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Motivation

e 0"

Manual Rewriting of Code is a
cumbersome, error-prone, and
expensive process

x K

Python might be the easiest to code
in but might not offer low-level
features of C++

e 0"

Legacy, rule-based conversions
using ASTs are brittle and cannot
handle library mappings




Why Transformers?

Reason #1:

Treats code translation as a Machine Translation (NMT)
problem (similar to English - French)

Reason #2:

Attention Mechanism allows the model to map
dependencies between distant code parts (a variable
definition at the top and its usage at the bottom)

Reason #3:

Can convert "Pythonic" patterns (like list
comprehensions or dynamic typing) into
performant, "native" C++ structures (like std::vector
or std::transform) rather than doing a literal line-by-
line translation
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Methodology

Step #1: Data Collection
e Code snippets (functions or classes) , with paired

translations
e Target Language dependency and library mapping

Step #2: Retrieval
e Embed source code chunks with CodeBERT

e Store vectors in an index; retrieve top-k similar
examples at translation time

Step #3: Translator
e Feed source chunk + retrieved examplesinto a

generative mode
e QOutput target code with the required style and
constraints

Step #4: Verification Loop
e Compile and check for any issues

e |f any errors, feed the logs back for a fix(repeat a
few times)

Step #5: Outputs
e Final translated code

e Also give a few metrics such as test pass rate and
runtime parity checks



Why This would work

Problem with generation only

e Misses project-specific patterns and APls
e Hallucinates Libraries
e Breaks subtle semantics

Reason to add CodeBERT

e |t pulls closest real examples

e Anchors the model to correct target-language style
and architecture

e Reduces ambiguity for framework heavy code

Reason to add a Verification Loop

e Translation must satisfy real toolchains and
contstraints

e Tests give objective feedback

e Repair loop helps by converting failures into
incremental patches
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Problems We Might Face

Problem #2: Semantic Problem #3: Evaluation Problem #4: Scale

Mismatches e Passing compilationand e Apartfrom the
e Dynamic vs static some tests doesn’t Translator and BERT

Problem #1: Data and
Coverage

e Few high-quality paired

examples for niche
libraries

e Domain or framework
mismatch between
retrieved examples and
current code

Typing, different
memory model, and
concurrency model
differences.

e Even the exceptions,
numeric types and
ordering might differ
from language to
language

necessarily guarantee
identical behviour
There might be many
edge cases, therefore
the test cases need to
be comprehensiv

models, embedding cost
and repeated
verify/repair loops can
add latency and also
increase compute cost






