CODE TRANSLATION
WITH TRANSFORMERS

PRESENTED BY:

Tejas Yalamanchili and
Shrinivas Venkatesan

Motivation

e 0"

Manual Rewriting of Code is a
cumbersome, error-prone, and
expensive process

x K

Python might be the easiest to code
in but might not offer low-level
features of C++

e 0"

Legacy, rule-based conversions
using ASTs are brittle and cannot
handle library mappings

Why Transformers?

Reason #1:

Treats code translation as a Machine Translation (NMT)
problem (similar to English - French)

Reason #2:

Attention Mechanism allows the model to map
dependencies between distant code parts (a variable
definition at the top and its usage at the bottom)

Reason #3:

Can convert "Pythonic" patterns (like list
comprehensions or dynamic typing) into
performant, "native" C++ structures (like std::vector
or std::transform) rather than doing a literal line-by-
line translation

—eeeeeeeeee

| Add & Norm |
‘ { Feed Forward J

[Add & Norm J

| Multi-Head
Attention

Positional (~ \ T
Encoding Ill:f)ﬁ?

Input
Embedding

Nx

Inputs

Output
Probabilities

f

[Softmax

T

[Linear
Iy

| Add & Norm e~
| Feed Forward |

T—

| Add & Norm e

Multi-Head
Attention

Sy el
|r Add & Norm]<ﬁ
Masked Multi- \

Head
Attention

Nx

A {;\Q Positional
dT_/HK,__/J Encoding

Output
Embedding

Oquuts
(shifted right)

Methodology

Step #1: Data Collection
e Code snippets (functions or classes) , with paired

translations
e Target Language dependency and library mapping

Step #2: Retrieval
e Embed source code chunks with CodeBERT

e Store vectors in an index; retrieve top-k similar
examples at translation time

Step #3: Translator
e Feed source chunk + retrieved examplesinto a

generative mode
e QOutput target code with the required style and
constraints

Step #4: Verification Loop
e Compile and check for any issues

e |f any errors, feed the logs back for a fix(repeat a
few times)

Step #5: Outputs
e Final translated code

e Also give a few metrics such as test pass rate and
runtime parity checks

Why This would work

Problem with generation only

e Misses project-specific patterns and APls
e Hallucinates Libraries
e Breaks subtle semantics

Reason to add CodeBERT

e |t pulls closest real examples

e Anchors the model to correct target-language style
and architecture

e Reduces ambiguity for framework heavy code

Reason to add a Verification Loop

e Translation must satisfy real toolchains and
contstraints

e Tests give objective feedback

e Repair loop helps by converting failures into
incremental patches

CodeBERT: Pre-Train with Code+Text

0.1% 13% 0.1% 15%, 01% 0.3%
Predict the masked at- |maxtmum " 2 a |- |if|-| z
code/text tokens with the I distribution over vocab T distribution over vocab
output of CodeBERT

FFNN + Softmax FFNN + Softmax

S R A A S S S SN i
Source code 112
def max(a, b): d B E RT
x=0 CO e & Transformer
if b>a:
x=b L
else:
T 1T P17 1T 0107110711
return x Rand | ”
[CLS] Rerum value [SEP] def max (a, b): x=0if b>a: x=b else x=[E8dreturn x [SEP] _Iasn%car?t};l::;
Comment ta 681 Tttt 1t
Return maximum value Return maximum values defmax(a,b):x=0ifb>a:x=belsex= a returnx Input
Text Code

Problems We Might Face

Problem #2: Semantic Problem #3: Evaluation Problem #4: Scale

Mismatches e Passing compilationand e Apartfrom the
e Dynamic vs static some tests doesn’t Translator and BERT

Problem #1: Data and
Coverage

e Few high-quality paired

examples for niche
libraries

e Domain or framework
mismatch between
retrieved examples and
current code

Typing, different
memory model, and
concurrency model
differences.

e Even the exceptions,
numeric types and
ordering might differ
from language to
language

necessarily guarantee
identical behviour
There might be many
edge cases, therefore
the test cases need to
be comprehensiv

models, embedding cost
and repeated
verify/repair loops can
add latency and also
increase compute cost

