Research in Applications for Learning Machines (REALM) Consortium

Situational Knowledge On Demand (SKOD) 23rd October 2019

> Bharat Bhargava Purdue University

Technical Champion: Dr. James MacDonald

Collaborations

Primary Researchers

- Bharat Bhargava (Purdue)
- Michael Stonebraker (MIT)
- Michael Cafarella (UMich)
- Aarti Singh (CMU)
- Peter Bailis (Stanford)

- Students
 - KMA Solaiman
 - Servio Palacios
 - Alina Nesen
 - Pelin Angin
 - Zachary Collins (MIT)
 - Aaron Sipser (MIT)
 - Miguel Villarreal-Vasquez
 - Ganapathy Mani
 - Aala Oqab Alsalem
 - Tunazzina Islam
 - Denis Ulybyshev
 - Daniel Kang (Stanford)

The project is applicable across a variety of industries, military to commercial to academic.

Principal Investigators:

- Bharat Bhargava, Purdue University Research
 - Extract and identify patterns related to significant mission needs
 - Develop algorithms to establish situational awareness
 - Connect disaggregate knowledge sources
- Michael Stonebraker, Massachusetts Institute of Technology Research
 - Information Value
 - Push relevant information efficiently to interested parties (e.g. analysts, experts, and decision makers)
- Aarti Singh, Carnegie Mellon University Research
 - Context Aware Machine Learning
 - Metadata Tagging
- Peter Bailis, Stanford University Research
 - Extract Knowledge Patterns from Streams
 - Real-time Content Reduction &
 - Object Association

Multiple Data Sources SKOD Novel Sources

Outline

- Possible Scenarios
- Objectives
- Problem Statement
- Datasets
- SKOD Architecture
- Summary
- Deliverables and Demo
- Future Plans

NORTHROP GRUMMAN

Outline

- Possible Scenarios
- Objectives
- Problem Statement
- Datasets
- SKOD Architecture
- Summary
- Deliverables and Demo
- Future Plans

Architecture Modules

- Data Streaming
- Feature Extraction
- Knowledge Graph
- User Profiling
- PostgreSQL Database
- Graph-based Indexing Layer
- Front End

Achievements

Relevant Publications:

- S. Palacios and K. Solaiman, P. Angin, A. Nesen, B. Bhargava, Z. Collins, A. Sipser, M. Stonebraker, J. Macdonald. *SKOD: A Framework for Situational Knowledge on Demand.* In *Polystores and other Systems for Heterogeneous Data (Poly 2019),* at VLDB 2019, LA, California, August 30, 2019.
- 2. K. Solaiman, B. Bhargava, J. MacDonald. *Multi-modal Information Retrieval via Joint Embedding.* (To be submitted)
- 3. A. Nesen, B. Bhargava, J. MacDonald. *Explainable Anomaly Detection in Surveillance Video With Deep Learning and Knowledge Graphs.* (To be submitted)
- 4. M. Kabir and S. Madria. A Deep Learning Approach for Tweet Classification and Rescue Scheduling for Effective Disaster Management. In 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, Illinois, Nov 7, 2019.
- 5. D. Kang, P. Bailis, and M. Zaharia. *Blazeit: Fast exploratory video queries using neural networks.* (2018).
- 6. Peter Bailis, et al. *Infrastructure for Usable Machine Learning: The Stanford DAWN Project.* (2017).
- 6

Achievements

Third Party Funding:

- DARPA award on Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) initiative of DoD
 - Generating Novelty in Open-world Multi-agent Environments (GNOME)
- Several white papers have been submitted for DoD

Context & User	Mission	Contextual Info. Propagation
Normal Day & Regular Petrol	Finding an Unattended Child in Car	Send to Appropriate User
During an Earthquake & Rescue Personnel	Finding an Unattended Child in Car	Send to Appropriate User

Context & User	Mission	Contextual Info. Propagation
Normal Day & Regular Petrol	Finding an Unattended Child in Car	Bad Send to Appropriate User
During an Earthquake & Rescue Personnel	Finding an Unattended Child in Car	Send to Appropriate User

Context & User	Mission	Contextual Info. Propagation
Normal Day & Regular Petrol	Finding an Unattended Child in Car	Bad Send to Appropriate User
During an Earthquake & Rescue Personnel	Finding an Unattended Child in Car	Good Send to Appropriate User

Possible Scenario: Suspected Person for Violence

Possible Scenario: Suspected Person for Violence

Possible Scenario: Suspected Person for Violence

Possible Scenarios

Possible Scenarios

Identify Unsafe Lane Changes

Possible Scenarios

Identify Jaywalking

SKOD Framework : Agents

- Numerous agents with different missions in a city (i.e., Cambridge)
 - Cambridge police
 - University (Harvard, MIT) police
 - TRANSIT police
 - Cambridge public works
 - Citizens
 - FEMA (Emergency personnel)
 - Homeland Security

SKOD Framework : Missions

- Missions with various needs for information
 - MIT police (pedestrians in the middle of the road, unsafe lane changes, "choke" points, Child left alone in parked car, purple Cadillac used by a bad guy identified ...)
 - Cambridge public works (potholes, down or occluded street signs)
 - Citizens (crane or car illegally blocking the sidewalk in front of house)
- SKOD framework consists of
 - Multimodal data with Multiple Users with different needs
 - Streaming and Restful data

 Retrieve knowledge needed by multiple users with *changing* needs based on Situational Awareness

Objective 1: Relevant data is efficiently passed to users based on their requests

- Retrieve knowledge needed by multiple users with *changing* needs based on Situational Awareness
- Relate multi-modal data and update the knowledge for users
- Integrate new streaming data with queries already used by mission
- Complete the unfulfilled data needs for missions based on the Situation and User Preference

NORTHROP GRUMMAN UNIVERSITY RESEARCH SYMPOSIUM

SKOD Objectives

SKOD Objectives

SKOD Objectives

Objective 2: New data items are directed to interested users based on User Profiling.

SKOD Framework : Research Directions

- CNN based Neural Networks and Transfer Learning for objects from Video.
- Generative and Deep Learning (encapsulating Word2Vec) models for topics, ontologies and triplets (KG) from Text.
- DL model combining attention based Bi-LSTM and CNN [4] to classify tweets for Disaster Resource Management and similar scenarios.
- Blazelt [5] for complex queries over video related to objects of interest.
- Research DAWN's End-to-End ML Systems [6] for Recommendation.
- Research reinforcement learning and active learning for User Profiling.
- Apply models to other NG large databases (sensors, signals, text, phone calls, videos, images, voice)

Problem Statement

Determine relevant information from heterogeneous data at rest and data streams, and deliver it to the right user based on situational awareness. Build context-aware knowledge on top of relational database utilizing user queries and deliver missing information to fulfill mission requirements.

Datasets

• Video

- -100+ hours of dashcam video collected at MIT
- -Raw video can be retrieved from MIT database at Cambridge
 - Split into chunks of 30 seconds
 - Metadata collected: geolocation and timestamp for each 30 seconds

• Unstructured Text (Twitter data)

- -Collected ~200K tweets (Target ~ 1 million)
- -Automatic tweet parsing and recording system into Postgres in place

Structured data

- -Cambridge public datasets
- -Automatic weekly updates into Postgres in place

Data from drones and dashcams

Datasets Example

- Tweets from Cambridge Police
- A video that has a bicyclist without helmet on it 00:01 to 00:27

Datasets Example

Tweets from Cambridge Police

1J

• A video that has a bicyclist without helmet on it 00:01 to 00:27

Cambridge Police 2 CambridgePolice · Mar 30 14:50 Report of possible ASSAULT IN PROGRESS at 2XX MASSACHUSETTS AVE in #CambMA

Cambridge Police 2 CambridgePolice · Mar 30 13:13 Report of possible SUSPICIOUS PACKAGE at 8XX SOMERVILLE AVE in #CambMA

久 11 1

Cambridge Police 2 @CambridgePolice · Mar 29 ~ 20:58 Report of possible ATTEMPTED ROBBERY at 2XX MONSIGNOR OBRIEN HWY in #CambMA

Future Datasets

- Waymo Open Dataset
 - Sensor data
 - Synchronized lidar and camera data from 1,000 segments (20s each)
 - Labeled data
 - Labels for 4 object classes Vehicles, Pedestrians, Cyclists, Signs
- Yelp Dataset
 - Reviews
 - Businesses
 - Pictures
 - Metropolitan Areas
- News Articles
 - https://www.cambridgema.gov/news?page=2&ResultsPerPage=10
 - Google News

Architecture

- Users' queries
 - Heterogeneous Data Streams
- Knowledge derived from queries
- Situational Aware Indexed Data
- Relevant patterns of data

Architecture

- Knowledge derived from queries
- Situational Aware Indexed Data
- Relevant patterns of data

NORTHROP GRUMMAN UNIVERSITY RESEARCH SYMPOSIUM

Feature Extraction Module

• Example Query

Select * from tweets, videos where
tweets.objects_discussed == "car" and
tweets.objects_discussed == "child" and
videos.objects_detected == "car" and
videos.objects.detected == "child"

- Answer queries such as above
- Find interesting features from incoming data and data at rest
- Relate data from different modalities

Extracting Features from Video with Deep Learning

- Object detection and classification: best result achieved with deep learning architectures:
 - Faster RCNN
 - YOLO
 - SSD
- Manual annotation and labeling
 - Time-consuming and expensive for large datasets
 - Outsourced human labor can be employed (MTurk)
- We use *pre-trained* YOLO neural network to extract knowledge, detect and label objects in video
- Retrain YOLO with Transfer Learning for detecting classes outside of pretrained ones

Neural Network For Object Detection and Classification

- YOLO detects 100+ classes
- Our raw video dataset contains about 15 of the objects from these classes
- YOLOv3 object detection algorithm
 - 1. Regions of interests (ROI) proposals are generated
 - 2. For each region, features are extracted and classified with Convolutional Neural Network
 - 3. Apply non-maximum suppression: all candidate regions where probability of certain object detection is not max are dismissed

YOLO (You Only Look Once) v3 Architecture

32

Detected Classes In the MIT Video Dataset

Preprocessing Tweets

• Social media text has jargon, misspellings, special slangs, emojis

15:45 I luv my &It;3 iphone & you're awsm apple, love you 3XXX. DisplayIsAwesome, sooo happpppy ☺ 人 http://www.apple.com #apple @sjobs

- Cleaning process
 - HTML decoding
 - Expanding Contractions
 - Removing URL, Emoji, Reserved words, Smiley, User-mentions (or replace), hashtags
- Preprocessing before tokenization
 - Remove punctuation, space, stop word

Future Tasks: Preprocessing Tweets

- Normalization of Noisy Text
- Awsm ~ awesome, luv ~ love
- Methodologies
 - 1. Lexical normalization
 - 2. Normalization with edit scripts and recurrent neural embeddings
 - 3. Find balance between precision and recall

Topic Modeling with Tweets

- Latent Semantic Analysis, or LSA
 - Find document-term matrix with tf-idf
 - Topics are latent
 - Dimensionality reduction with SVD, gives our term-topic matrix
- Apply cosine similarity to evaluate:
 - the similarity of terms (or "queries") and documents (we want to retrieve passages most relevant to our search query).

Same User with Different Levels of Interest

at Rest	D ₀	D ₁	D ₂	D ₃
	D ₄	D ₅	D ₆	D ₇
ata a	D ₈	D ₉	D ₁₀	D ₁₁
D	D ₁₂	D ₁₃	D ₁₄	D ₁₅

Same User with Different Levels of Interest

Topic Modeling for Ontologies (Generative Models)

- Even though LSA *finds* similar documents to user query, it has *less efficient* representation for topics.
- Topics are necessary for ontologies while building our knowledge graph
- LDA (Latent Dirichlet Allocation)
 - Generative Model
 - Uses Dirichlet priors for the document-topic and word-topic distributions
 - Results in better generalization for new documents
 - Allows online learning

- Extract human-interpretable topics from a document corpus
- Each topic characterized by words most strongly associated with
- Documents as mixtures of topics that spit out words with certain probabilities.
- Uses variational Bayes for inference, no need to re-train

est	D ₀	D ₁	D ₂	D ₃
Ř	D ₄	D ₅	D ₆	D ₇
ata at	D ₈	D ₉	D ₁₀	D ₁₁
Da	D ₁₂	D ₁₃	D ₁₄	D ₁₅

- Extract human-interpretable topics from a document corpus
- Each topic characterized by words most strongly associated with
- Documents as mixtures of topics that spit out words with certain probabilities.
- Uses variational Bayes for inference, no need to re-train

Streaming Data

est	D ₀	D ₁	D ₂	D ₃
2	D ₄	D ₅	D ₆	D ₇
ata at	D ₈	D ₉	D ₁₀	D ₁₁
Da	D ₁₂	D ₁₃	D ₁₄	D ₁₅

- Extract human-interpretable topics from a document corpus
- Each topic characterized by words most strongly associated with
- Documents as mixtures of topics that spit out words with certain probabilities.
- Uses variational Bayes for inference, no need to re-train

- Extract human-interpretable topics from a document corpus
- Each topic characterized by words most strongly associated with
- Documents as mixtures of topics that spit out words with certain probabilities.
- Uses variational Bayes for inference, no need to re-train

- Extract human-interpretable topics from a document corpus
- Each topic characterized by words most strongly associated with
- Documents as mixtures of topics that spit out words with certain probabilities.
- Uses variational Bayes for inference, no need to re-train

Further Extension

- Deep Learning model: Lda2Vec
- With Ida2vec, leverages a context vector to make the predictions.
- Context : sum of the word vector and the document vector
- Context can be metadata in case of Twitter Data

https://multithreaded.stitchfix.com/blog/2016/05/27/lda2vec/

NORTHROP GRUMMAN

Knowledge Graph

- Ontologies / Concepts are extracted from LDA
- Extract Triplets <Subject, Relation, Object> to represent Events
- Entities are represented by Nodes
- Entities have Attributes (Labels)
- Entities are connected by Relations (Edges)

WIP with KG: Multi-modality

- Multi-modal Information Retrieval
- Poster represented In Northrop Grumman University Research Student Poster Competition

User Modeling: Intention-aware Recommendation Engine

- Sends users streaming data that corresponds to their interests
- Builds User Profiles using the history of user queries
- Active Learning to narrow/expand intention model with more interaction
- Expands user queries with word embedding models to fetch relevant data from the database

UNIVERSITY RESEARCH SYMPOSIUM

Data Streaming Module

- Retrieve RESTFUL and Streaming Tweets
- Populate Postgres with all data
- Parse collected metadata to extract targeted information and store in Postgres
- Replicable, fault tolerant, scalable and continuous
- Build a Data Processing Pipeline with all features

Data Processing Pipeline

Retrieve Tweets : Implementation Choices

- Search tweets by
 - Keyword / Hashtag (i.e, CambMA)
 - User Timeline (i.e, CambridgePolice)

@CambridgePolice

Official account of Cambridge, MA Police Dept. Not monitored 24/7. Call 911 for emergencies; 617-349-3300 for crimes. Posts subject to MA Public Records Law.

Retrieve Tweets : Implementation Choices

- Search tweets by
 - Keyword / Hashtag (i.e, CambMA)
 - User Timeline (i.e, CambridgePolice)

City of Cambridge 🤣

@CambMA

Official Twitter Account of the City of Cambridge. Account not monitored 24/7 #CambMA

Compatibility with other sources of data

- Add new sources
 - JDBC
 - From file
 - Audio
- Kafka Connect provides a framework (extra layer between source and Kafka) to develop connectors importing data from various sources and exporting it to multiple targets
- Kafka Clients allow us to pass and retrieve messages directly to and from Kafka

Representing Knowledge

- Build a tree for each index which point to the corresponding frames in Videos
 - Car, Person, Bicycle, Traffic light
- Build a tree for each index which point to the corresponding mentions in Tweets
 - Car, Person, Bicycle, Traffic light
- User Profiling: Built based on similar types of information
- Build triggers in Postgres
 - Data comes in with similar index
 - Deliver to User
- Model all our indices in GraphDB (ArangoDB)

SKOD Web Framework

- Extract data from Heterogeneous Sources and expose data via Apache Kafka Topics
- Consume data from Kafka Microservice and populate the RDBMS and the Index Layer (Elasticsearch and Graph Database)
- Utilizing geolocation to visualize realtime streams on Leaflet map
- Analyze data relationships through graph analytics (clustering)

We utilize the OADA/Trellis framework to build the PoC of the Web App.

SKOD Framework Features

- Open source @
- Distributed Compute Engine (Apache Spark GraphX) and Motif analysis
- ArangoDB Graph Database
- Multiple layers of Cache (PouchDB)@
- Eventual Consistent
- Easy to setup (using Docker containers)
- React based Analytics Web-UI

https://github.com/purdue-gask/skod/

@ https://github.com/OADA/oada-cache

Summary

- SKOD aims at delivering right information to the right user at the right time based on situational awareness
- There are numerous users with different missions
- Missions with various needs for information
- SKOD is an end-to-end system to empower such users with relevant knowledge from *streaming* or *stored* data
- SKOD is general purpose and can be specialized to NG use cases

Deliverables

- Microservices for all modules
- Source Codes

https://github.com/purdue-gask https://github.com/OADA

Demo Video

- Sequentially shows
 - How twitter data is consumed and processed via Data Streaming Module
 - Extracting objects from Videos
 - Extracts the tweets that discusses about Object in Question
 - Tie features from different modality using the Indexing Layer
 - Build Index on the objects from videos and tweets
 - Functionality of the Front End with Graph Analytics
 - User Profiling extracts other objects that can be of users' interest
 - Allows user to see the those objects from all modalities

Demo Video

• Simplified Query

Select * from tweets, videos where
tweets.objects_discussed == "car"
videos.objects_detected == "car"

NORTHROP GRUMMAN UNIVERSITY RESEARCH SYMPOSIUM

> NORTHROP GRUMMAN UNIVERSITY RESEARCH SYMPOSIUM

Research in Applications for Learning Machines (REALM) Consortium

Situational Knowledge On Demand

SKOD

Future Plans for SKOD : Feature Identification

- Feature Identification from Video
 - Pedestrians, Occluded traffic signs, Crane blocking a sidewalk, Child left in unattended car outside school
 - Offline model construction (based on video and open street map)
 - On-line execution
- Feature Identification from Text
 - Interesting subset identification based on keywords
 - Parse to an entity-attribute model of interesting info

More SKOD Benefit Scenarios

- Inform Drivers about
 - relevant obstacles and hazards: road closures, potholes, fallen trees and tree branches, ice, dumpster violations, downed road signs, not working traffic lights;
 - routes to avoid obstacles and hazards;
 - relevant POIs;
 - collision probability for a given date, time, weather conditions; recommend the speed.
- Inform blind / differently abled people via a mobile app about:
 - relevant obstacles and hazards;
 - routes to avoid obstacles and hazards;
 - relevant POIs.

More SKOD Benefit Scenarios

- Inform Law Enforcement about
 - suspicious activity (especially in crime-prevalent areas), illegal road constructions, downed road signs, blocked sidewalks, graffiti;
 - relevant obstacles and hazards;
 - routes to avoid obstacles and hazards;
 - collision probability for a given date, time, weather conditions; recommend the speed;
 - detected human faces in crime incidents and car accidents;
 - homeless people detected in certain areas.

Backup Slides

Tweets-Parser-Engine

- Parses metadata to extract
 - Full tweet text
 - User Information
 - Hashtags, URLs, User mentions
 - Geolocation (latitude, longitude)
- Separates and processes
 - Original tweets
 - Retweets
 - Quoted tweets

Feature Extraction Module

Manual Feature Extraction from Videos

• Features targeted

- -Objects in Video
- -Attributes of the objects

Amazon Mechanical Turk (Mturk)

- -For task design
- -For annotation collection
- -For task distribution

Steps

- -Run Object detection algorithms
- -Segment video into frames
- -Modify the existing annotations

NORTHROP GRUMMAN

Task Design Sample: Instance Segmentation

Task Design Sample: Attribute Tagging

Instructions: Given a frame, describe the attributes of the marked object in the bounding box.

Attributes can include number plate, color of car, street name that can be used to describe the object.

Word/phrase 1 Number plate/SWW-14W

Word/phrase 2

ksolaima@purdue.edu