

Explainable Financial Forecasting

Kevin Cushing, Anik Dey, and
Aarav Sane

Automating a Financial Analyst

Task/Domain

- Identify investment opportunities
 - Research companies
 - Analyze past performance
 - Forecast potential earnings

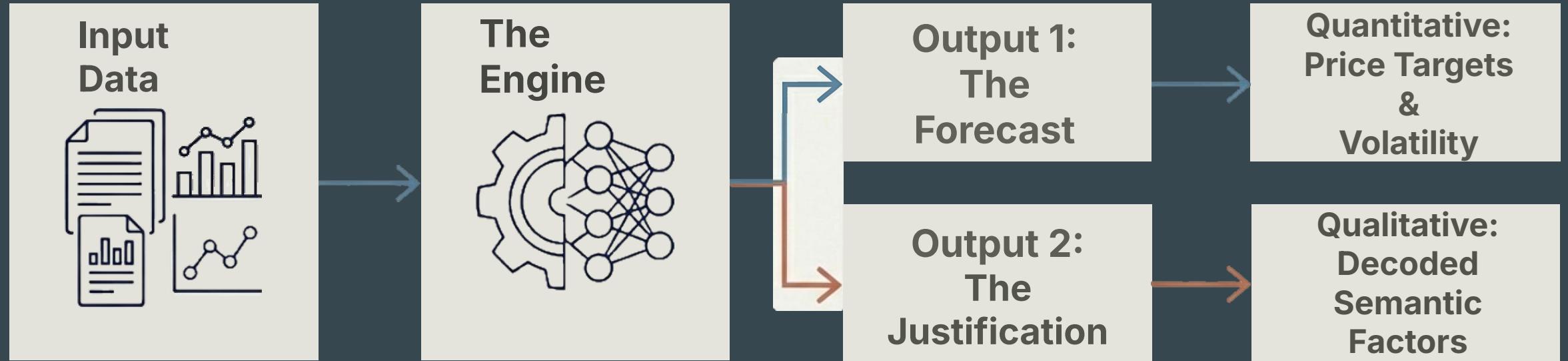
Problem

- Complex models are black-boxes
- Lack justifications for decisions/predictions

Requirement

- Leverage Multi-modal Data
 - Time-series
 - Text
- More Faithful Projections
 - Accurately predict prices/volatility
 - Justify these predictions

Process Overview



Data

Global Factors

- fed rates
- market indices
- government policies

Industry Factors

- industry indices
- supplying/consuming companies
- competitors/partners

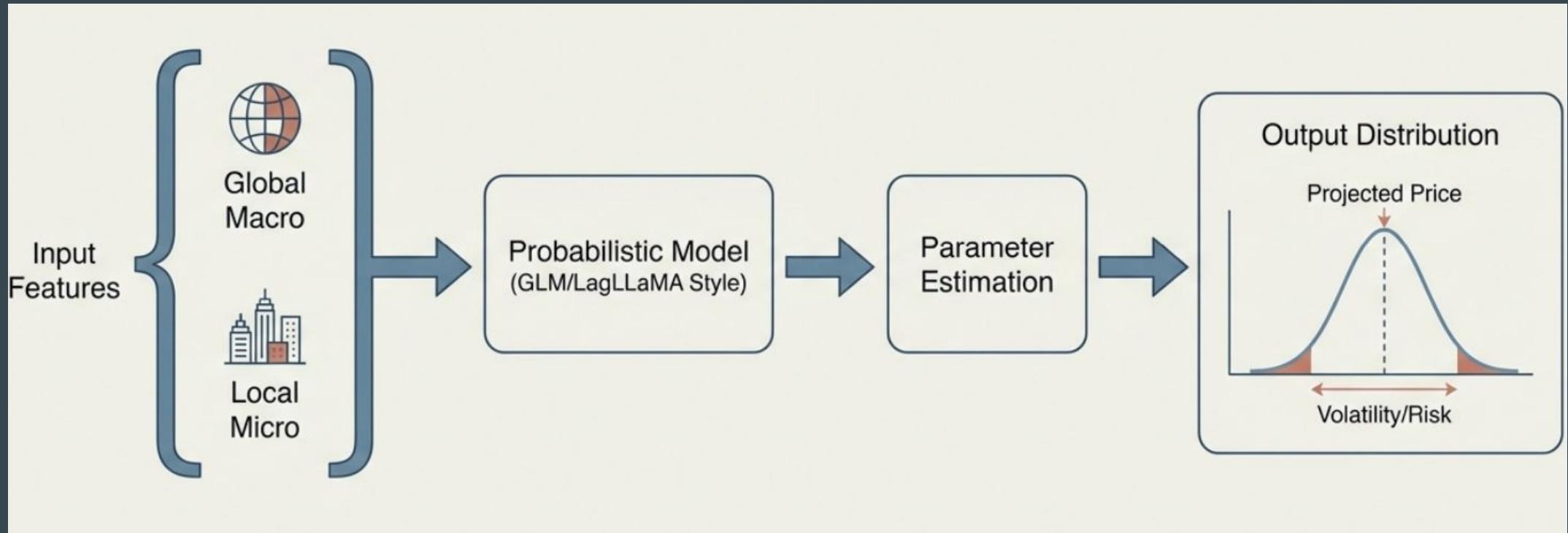
Local Factors

- trade volumes/prices
- earnings reports/quarterly filings
- press releases
- relevant news articles
- sentiment analysis from social media

Potential Data Sources

- CRSP, Yahoo Finance – historical price data
- SEC Edgar – corporate filings
- Google Search API (or GDELT) – news articles
- Twitter/Reddit API – open-forum comments
- Seeking Alpha – earnings call transcripts

Forecasting



Unlike standard regression models that output a single point, this architecture predicts parameter values for probability distributions. It integrates methods for explaining projections directly within the distribution parameters, offering a view of both "what could happen" and "how likely it is".

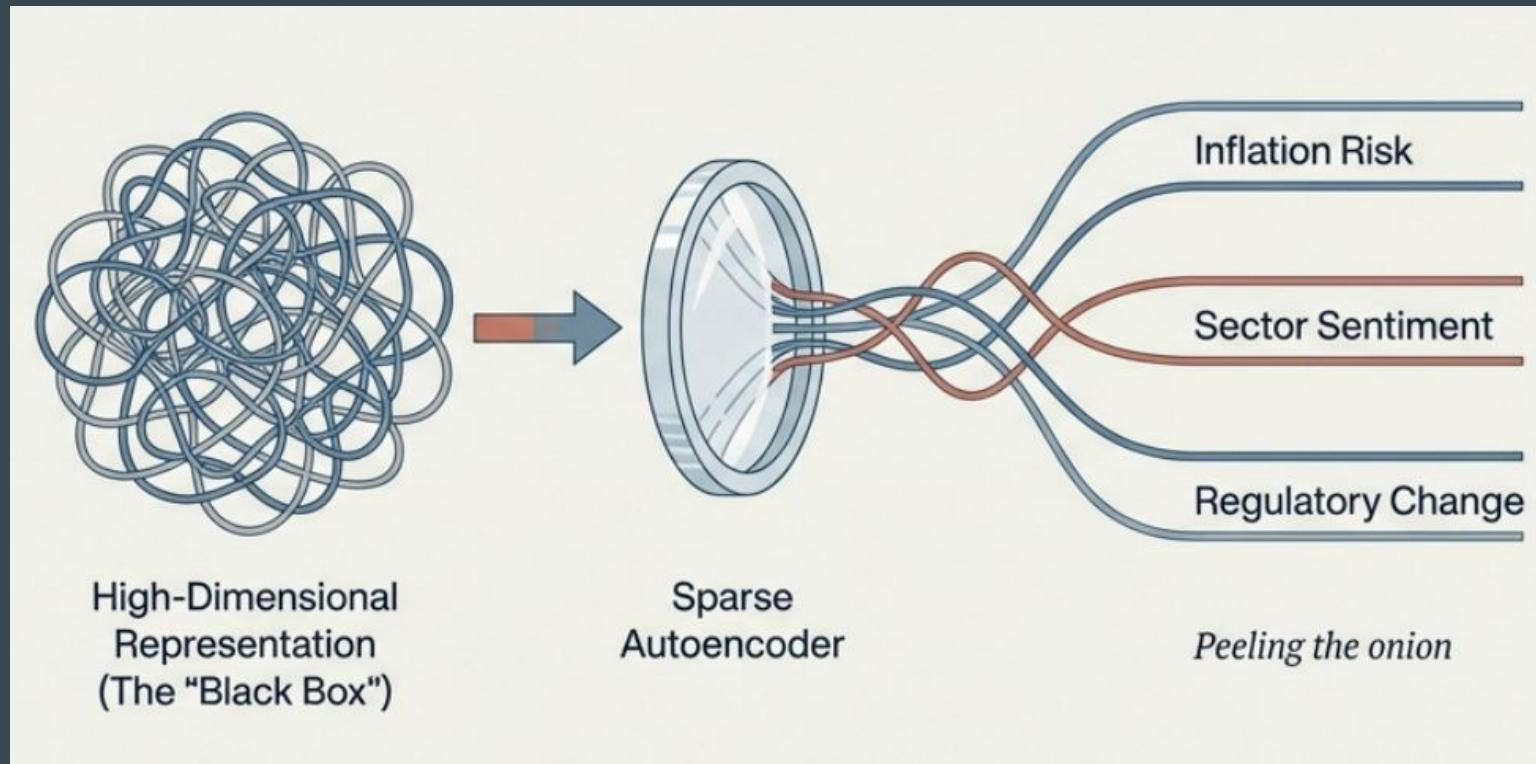
Justification

Existing approaches:

- LIME
- SHAP
- conditional effect analysis
- counterfactual reasoning

Probable approach:

- Sparse Autoencoders (SAEs)
- learn mapping from neuron activations to sparse vector of financial concepts
- explain projections by which “concepts” are activated



Why Models Are Hard to Interpret

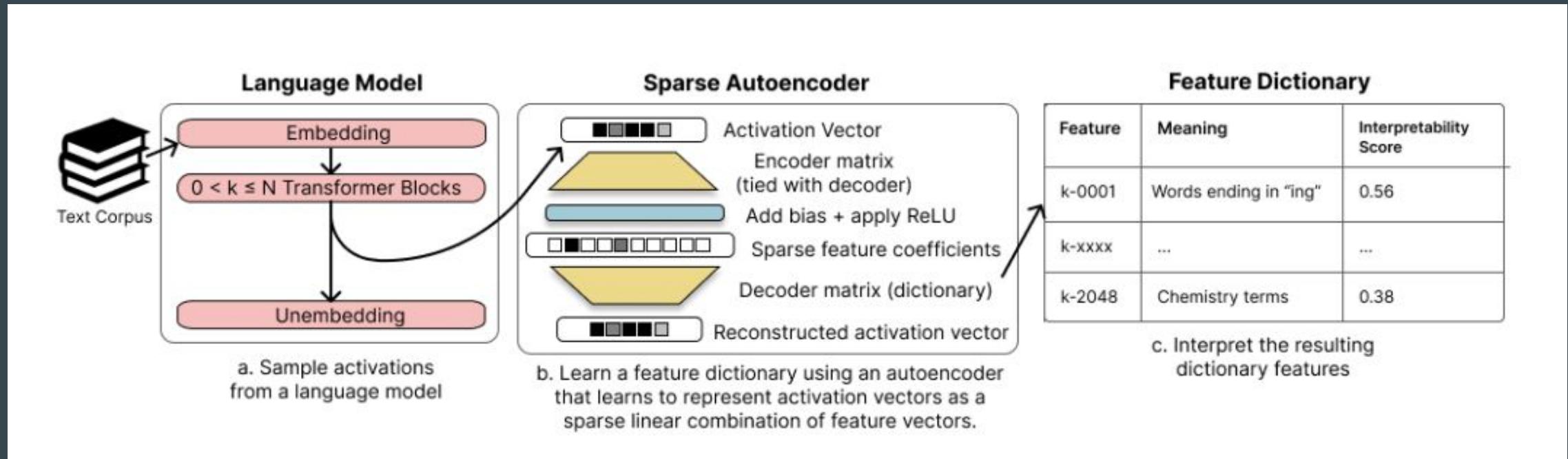
Polysemy:

- A single neuron often activates for multiple unrelated concepts. Example: one neuron lights up for both dogs and the color yellow.
- Makes it difficult to find human-understandable explanations.

Superposition:

- The network stores more features than neurons.
- Encodes features as combinations of neurons (directions in activation space).
- Each neuron contributes to many features.

SAE Methodology (Figure)



SAE Methodology

Goal:

Extract meaningful, human-interpretable features from tangled activations of a model (NN/Transformer).

Architecture:

Input $x \rightarrow \text{Encoder } (Mx + b) \rightarrow \text{ReLU} \rightarrow \text{Sparse code } c \rightarrow \text{Decoder } (M^T c) \rightarrow \text{Reconstructed vector } \hat{x}$

$$c = \text{ReLU}(Mx + b)$$

$$\hat{x} = M^T c = \sum c_i f_i$$

Loss Function: $L(x) = \|x - \hat{x}\|_2^2 + \alpha \|c\|_1$

- Reconstruction term: keeps \hat{x} close to x .
- Sparsity term: ensures only a few features activate.

Key Idea:

By enforcing sparsity, the autoencoder learns disentangled directions, taking features out of superposition.

Challenges

Data

- Finding/creating a dataset
- Combining stock prices and text data from news sources

Training

- Large models require significant resources.

Mapping Concepts

- SAEs are mostly used for LLMs/LVLMs
- Can they map to concepts from time-series data?

Questions/Thoughts?

Thank You