
PRESENTED BY:
Tejas Yalamanchili and
Shrinivas Venkatesan

CODE TRANSLATION
WITH TRANSFORMERS



Motivation

Manual Rewriting of Code is a
cumbersome, error-prone, and

expensive process

Python might be the easiest to code
in but might not offer low-level

features of C++

Legacy, rule-based conversions
using ASTs are brittle and cannot

handle library mappings



Why Transformers?

Reason #1:
Treats code translation as a Machine Translation (NMT)
problem (similar to English → French)

Reason #2:
Attention Mechanism allows the model to map
dependencies between distant code parts (a variable
definition at the top and its usage at the bottom)

Reason #3:
Can convert "Pythonic" patterns (like list
comprehensions or dynamic typing) into
performant, "native" C++ structures (like std::vector
or std::transform) rather than doing a literal line-by-
line translation



Methodology

Step #1: Data Collection
Code snippets (functions or classes) , with paired
translations
Target Language dependency and library mapping

Step #2: Retrieval
Embed source code chunks with CodeBERT
Store vectors in an index; retrieve top-k similar
examples at translation time

Step #3: Translator
Feed source chunk + retrieved examples into a
generative mode
Output target code with the required style and
constraints

Step #4: Verification Loop
Compile and check for any issues
If any errors, feed the logs back for a fix(repeat a
few times)

Step #5: Outputs
Final translated code
Also give a few metrics such as test pass rate and
runtime parity checks



Why This would work
Problem with generation only

Misses project-specific patterns and APIs
Hallucinates Libraries
Breaks subtle semantics

Reason to add CodeBERT
It pulls closest real examples
Anchors the model to correct target-language style
and architecture
Reduces ambiguity for framework heavy code

Reason to add a Verification Loop
Translation must satisfy real toolchains and
contstraints
Tests give objective feedback
Repair loop helps by converting failures into
incremental patches



Problems We Might Face

Problem #1: Data and
Coverage

Few high-quality paired
examples for niche
libraries
Domain or framework
mismatch between
retrieved examples and
current code

Problem #2: Semantic
Mismatches

Dynamic vs static
Typing, different
memory model, and
concurrency model
differences.
Even the exceptions,
numeric types and
ordering might differ
from language to
language

Problem #3: Evaluation
Passing compilation and
some tests doesn’t
necessarily guarantee
identical behviour
There might be many
edge cases, therefore
the test cases need to
be comprehensiv

Problem #4: Scale
Apart from the
Translator and BERT
models, embedding cost
and repeated
verify/repair loops can
add latency and also
increase compute cost



Q & A


