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Abstract. Extracting relevant patterns from heterogeneous data
streams poses significant computational and analytical challenges. Fur-
ther, identifying such patterns and pushing analogous content to inter-
ested parties according to mission needs in real-time is a difficult prob-
lem. This paper presents the design of SKOD, a novel Situational Knowl-
edge Query Engine that continuously builds a multi-modal relational
knowledge base using SQL queries; SKOD pushes dynamic content to rel-
evant users through triggers based on modeling of users’ interests. SKOD
is a scalable, real-time, on-demand situational knowledge extraction and
dissemination framework that processes streams of multi-modal data uti-
lizing publish/subscribe stream engines. The initial prototype of SKOD
uses deep neural networks and natural language processing techniques
to extract and model relevant objects from video streams and topics,
entities and events from unstructured text resources such as Twitter and
news articles. Through its extensible architecture, SKOD aims to pro-
vide a high-performance, generic framework for situational knowledge on
demand, supporting effective information retrieval for evolving missions.

Keywords: Query engine · Multi-modal information retrieval ·
Knowledge base · Stream processing · Targeted information
dissemination

1 Introduction

The past decade has witnessed an unprecedented volume of data being gener-
ated by a variety of sources at very high velocity, resulting in the rise of the big
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data paradigm. Specifically, the developments in social networks and Internet of
Things (IoT) have created a plethora of multi-modal data sources that gener-
ate billions of data records every second, only a small fraction of which readily
translates into useful information. While the availability of such vast amounts
of data has made it possible to build large knowledge bases, on-demand extrac-
tion of highly relevant situational knowledge for specific missions from those
heterogeneous data clouds remains a difficult task for the following reasons: (1)
Accurate correlation of data from different resources for billions of data items
is a daunting task; (2) A knowledge base built upon a specific ontology may
not cater to the needs of a mission when additional mission requirements/user
interests are defined later; (3) The storage of the most relevant data in the knowl-
edge base is essential to avoid performance degradation with growing data; (4)
Generalization of knowledge bases irrespective of mission needs is a challenge.

Many critical missions will require real-time targeted dissemination of infor-
mation to interested parties as information becomes available. Achieving high-
performance, accurate information extraction and propagation requires (1) accu-
rate modeling of the different users’ interests; (2) application of intelligent filters
on streaming data to capture and correlate the most relevant aspects; (3) triggers
for communicating the gathered information to the interested parties.

In this paper, we propose SKOD, a framework for situational knowledge on
demand, which provides high-performance real-time analysis of streaming data
of multiple modalities from different sources to dynamically and continuously
build mission-specific knowledge bases. In order to capture data most relevant
to user needs, SKOD uses past user query patterns to construct the knowledge
base.

Our approach provides a scalable solution for modeling different user interests
over vast amounts of data while allowing flexibility for future incoming data.
Additional interests can immediately be integrated by defining new queries on
the knowledge base. SKOD currently handles pattern extraction from streaming
video and text data, but the extensible architecture allows facile integration of
additional data modalities such as audio, sensor data, signals, and others.

2 Model

2.1 Example Application Scenario

In order to clearly illustrate the objectives and operation of SKOD, we describe
an example application scenario of the system in this section. Let us consider a
city information system, which provides access to multiple agents (e.g., police,
public works department, citizens, emergency personnel, homeland security)
with varying missions, hence varying information needs. In such a system, while
the police would be interested in patterns such as unsafe lane changes, locations
visited by a suspicious person, to name a few; the public works department would
be interested in patterns such as potholes and occluded street signs. An example
query to be submitted to this system by a police officer is:
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Q1: List cars parked next to fire hydrants illegally today.

To answer Q1, we will require detecting cars and fire hydrants in video frames
and tweets, given the available data sources are city surveillance cameras and
Twitter. The query response will provide information that the policeman will
always be interested in, therefore as new data streams in, patterns matching
the query should be communicated to the policeman and other police officers as
well, due to the similarity of their profiles to the user submitting the query. A
different user of the system (a firefighter) can later submit Q2: Get locations of
leaking fire hydrants. While this query will be able to utilize the knowledge base
created in response to Q1, it will build upon it to find patterns of the act leak
in both data sources as they stream additional data to the system.

2.2 SKOD System Architecture

The SKOD architecture consists of three large modules - (1) streaming platform
to handle the vast amount of heterogeneous incoming data, (2) multi-modal
query engine to model the user interest based on their previous queries and
(3) the front end with the indexing layer. The query engine also accommodates
the unit for feature-analysis of heterogeneous data for identifying personalized
events. SKOD includes fixed queries on data streams from multiple sources, both
separate and combined. The queries are then stored to build the knowledge
base, which in return models the user interests. SKOD can provide users with
information similar to their previous queries as well as missing information on
their existing information. This information is delivered to the user using trigger
events in the relational database. Similar queries and repeated accesses to similar
data are cached to provide better throughput. The front-end queries an indexing
layer based on Lucene indexes to improve throughput. In Fig. 1, we show an
overview of SKOD’s architecture. We describe the three modules below.

Streaming Broker. Due to the latency-sensitive set of applications that SKOD
aims to tackle to consume data from heterogeneous sources, this work relies on
Apache Kafka to expose a real-time stream processing pipeline. Apache Kafka is
a scalable and fault-tolerant publish-subscribe messaging system. Kafka achieves
the capability to store and process data from multiple applications (producers)
through a topic abstraction system. As an output, multiple applications can con-
sume the inserted data from all the producers asynchronously and without any
loss. The producers/consumers abstraction allows SKOD architecture to provide
real-time analysis and recommendation capability. Apache Kafka features allow
to store the raw incoming data in Postgres and consume the same data by text
and video processing applications simultaneously.

Currently SKOD architecture consumes both RESTful, and streaming data
from Twitter and video feeds through Kafka. SKOD is capable of integrating data
from other real-time applications (i.e., sensor, audio, files, JDBC) through Kafka
Clients or Kafka Connect. Kafka Clients allow to pass and retrieve messages
directly to and from Kafka as long as the message can be converted to bytes.
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Fig. 1. SKOD architecture. Kafka topics partition layout diagram.

We show a detailed view of SKOD data streaming pipeline in Fig. 3 for different
types of Twitter data.

Multi-modal Query Engine. The multi-modal query engine consists of sev-
eral sub-modules. The first sub-module consumes the streams of data provided
by the streaming broker and stores them directly in the relational database (Post-
gres). The second sub-module extracts features from each mode of data with a
separate processing unit. For our current implementation, we focus on processing
video and unstructured text to extract features relevant to most domains. We
explain these processes in Sects. 2.3 and 2.4. In the final module of the multi-
modal query engine, SKOD utilizes users’ SQL queries to build the knowledge
base on top of a relational database and pushes relevant content to users without
user intervention. We explain this module in detail in Sect. 2.5. In Figs. 1 and 2
we observe the overall architecture.

Fig. 2. Multimodal query engine representation utilizing situational knowledge.
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Indexing. Elasticsearch is a distributed indexing and search engine. SKOD
queries Elasticsearch through a RESTful API. Moreover, Elasticsearch utilizes
Lucene indexes under the hood. Naturally, Elasticsearch achieves fast response
times because it queries an index instead of querying text or video directly. The
basic structure is called Document. Elasticsearch returns a ranked set of results
according to the relevance of the query. SKOD uses Elasticsearch to rank relevant
content to push to the end user.

2.3 Feature Extraction from Video Streams

Video data represents a separate and unique modality in the SKOD multi-modal
system for storing and extracting knowledge on demand. Video data comes in
large amounts, unstructured, and raw video is unlabeled, frequently in need of
processing, cleaning, and preparing for the next stage in the data flow.

Video can be viewed as a sequence of frames, where each frame is character-
ized by its bitmap that can later be transformed into a multidimensional array
or a tensor. The need to work with extensive digital representations requires
specific ways of storing and operating with the video data, which are different
from those of text and structured data. When the knowledge must be extracted
efficiently on demand from the heterogeneous multi-modal database, there are
several challenges to be resolved: (1) Entities from each frame have to be acces-
sible for user queries, user-defined stored procedures, and event triggers; (2)
For connecting with other modalities in a poly-store environment, these entities
must be stored in a way that they can be matched with the text data and text
metadata as well as data from other modalities for further analysis; (3) There
must be a way to obtain entities in an ad-hoc manner to extract knowledge from
streams of video. We resolve these challenges utilizing two off-the-shelf solutions:
Apache Kafka for streaming video in a scalable, fault-tolerant manner and the
YOLOv3 real-time object detection system [18].

2.4 Feature Extraction from Unstructured Text

Data Collection and Initial Processing. For unstructured text, currently
SKOD processes tweets. There are two types of tweet data available for scraping
- RESTful data (historic data) and streaming data. SKOD uses Twitter search
API to collect RESTful data and Twitter streaming API for collecting real-time
tweet streams. It creates independent docker containers for the producers, which
can take tags and timelines as environment variables and run simultaneously.
Since there can be overlap of tweet data from multiple producers, SKOD uses
the Kafka streaming platform to handle the asynchronous, scalable and fault
tolerant flow of tweets using the same topic abstraction for all. After the data
is in Kafka, SKOD uses two separate consumers - (1) to parse and populate
Postgres with the tweet and associated metadata, and (2) to pass the raw tweets
to a feature extraction engine. Figure 3 shows an overview of the architecture.
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Fig. 3. Data streaming pipeline from restful and streaming tweets to applications.

Feature Extraction. Understanding unstructured texts has always been a
daunting task. Even with the recent rise of language models it is hard to parse
unstructured social texts into domain-independent features.

We first preprocess the text using Stanford CoreNLP [13], extract named
entities and co-reference chains. Then we create a separate table in Postgres to
save each tweet with its associated named entities i.e., LOCATION, ORGANI-
ZATION, PERSON, saving them as text arrays and associated topic with the
tweet. Further, we create another column objects, which are any words in the
tweet except stop words and the ones identified in named entities.

2.5 Knowledge Representation

Unified knowledge representation for all streamed data is required for the query
engine to extract useful knowledge and disseminate information to relevant par-
ties efficiently. In SKOD, we represent knowledge using relational data and SQL
queries on the data, which persist for the lifetime of the knowledge base and grow
with additional user interests. Representation of textual data such as tweets and
online news is more straightforward through the extraction of topics and key-
words, which can directly be entered into the corresponding columns in the
RDBMS tables. Multimedia data such as video and audio are represented both
with the binary data and the text data extracted as a result of the processing
performed on the binary data. The stored data also includes available metadata
for all modalities, such as timestamp, geolocation, and some others. The meta-
data is especially useful when correlating multiple forms of data for the same
events.
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The schemas of the PostgreSQL tables storing the extracted features from
the tweet text and video frames are as follows:

TWEETS(tweet_id INT,
locations VARCHAR(100)[],
objects VARCHAR(100)[],
organizations VARCHAR(100)[],
persons VARCHAR(100)[],
dates VARCHAR(100)[],
times VARCHAR(100)[],
topic VARCHAR(100)[]
created_at DATE)

VIDEO_FRAMES(video_id INT,
frame_id INT,
locations VARCHAR(100),
objects VARCHAR(100)[],
people VARCHAR(100)[],
timestamp DATE,
image BYTEA)

Here locations, organizations, and persons are different classes of named enti-
ties and other classes can be defined as necessary. Typical attributes are used
to facilitate joins between the tables for data correlation. Attributes in differ-
ent tables may have different names, but have commonalities, i.e., timestamp
and created at, or people and persons. Given the initial knowledge base is built
upon Q1 mentioned in Sect. 2.1, new streams of video data will result in run-
ning the object detector for cars and fire hydrants, and the extracted data will
be inserted into the database. Similarly for streaming Twitter data, tweets that
have the objects car and fire hydrant will be inserted into the relevant table.

Q1 for a system with these two data sources will translate into multiple SQL
queries for the situational knowledge query engine:

SELECT video_id, frame_id

FROM VIDEO_FRAMES

WHERE ’car’ = ANY(objects)

AND ’fire hydrant’= ANY(objects)

SELECT tweet_id

FROM TWEETS

WHERE ’car’ = ANY(objects)

AND ’fire hydrant’= ANY(objects)

SELECT t.tweet_id, v.video_id, v.frame_id

FROM TWEETS t, VIDEO_FRAMES v

WHERE ’car’ = ANY(t.objects) AND ’fire hydrant’ = ANY(t.objects)

AND ’car’ = ANY(v.objects) AND ’fire hydrant’ = ANY(v.objects)

AND v.location = ANY(t.locations)

As data from either resource is streaming in, patterns matching these queries
will create triggers for relevant data to be communicated to interested users. Note
that the complete system requires translation of natural language questions into
SQL queries through entity recognition, and constructs for creating all related
queries given the tables for different data sources and their common attributes.
Although this initial design is limited to recognition of objects, a richer knowl-
edge base will require incorporation of activity recognition in videos and tweets.
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3 Implementation

3.1 Twitter Data Collection and Feature Extraction

Since the city of Cambridge was the point-of-focus for the data used in this
work, the target was to collect a million tweets that discuss events and entities
in Cambridge, MA along with all the metadata from Twitter. Twitter data can
be collected by hashtags, user timelines, geo-data, and general queries. In SKOD,
we chose to search by hashtags and user timelines. For that purpose, about 15
hashtags and 15 user timelines were manually selected after going through pro-
files in timelines and descriptions for hashtags. For example, @CambridgePolice
warns about any possible crimes or street law changes, while @bostonfire talks
about fire-related incidents in Boston. At a much broader scale, hashtags like
#CambMA include all tweets by many Cambridge, MA departments.

For the implementation of twitter APIs, SKOD uses tweepy.api1. There is
a class method API() which allows to search by both hashtags and timelines
by providing a wrapper for twitter APIs. The Twitter streaming API is used to
download twitter messages in real time. In Tweepy, an instance of tweepy.Stream
establishes a streaming session and routes messages to StreamListener instance
by allowing a connection to twitter streaming API.

Currently, we have around 80K tweets in Postgres. More are being accumu-
lated as the module keeps running. The consumers inherit twitter data as JSON
messages. The JSON message is parsed to extract relevant metadata. Differ-
ent types of tweets are identified, i.e., original, retweet, and quoted tweets. The
tweet text with all the parsed metadata along with the original JSON message
is saved in Postgres. With the tweet text, we obtain a social network connected
by retweets and follows.

The feature extraction process from the tweet text is explained in Sect. 2.4.
We ran the pretrained 7 class NER CRFs from Stanford toolkit [13] to identify
the entities. For topic extraction, SKOD uses the Latent Dirichlet Allocation
(LDA) method [4]. We show the schema of the PostgreSQL table storing the
extracted features from the Tweet text in Sect. 2.5. SKOD wraps the producers
and consumers in docker containers. The producers and consumers take the
Kafka hostname and port number as input, along with the tags and timelines in
files.

3.2 Feature Extraction from Video

Real-time video broadcasting in a massively scaled and distributed system
requires architectural solutions that are resilient to node failures and supportive
for automatic recovery. The video data may come with metadata such as geolo-
cation, the movement speed and IP address of the camera, and timestamp; there-
fore, the message broker needs to scale horizontally as well. In SKOD, Apache
Kafka utilizes different topics that represent categories for different modalities
of the data.
1 http://docs.tweepy.org/en/v3.5.0/api.html.

http://docs.tweepy.org/en/v3.5.0/api.html
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Fig. 4. Result of applying the pre-trained neural
network to the Cambridge dataset.

Similarly, producers trans-
form the videos into a stream
of frames and metadata with
OpenCV. Then, the consumers
read messages from topics and
forward the data for computa-
tion and knowledge extraction.
In the prototype implementa-
tion, SKOD uses a universal
pre-trained neural network as
a tool for object extraction
and recognition in the video
data. SKOD’s video processing
feature differentiates between 150 object classes. SKOD identifies the objects in
the video on a frame-by-frame basis. Each frame is divided into several regions
that are classified by the neural network to assign the most probable class along
with a confidence score; this helps to establish the exact boundaries of the objects
in the frame. The non-maximum suppression algorithm dismisses all the pro-
posed bounding boxes where the confidence score is not the maximum one.
Thus, the approach allows assigning classes and boundaries at the same time
in one run. The result obtained for a particular video frame in the collected
Cambridge dataset using the proposed neural network architecture is shown in
Fig. 4. For each processed frame, the recognized data and metadata are stored
in the RDBMS and can be used for queries that involve the video data modality.

3.3 Front End and Indexing Layer

The front-end utilizes React2, which is a JavaScript library for building user
interfaces. Also, we manage states and side effects using the Cerebral3 library.
We leverage interactive maps via the Leaflet4 library integrated with React and
Cerebral. SKOD caches the most frequent queries to provide faster response
times. SKOD’s architecture comprises a set of Node.js and python microservices,
i.e., Docker containers. In Fig. 5, we demonstrate the integration of multimodal-
ity combining the extracted Twitter data with the front-end (we utilize GPS
coordinates in the Twitter data in GeoJSON format to render the Twitter data
in the Leaflet map). The Tweets come through the Apache Kafka broker. Then
the data is stored in the backend (Postgres). Finally, the Web application queries
the indexing layer and it also watches for new changes utilizing WebSockets5.
SKOD provides an additional layer of cache storing content in the browser using

2 https://reactjs.org/.
3 https://github.com/cerebral/cerebral.
4 https://leafletjs.com/.
5 The Web application was developed utilizing ideas from the OATS Center at Purdue.

In particular, the OADA framework https://github.com/OADA.

https://reactjs.org/
https://github.com/cerebral/cerebral
https://leafletjs.com/
https://github.com/OADA
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PouchDB6 similar to the OADA cache library7. SKOD future releases include
the creation of an elastic cache-layer building a rich set of network topologies on
the edge of the network utilizing Web Browsers with Real-Time Communication
(WebRTC8) [16].

Fig. 5. Situational knowledge on demand proof-of-concept. Incoming streams of data
shown in a Leaflet map.

4 Related Work

The rise of the big data paradigm in the past decade has resulted in a variety
of approaches for processing and fusion of data of multiple modalities to extract
useful knowledge. Poria et al. proposed an approach for fusing audio, visual and
textual data for sentiment analysis [17]. Foresti et al. introduced a socio-mobile
and sensor data fusion approach for emergency response to disasters [8]. Medit-
skos et al. developed a system for multi-modal fusion of data including language
analysis results, and gestures captured from multimedia data streams to pro-
vide situational awareness in healthcare [14]. Adjali et al. proposed an approach
for multi-modal fusion of data from sensors to provide ambient intelligence for
robots [2]. While successful for the specific domains considered, these approaches
may not generalize to other domains.

One application of multi-modal data fusion that has gained increasing inter-
est is visual question answering. Zhu et al. [21] tackle the visual question answer-
ing problem by building an external knowledge base via iterative querying of the
6 https://pouchdb.com/.
7 https://github.com/OADA/oada-cache.
8 https://webrtc.org/.

https://pouchdb.com/
https://github.com/OADA/oada-cache
https://webrtc.org/
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external sources. Their system uses a neural approach where task-driven mem-
ories are actively obtained by iterative queries and produces the final answer
based on these evidences. Although they take a query based approach for the
QA task, their data source is just limited to images. Our approach aims to build
a knowledge base integrating visual, textual, and structured data along with the
relations among them.

Likewise, Wu et al. propose a method combining an internal representation
of image content with information from an external knowledge base to answer
complex image queries [20]. Video analytics represents a class of problems related
to one of the dimensions of multi-modal systems exploration, namely efficient
and fast video querying. In [10], the authors develop a declarative language for
fast video analytics and enhance it with the engine that accepts, automatically
optimizes and executes the queries in this language efficiently.

While many multi-modal knowledge bases are constructed using learning-
based data fusion approaches on large static datasets, query-driven approaches
construct knowledge bases through repeated querying of text and multimedia
databases. Nguyen et al. [15] propose QKBfly, an approach for on-the-fly con-
struction of knowledge bases from text data driven by queries. QKBfly utilizes a
semantic-graph representation of sentences through which named-entity disam-
biguation, co-reference resolution and relation extraction are performed. Bien-
venu et al. propose an approach for utilizing user queries and the associated user
feedback to repair inconsistent DL-Lite knowledge bases [3]. The constructed
knowledge bases will in most cases include inconsistencies and missing infor-
mation. Probabilistic knowledge bases have been introduced to handle these
inconsistencies by assigning belief scores to facts in the knowledge bases [5,7],
followed by approaches to fuse data from multiple probabilistic bases [19].

Traditional knowledge bases are used for information extraction to answer
user queries as they are submitted. On the other hand, dynamic detection of
events on streaming data is important for many systems today, due to the need
to make users aware of important events in real time. This has resulted in the
development of complex event processing systems for purposes such as crisis
management [9], to create triggers when streaming data matches pre-defined
patterns [6]. Although these systems provide real-time event notification to inter-
ested parties, their rule base in most cases is fixed, not supporting evolving
mission requirements and users with different interests.

5 Conclusions and Future Work

In this paper we proposed SKOD, a situational knowledge on demand engine that
aims to provide a generic framework for dynamically building knowledge bases
from multi-modal data to enable effective information extraction and targeted
information dissemination for missions that might have evolving requirements.
In order to provide the best run-time performance and accuracy, SKOD uses
a query-driven approach to knowledge base construction. Being query-driven,
it is expected to enable effective information retrieval and dissemination in a



WIP - SKOD: A Framework for Situational Knowledge on Demand 165

variety of fields including law enforcement, homeland defense, healthcare etc.,
all building knowledge upon the specific interests of the system users.

The development of SKOD is in progress with components for stream data
processing, feature extraction from video and text data currently in place. Our
future work will involve the development of components for query processing,
user similarity modeling, and user relevance feedback to achieve highly accurate
real-time targeted information propagation. The system will be evaluated with
multiple rich multi-modal datasets such as Visual Genome [11], COCO [12],
YouTube-8M [1], and collected tweets and video data set of our own for various
missions and user types.

Funding Information. Distribution Statement A: Approved for Public Release; Dis-

tribution is Unlimited; #19-1107; Dated 07/18/19.
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