Trustworthy Autonomous Systems

Team members: Lalana Kagal, Ben Yuan, Leilani Gilpin, Tianye Chen, Vaikkunth Mugunthan, Ayush Sharma, Doron Hazan, Wanyi Xiao

Technical Champions: Alex Abbati, Ali Ayub, Isidoros Doxas, Neta Ezer

MIT Computer Science and Artificial Intelligence Lab

What problem are we trying to solve

AIL

Potential for compromise

Potential for failure

Potential for information leakage

Massachusetts Institute of Technology

Vision for autonomous systems

Vision for autonomous systems

lassachusetts

Institute of

Technology

Vision for autonomous systems

lassachusetts

Institute of

Technology

Why explanations?

Explanations can help us...

- Understand motives / causality
- Identify assumptions
- Choose between alternatives
- Predict future system behavior

...and understand if our systems are working in our best interest.

Explanations

Can we...

- Identify system misbehavior using common-sense reasoning?
- Examine decisions made by "black box" methods?
- Measure how well explanations convey useful data?

Common-sense reasonableness monitoring

"Is the current behavior reasonable?"

L. H. Gilpin and L. Kagal "An Adaptable Self-Monitoring Framework for Complex Machines", to be presented at AAMAS 2019.

Evaluation with the RACECAR platform

Evaluation with the RACECAR platform

Validate that we can:

- Identify when observations deviate from prior rules (e.g. sequence of cone colors).
- Learn when "anomalies" constitute previously unknown rules.

Explaining DNN and CNN behaviour

"How did the system reach this decision?"

Result `apply-brakes` is supported by: Concept `car-accident` > 0.2096 Concept `car-accident` is supported by: Concept `car` > 0.6067 Concept `tow-truck` > 0.5492 Concept `fire` > 0.7092 Concept `red` > 0.4206

Paper in progress.

Explaining DNN and CNN behaviour

Goal: Combine and improve techniques in...

- Rule discovery and extraction
- Semantic concept labeling
- Network pruning

...to achieve more useful explanations.

Measuring explanation effectiveness

"Does the explanation effectively highlight the 'right thing'?"

Measuring explanation effectiveness

Variety of approaches to the problem of explanation.

	Processing	Representation	Explanation Producing
Methods	Proxy Methods Decision Trees Salience Mapping Automatic-rule extraction	Role of layers Role of neurons Role of vectors	Scripted conversations Attention-based Disentangled rep.

But how can we tell which approach works best for a given task?

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal "Explaining explanations: an overview of interpretability of machine learning", DSAA 2018.

Qualitative explanation evaluation

Prompt:

For example, you might see this explanation: A cat is an animal and animals eat food. (statement) Therefore it is reasonable for a cat to eat food. (conclusion)

For each explanation, rate it from 1 to 5: 5 being *very convincing*, and 1 being *not convincing*. As you go through and rate each one, think about how convincing they are. Do you believe the statements provide a convincing explanation for the conclusion?

The example above is a convincing explanation for a cat eating food, so most people would rate it a 4 or 5.

L. H. Gilpin and L. Kagal "An Adaptable Self-Monitoring Framework for Complex Machines", to be presented at AAMAS 2019.

Future: quantifying explanation effectiveness

Goal: Measure the contribution of an explanation method to NN "repair".

Summary

Explanations from time-series data

"What happened? Why?"

18:10:25.333 GPS: Heading 321.16, Speed 60.3mph 18:10:26.500 Operator: Brake 0.35, Steer 5.0 18:10:26.560 Driver assist: Brake 0.40 :-)! 18:10:27.867 GPS: Heading 353.84, Speed 52.1 mph 18:10:29.970 Operator: Brake 0.90, Steer 9.3 18:10:30.010 Wheel Rate Monitor: Skid 18:10:30.040 GPS: Heading 28.27, Speed 0.0mph 18:10:30.070 Wheel Rate Monitor: Skid 18:10:30.170 Operator: Brake 0.91, Steer 6.6 18:10:32.933 GPS: Heading 129.08, Speed 0.2mph 18:10:35.140 Operator: Brake 0.93, Steer 0.0 18:10:35.467 GPS: Heading 121.52, Speed 0.0mph 18:10:38.670 Stopped

