | - — WA-eSGELD (m=E0) =
! ! 1 T4 _VA-eSGLD (m=100) )
0.14  0.06 0 400 a00 03 01 0 400 800 0 200 600 1000 -8 -7 -6 -5 -4
epoch epoch opach 1 (inlogyo

(a) Trace plot for ﬁ{” (b) Trace plot for g (c) Paths of log,, &>  (d) Contour of log,, 72

Figure 2: Trace plots, KDEs of 3(1), and sensitivity study of &2 with respect to m, 77 and n.

21



Non-convex optimization on CIFAR10 and CIFAR100

~= m=50 & n=256
=~ m=inf & n=256

-h [y
o (&)

(4]

Variance (in millions)

0
0 100 200 300 400 500
Epochs

(a) CIFARI10: Original
v.s. proposed (m=50)

Figure 3: Variance reduction on the noisy energy estimators on CIFAR10 & CIFAR100 datasets.
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(b) CIFAR100: Original
v.s. proposed (m=50)
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(¢c) Variance reduction (d) Variance reduction
setups on CIFARI10 setups on CIFAR100
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Non-convex optimization on CIFAR10 and CIFAR100

TABLE 1: PREDICTION ACCURACIES (%) BASED ON BAYESIAN MODEL AVERAGING.
CIFARI0 CIFAR100

METHOD - oNET20  RESNET32  RESNETS6 | RESNET20  RESNET32  RESNETS6
M-SGD | 94.0740.11 95.1140.07 96.0510.21 | 71.9340.13 74.65+0.20 78.76+0.24
SGHMC | 94.1640.13  95.17+0.08 96.04+0.18 | 72.0940.14 74.8040.19  78.95+0.22
reSGHMC | 94.56+0.23 95.44+0.16 96.15+40.17 | 73.94+0.34 76.38+0.23 79.86+0.26
VR-eSGHMC | 94.84+0.11 95.62+0.09 96.32+0.15 | 74.83+0.18 77.40+0.27 80.620.22
yeSGHMC | 94.61+0.15 95.56+0.12 96.19+0.17 | 74.2140.22  76.60+0.25 80.39+0.21
CVR-1eSGHMC | 94.9140.10  95.6440.13  96.36-0.16 | 75.0240.19 77.58+0.21 80.50-0.25




Non-convex optimization on CIFAR10 and CIFAR100
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(a) CIFAR10 & m=50 (b) CIFARI00 & m=50 (c) CIFARIO & m=392 (d) CIFAR100 & m=392

Figure 5: A study of variance reduction techniques using adaptive coefficient and non-adaptive
coefficient on CIFAR10 & CIFAR100 datasets.



e Replica exchange stochastic gradient MCMC shows a potential in

exponentially accelerating the convergence in non-convex learning.

[Deng et al., 2020]

e Variance reduction of energy estimators yields exponential more
effective swaps, which further accelerates the exponential

convergence in non-convex learning. [Deng et al., 2021]

e This is the first work to do variance reduction on energy estimators
in deep learning, which paves the road for accelerating advanced

stochastic gradient MCMC algorithms in non-convex learning.
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In Math We Trust: Interpretable, Trustworthy
Machine Learning

“...Because I had worked in the closest possible ways with
physicists and engineers, I knew that our data can never be precise...”
Norbert Wiener

69
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