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MACHINE LEARNING IS progressing at an astounding 
rate, powered by complex models such as ensemble 
models and deep neural networks (DNNs). These 
models have a wide range of real-world applications, 
such as movie recommendations of Netflix, neural 
machine translation of Google, and speech recognition 
of Amazon Alexa. Despite the successes, machine 
learning has its own limitations and drawbacks. 
The most significant one is the lack of transparency 
behind their behaviors, which leaves users with little 
understanding of how particular decisions are made 
by these models. Consider, for instance, an advanced 
self-driving car equipped with various machine 
learning algorithms does not brake or decelerate when 
confronting a stopped firetruck. This unexpected 
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 ˽ Techniques for interpretable machine 
learning can be grouped into two 
categories—intrinsic and post-hoc 
interpretability—both of which can  
be further classified into global and  
local interpretability.
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avoid being influenced by artifacts.
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behavior may frustrate and confuse us-
ers, making them wonder why. Even 
worse, the wrong decisions could 
cause severe consequences if the car 
is driving at highway speeds and might 
ultimately crash into the firetruck. The 
concerns about the black-box nature of 
complex models have hampered their 
further applications in our society, es-
pecially in those critical decision-mak-
ing domains like self-driving cars.

Interpretable machine learning would 
be an effective tool to mitigate these 
problems. It gives machine learning 
models the ability to explain or to pres-
ent their behaviors in understandable 
terms to humans,10 which is called 
interpretability or explainability and 

we use them interchangeably in this 
article. Interpretability would be an in-
dispensable part for machine learning 
models in order to better serve human 
beings and bring benefits to society. 
For end users, explanation will increase 
their trust and encourage them to 
adopt machine learning systems. From 
the perspective of machine learning 
system developers and researchers, the 
provided explanation can help them 
better understand the problem, the 
data and why a model might fail, and 
eventually increase the system safety. 
Thus, there is a growing interest among 
the academic and industrial commu-
nity in interpreting machine learning 
models and gaining insights into their 

working mechanisms.
Interpretable machine learning 

techniques can generally be grouped 
into two categories: intrinsic interpret-
ability and post-hoc interpretability, 
depending on the time when the inter-
pretability is obtained.23 Intrinsic inter-
pretability is achieved by constructing 
self-explanatory models which incor-
porate interpretability directly to their 
structures. The family of this category 
includes decision tree, rule-based mod-
el, linear model, attention model, and 
so on. In contrast, the post-hoc one re-
quires creating a second model to pro-
vide explanations for an existing mod-
el. The main difference between these 
two groups lies in the trade-off between 
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Figure 1. An illustration of three lines of interpretable machine learning techniques, taking 
DNN as an example.
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In this article, we first summarize 
current progress of three lines of 
research for interpretable machine 
learning: designing inherently inter-
pretable models (including globally 
and locally), post-hoc global expla-
nation, and post-hoc local explana-
tion. We proceed by introducing ap-
plications and challenges of current 
techniques. Finally, we present limi-
tations of current explanations and 
propose directions toward more hu-
man-friendly explanations.

Inherently Interpretable Model
Intrinsic interpretability can be 
achieved by designing self-explanatory 
models that incorporate interpretabil-
ity directly into the model structures. 
These constructed interpretable mod-
els either are globally interpretable or 
could provide explanations when they 
make individual predictions.

Globally interpretable models can 
be constructed in two ways: directly 
trained from data as usual but with 
interpretability constraints and be-
ing extracted from a complex and 
opaque model.

Adding interpretability constraints. 
The interpretability of a model could 
be promoted by incorporating inter-
pretability constraints. Some repre-
sentative examples include enforcing 
sparsity terms or imposing semantic 
monotonicity constraints in classifica-
tion models.14 Here, sparsity means a 
model is encouraged to use relatively 
fewer features for prediction, while 
monotonicity enables the features to 
have monotonic relations with the 
prediction. Similarly, decision trees 
are pruned by replacing subtrees with 
leaves to encourage long and deep trees 
rather than wide and more balanced 
trees.29 These constraints make a model 
simpler and could increase the model’s 
comprehensibility by users.

Besides, more semantically mean-
ingful constraints could be added to 
a model to further improve interpret-
ability. For instance, interpretable con-
volutional neural networks (CNN) add 
a regularization loss to higher convo-
lutional layers of CNN to learn disen-
tangled representations, resulting in 
filters that could detect semantically 
meaningful natural objects.39 Another 
work combines novel neural units, 
called capsules, to construct a capsule 

model accuracy and explanation fidel-
ity. Inherently interpretable models 
could provide accurate and undistorted 
explanation but may sacrifice predic-
tion performance to some extent. The 
post-hoc ones are limited in their ap-
proximate nature while keeping the un-
derlying model accuracy intact.

Based on categorization noted here, 
we further differentiate two types of 
interpretability: global interpretability 
and local interpretability. Global inter-
pretability means users can under-
stand how the model works globally by 
inspecting the structures and param-
eters of a complex model, while local 
interpretability examines an individual 
prediction of a model locally, trying to 
figure out why the model makes the 

decision it makes. Using the DNN in 
Figure 1 as an example, global inter-
pretability is achieved by understand-
ing the representations captured by 
the neurons at an intermediate layer, 
while local interpretability is obtained 
by identifying the contributions of 
each feature in a specific input to the 
prediction made by DNN. These two 
types bring different benefits. Global 
interpretability could illuminate the 
inner working mechanisms of ma-
chine learning models and thus can in-
crease their transparency. Local inter-
pretability will help uncover the causal 
relations between a specific input and 
its corresponding model prediction. 
Those two help users trust a model and 
trust a prediction, respectively.

Figure 2. A traditional machine learning pipeline using feature engineering, and a deep 
learning pipeline using DNN-based representation learning.
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network.32 The activation vectors of an 
active capsule can represent various 
semantic-aware concepts like position 
and pose of a particular object. This 
nice property makes capsule network 
more comprehensible for humans.

However, there are often trade-offs 
between prediction accuracy and inter-
pretability when constraints are direct-
ly incorporated into models. The more 
interpretable models may result in re-
duced prediction accuracy comparing 
the less interpretable ones.

Interpretable model extraction. An 
alternative is to apply interpretable 
model extraction, also referred as 
mimic learning,36 which may not have 
to sacrifice the model performance too 
much. The motivation behind mimic 
learning is to approximate a complex 
model using an easily interpretable 
model such as a decision tree, rule-
based model, or linear model. As long 
as the approximation is sufficiently 
close, the statistical properties of the 
complex model will be reflected in the 
interpretable model. Eventually, we 
obtain a model with comparable pre-
diction performance, and the behavior 
of which is much easier to understand. 
For instance, the tree ensemble model 
is transformed into a single decision 
tree.36 Moreover, a DNN is utilized to 
train a decision tree that mimics the 
input-output function captured by 
the neural network so the knowledge 
encoded in DNN is transferred to the 
decision tree.5 To avoid the overfitting 
of the decision tree, active learning is 
applied for training. These techniques 
convert the original model to a deci-
sion tree with better interpretability 
and maintain comparable predictive 
performance at the same time.

Locally interpretable models are 
usually achieved by designing more jus-
tified model architectures that could 
explain why a specific decision is made. 
Different from the globally interpre-
table models that offer a certain extent 
of transparency about what is going on 
inside a model, locally interpretable 
models provide users understandable 
rationale for a specific prediction.

A representative scheme is employ-
ing attention mechanism,4,38 which is 
widely utilized to explain predictions 
made by sequential models, for exam-
ple, recurrent neural networks (RNNs). 
Attention mechanism is advantageous 

in that it gives users the ability to inter-
pret which parts of the input are attend-
ed by the model through visualizing the 
attention weight matrix for individual 
predictions. Attention mechanism has 
been used to solve the problem of gen-
erating image caption.38 In this case, a 
CNN is adopted to encode an input im-
age to a vector, and an RNN with atten-
tion mechanisms is utilized to generate 
descriptions. When generating each 
word, the model changes its attention 
to reflect the relevant parts of the im-
age. The final visualization of the atten-
tion weights could tell human what the 
model is looking at when generating a 
word. Similarly, attention mechanism 
has been incorporated in machine 
translation.4 At decoding stage, the 
neural attention module added to neu-
ral machine translation (NMT) model 
assigns different weights to the hidden 
states of the decoder, which allows the 
decoder to selectively focus on different 
parts of the input sentence at each step 
of the output generation. Through visu-
alizing the attention scores, users could 
understand how words in one language 
depend on words in another language 
for correct translation.

Post-Hoc Global Explanation
Machine learning models automati-
cally learn useful patterns from a huge 
amount of training data and retain the 
learned knowledge into model struc-
tures and parameters.

Post-hoc global explanation aims to 
provide a global understanding about 
what knowledge has been acquired by 
these pretrained models and illumi-
nate the parameters or learned repre-
sentations in an intuitive manner to hu-
mans. We classify existing models into 
two categories: traditional machine 
learning and deep learning pipelines 
(see Figure 2), since we are capable of 
extracting some similar explanation 
paradigms from each category. Here, 
we introduce how to provide explana-
tion for these two types of pipelines.

Traditional machine learning expla-
nation. Traditional machine learning 
pipelines mostly rely on feature engi-
neering, which transforms raw data 
into features that better represent the 
predictive task, as shown in Figure 2. 
The features are generally interpretable 
and the role of machine learning is to 
map the representation to output. We 

consider a simple yet effective explana-
tion measure that is applicable to most 
of the models belonging to traditional 
pipeline, called feature importance, 
which indicates statistical contribution 
of each feature to the underlying model 
when making decisions.

Model-agnostic explanation. The 
model-agnostic feature importance is 
broadly applicable to various machine 
learning models. It treats a model as a 
black-box and does not inspect inter-
nal model parameters.

A representative approach is “per-
mutation feature importance.”1 The 
key idea is the importance of a specific 
feature to the overall performance of a 
model can be determined by calculat-
ing how the model prediction accuracy 
deviates after permuting the values of 
that feature. More specifically, given a 
pretrained model with n features and a 
test set, the average prediction score of 
the model on the test set is p, which is 
also the baseline accuracy. We shuffle 
the values of a feature on the test set and 
compute the average prediction score of 
the model on the modified dataset.

This process is iteratively performed 
for each feature and eventually n predic-
tion scores are obtained for n features 
respectively. We then rank the impor-
tance of the n features according to the 
reductions of their score comparing to 
baseline accuracy p. There are several 
advantages for this approach. First, we 
do not need to normalize the values of 
the handcrafted features. Second, it can 
be generalized to nearly any machine 
learning models with handcrafted fea-
tures as input. Third, this strategy has 
been proved to be robust and efficient 
in terms of implementation.

Model-specific explanation. There 
also exists explanation methods spe-
cifically designed for different models. 
Model-specific methods usually de-
rive explanations by examining inter-
nal model structures and parameters. 
Here, we introduce how to provide fea-
ture importance for two families of ma-
chine learning models.

Generalized linear models (GLM) is 
constituted of a series of models that 
are linear combination of input fea-
tures and model parameters followed 
by feeding to some transformation 
function (often nonlinear).21 Examples 
of GLM include linear regression and 
logistic regression. The weights of a 
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neurons detect object parts, such as 
faces and legs. Higher-layer neurons 
respond to whole objects or even 
scenes. Interestingly, the visualization 
of the last-layer neurons illustrates 
that CNN exhibits a remarkable prop-
erty to capture global structure, local 
details, and contexts of an object. Sec-
ond, a neuron could respond to differ-
ent images that are related to a seman-
tic concept, revealing the multifaceted 
nature of neurons.27 For instance, a 
face detection neuron can fire in re-
sponse to both human faces and ani-
mal faces. Note that this phenomenon 
is not confined to high-layer neurons, 
as all layers of neurons are multifaceted. 
The neurons at higher layers are more 
multifaceted than the ones at lower 
layers, indicating that higher-layer 
neurons become more invariant to 
large changes within a class of inputs, 
such as colors and poses. Third, CNN 
learns distributed code for objects.40 
Objects can be described using part-
based representations and these parts 
can be shared across different categories.

Explanation of RNN representation. 
Following numerous efforts to inter-
pret CNN, uncovering the abstract 
knowledge encoded by RNN represen-
tations (including GRUs and LSTMs) 
has also attracted increasing interest 
in recent years. Language modeling, 
which targets to predict the next token 
given its previous tokens, is usually 
utilized to analyze the representations 
learned by RNN. The studies indicate 
that RNN indeed learns useful repre-
sentations.17,18,28

First, some work examines the rep-
resentations of the last hidden layer 
of RNN and study the function of dif-
ferent units at that layer, by analyzing 
the real input tokens that maximally 
activate a unit. The studies demon-
strate that some units of RNN repre-
sentations are able to capture complex 
language characteristics, for example, 
syntax, semantics, and long-term de-
pendencies. For instance, a study ana-
lyzes the interpretability of RNN acti-
vation patterns using character-level 
language modeling.18 This work finds 
that although most of the neural units 
are difficult to find particular mean-
ings, there indeed exist certain dimen-
sions in RNN hidden representations 
that are able to focus on specific lan-
guage structures such as quotation 

GLM directly reflect feature impor-
tance, so users can understand how the 
model works by checking their weights 
and visualizing them. However, the 
weights may not be reliable when dif-
ferent features are not appropriately 
normalized and vary in their scale of 
measurement. Moreover, the interpret-
ability of an explanation will decrease 
when the feature dimensions become 
too large, which may be beyond the 
comprehension ability of humans.

Tree-based ensemble models, such as 
gradient boosting machines, random 
forests, and XGBoost,7 are typically 
inscrutable to humans. There are sev-
eral ways to measure the contribution 
of each feature. The first approach is 
to calculate the accuracy gain when a 
feature is used in tree branches. The 
rationale behind is that without add-
ing a new split to a branch for a fea-
ture, there may be some misclassified 
elements, while after adding the new 
branch, there are two branches and 
each one is more accurate. The second 
approach measures the feature cov-
erage, that is, calculating the relative 
quantity of observations related to a 
feature. The third approach is to count 
the number of times that a feature is 
used to split the data.

DNN representation explanation. 
DNNs, in contrast to traditional mod-
els, not only discover the mapping from 
representation to output, but also learn 
representations from raw data,15 as il-
lustrated in Figure 2. The learned deep 
representations are usually not human 
interpretable,19 hence the explanation 
for DNNs mainly focuses on under-
standing the representations captured 
by the neurons at intermediate layers of 
DNNs. Here, we introduce explanation 
methods for two major categories of 
DNN, including CNN and RNN.

Explanation of CNN representation. 
There has been a growing interest to 
understand the inscrutable representa-
tions at different layers of CNN. Among 
different strategies to understand CNN 
representations, the most effective and 
widely utilized one is through finding 
the preferred inputs for neurons at a 
specific layer. This is generally formu-
lated in the activation maximization 
(AM) framework,33 which can be for-
mulated as:
x * = argmax fl (x) – R (x), (1)
 x

where fl (x) is the activation value of a 
neuron at layer l for input x, and R(x) is 
a regularizer. Starting from random 
initialization, we optimize an image to 
maximally activate a neuron. Through 
iterative optimization, the derivatives 
of the neuron activation value with re-
spect to the image is utilized to tweak 
the image. Eventually, the visualization 
of the generated image could tell what 
individual neuron is looking for in its 
receptive field. We can in fact do this 
for arbitrary neurons, ranging from 
neurons at the first layer all the way to 
the output neurons at the last layer, to 
understand what is encoded as repre-
sentations at different layers.

While the framework is simple, get-
ting it to work faces some challenges, 
among which the most significant one 
is the surprising artifact. The optimiza-
tion process may produce unrealistic 
images containing noise and high-
frequency patterns. Due to the large 
searching space for images, if without 
proper regularization, it is possible to 
produce images that satisfy the optimi-
zation objective to activate the neuron 
but are still unrecognizable. To tackle 
this problem, the optimization should 
be constrained using natural image 
priors so as to produce synthetic imag-
es that resemble natural images. Some 
researchers heuristically propose 
handcrafted priors, including total 
variation norm, α-norm, and Gauss-
ian blur. In addition, the optimiza-
tion could be regularized using stron-
ger natural image priors produced by 
a generative model, such as GAN or 
VAE, which maps codes in the latent 
space to the image spaces.25 Instead 
of directly optimizing the image, these 
methods optimize the latent space 
codes to find an image that can activate 
a given neuron. Experimental results 
have shown the priors produced by 
generative models lead to significant 
improvements in visualization.

The visualization results provide 
several interesting observations about 
CNN representations. First, the net-
work learns representations at several 
levels of abstraction, transiting from 
general to task-specific from the first 
layer to the last layer. For example, take 
the CNN trained with the ImageNet 
dataset. Lower-layer neurons detect 
small and simple patterns, such as 
object corners and textures. Mid-layer 
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marks, brackets, and line lengths in a 
text. In another work, a word-level lan-
guage model is utilized to analyze the 
linguistic features encoded by individ-
ual hidden units of RNN.17 The visual-
izations illustrate that some units are 
mostly activated by certain semantic 
category, while some others could cap-
ture a particular syntactic class or de-
pendency function. More interesting-
ly, some hidden units could carry the 
activation values over to subsequent 
time steps, which explains why RNN 
can learn long-term dependencies and 
complex linguistic features.

Second, the research finds that RNN 
is able to learn hierarchical represen-
tations by inspecting representations 
at different hidden layers.28 This ob-
servation indicates that RNN repre-
sentations bear some resemblance to 
their CNN counterpart. For instance, 
a bidirectional language model is con-
structed using a multi-layer LSTM.28 
The analysis of representations at dif-
ferent layers of this model shows that 
the lower-layer representation cap-
tures context-independent syntactic 
information. In contrast, higher-layer 
LSTM representations encode context-
dependent semantic information. The 
deep contextualized representations 
can disambiguate the meanings of 
words by utilizing their context, and 
thus could be employed to perform 
tasks which require context-aware un-
derstanding of words.

Post-Hoc Local Explanation
After understanding the model glob-
ally, we zoom in to the local behavior 
of the model and provide local expla-
nations for individual predictions. Lo-
cal explanations target to identify the 
contributions of each feature in the 
input toward a specific model predic-
tion. As local methods usually attribute 
a model’s decision to its input features, 
they are also called attribution meth-
ods. Here, we first introduce model-
agnostic attribution methods and then 
discuss attribution methods specific to 
DNN-based predictions.

Model-agnostic explanation. Mod-
el-agnostic methods allow explain-
ing predictions of arbitrary machine 
learning models independent of the 
implementation. They provide a way 
to explain predictions by treating the 
models as black boxes, where explana-

tions could be generated even without 
access to the internal model parame-
ters. They bring some risks at the same 
time, since we cannot guarantee the 
explanation faithfully reflects the deci-
sion-making process of a model.

Local approximation-based explana-
tion is based on the assumption the 
machine learning predictions around 
the neighborhood of a given input can 
be approximated by an interpretable 
white-box model. The interpretable 
model does not have to work well glob-
ally, but it must approximate the black-
box model well in a small neighbor-
hood near the original input. Then the 
contribution score for each feature can 
be obtained by examining the param-
eters of the white-box model.

Some studies assume the predic-
tion around the neighborhood of an 
instance could be formulated as the 
linearly weighted combination of its 
input features.30 Attribution methods 
based on this principle first sample the 
feature space in the neighborhood of 
the instance to constitute an addition-
al training set. A sparse linear model, 
such as Lasso, is then trained using the 
generated samples and labels. This ap-
proximation model works the same as 
a black-box model locally but is much 
easier to inspect. Finally, the predic-
tion of the original model can be ex-
plained by examining the weights of 
this sparse linear model instead.

Sometimes, even the local behav-
ior of a model may be extremely non-
linear, linear explanations could lead to 
poor performance. Models which could 
characterize non-linear relationship are 
thus utilized as the local approxima-
tion. For instance, a local approxima-
tion-based explanation framework can 
be constructed using if-then rules.31 
Experiments on a series of tasks show 
that this framework is effective at 
capturing nonlinear behaviors. More 
importantly, the produced rules are 
not confined merely to the instance 
being explained and often generalize 
to other instances.

Perturbation-based explanation. This 
line of work follows the philosophy that 
the contribution of a feature can be de-
termined by measuring how predic-
tion score changes when the feature is 
altered. It tries to answer the question: 
Which parts of the input, if they were not 
seen by the model, would most change 

Explanations could 
help examine 
whether a machine 
learning model has 
employed the true 
evidences instead 
of biases that 
widely exist among 
training data.
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Figure 3. Heatmap of DNN-specific local explanation. (a) original input, (b) back-propaga-
tion, (c) mask perturbation, and (d) investigation of representations.

Figure 4. Progress of interpretable ML. 
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are integrated into a unified framework 
where all methods are reformulated as a 
modified gradient function.2 This unifi-
cation enables comprehensive compari-
son between different methods and fa-
cilitates effective implementation under 
modern deep-learning libraries, such as 
TensorFlow and PyTorch. Back-propa-
gation-based methods are efficient in 
terms of implementation, as they usu-
ally need a few forward and backward 
calculations. On the other hand, they 
are limited in their heuristic nature and 
may generate explanations of unsat-
isfactory quality, which are noisy and 
highlight some irrelevant features, as 
shown in Figure 3b.

Mask perturbation. The previously 
mentioned model-agnostic perturba-
tion could be computationally very 
expensive when handling an instance 
with high dimensions, since they need 
to sequentially perturb the input. In 
contrast, DNN-specific perturbation 
could be implemented efficiently 
through mask perturbation and gradi-
ent descent optimization. One repre-
sentative work formulates the pertur-
bation in an optimization framework 
to learn a perturbation mask, which 
explicitly preserves the contribution 
values of each feature.13 Note that this 
framework generally needs to impose 
various regularizations to the mask to 
produce meaningful explanation rath-
er than surprising artifacts.13 Although 
the optimization-based framework 
has drastically boosted the efficiency, 
generating an explanation still needs 
hundreds of forward and backward op-
erations. To enable more computation-
ally efficient implementation, a DNN 
model can be trained to predict the at-
tribution mask.8 Once the mask neural 
network model is obtained, it only re-
quires a single forward pass to yield at-
tribution scores for an input.

Investigation of deep representa-
tions. Either perturbation or back-
propagation-based explanations ig-
nore the deep representations of the 
DNN that might contain rich informa-
tion for interpretation. To bridge the 
gap, some studies explicitly utilize the 
deep representations of the input to 
perform attribution.

Based on the observation that deep 
CNN representations capture the high-
level content of input images as well 
as their spatial arrangement, a guided 

Current stage is researcher-oriented explanations. We can make it more faithful  
and accurate, which can be further utilized to promote model generalization ability,  
and then develop user-friendly explanations.

Interpretable Machine Learning

More faithful and accurate Researcher-oriented
explanation

Current stage

Difficulty of Tasks

Improve ML generalization

User-friendly
explanation

its prediction? Thus, the results may 
be called counterfactual explanations. 
The perturbation is performed across 
features sequentially to determine their 
contributions and can be implemented 
in two ways: omission and occlusion. For 
omission, a feature is directly removed 
from the input, but this might be im-
practical since few models allow setting 
features as unknown. As for occlusion, 
the feature is replaced with a reference 
value, such as zero for word embeddings 
or specific gray value for image pixels. 
Nevertheless, occlusion raises a new 
concern that new evidence may be intro-
duced and that can be used by the mod-
el as a side effect.8 For instance, if we 
occlude part of an image using a green 
color and then we may provide undesir-
able evidence for the grass class. Thus, 
we should be particularly cautious when 
selecting reference values to avoid intro-
ducing extra pieces of evidence.

Model-specific explanation. There 
are also explanation approaches ex-
clusively designed for a specific type of 

model. Here, we introduce DNN-spe-
cific methods that treat the networks 
as white boxes and explicitly utilize the 
interior structure to derive explana-
tions. We divide them into three major 
categories: back-propagation based 
methods in a top-down manner; per-
turbation-based methods in a bottom-
up manner; and investigation of deep 
representations in intermediate layers.

Back-propagation-based methods 
calculate the gradient, or its variants, of 
a particular output with respect to the 
input using back-propagation to derive 
the contribution of features. In the sim-
plest case, we can back-propagate the 
gradient.33 The underlying hypothesis 
is that larger gradient magnitude repre-
sents a more substantial relevance of a 
feature to a prediction. Other approach-
es back-propagate different forms of 
signals to the input, such as discarding 
negative gradient values at the back-
propagation process,34 or back-propagat-
ing the relevance of the final prediction 
score to the input layer.3 These methods 
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feature inversion framework is pro-
posed to provide local explanations.11 
This framework inverts the representa-
tions at higher layers of CNN to a syn-
thesized image, while simultaneously 
encodes the location information of the 
target object in a mask. Decomposition 
is another perspective to take advan-
tage of deep DNN representations. For 
instance, through modeling the infor-
mation-flowing process of the hidden 
representation vectors in RNN models, 
the RNN prediction is decomposed into 
additive contribution of each word in 
the input text.12 The decomposition re-
sult could quantify the contribution of 
each individual word to a RNN predic-
tion. These two explanation paradigms 
achieve promising results on a variety 
of DNN architectures, indicating the 
intermediate information indeed con-
tributes significantly to the attribution. 
Furthermore, deep representations 
serve as a strong regularizer, increasing 
the possibility the explanations faith-
fully characterize the behaviors of DNN 
under normal operating conditions. 
Thus, it reduces the risks of generating 
surprising artifacts and leads to more 
meaningful explanations.

Applications
Interpretable machine learning has 
numerous applications. We introduce 
three representative ones: model vali-
dation, model debugging, and knowl-
edge discovery.

Model validation. Explanations 
could help examine whether a machine 
learning model has employed the true 
evidences instead of biases that widely 
exist among training data. A post-hoc at-
tribution approach, for instance, analyz-
es three question answering models.24 
The attribution heatmaps show these 
models often ignore important parts 
of the questions and rely on irrelevant 
words to make decisions. They further 
indicate the weakness of the models is 
caused by the inadequacies of training 
data. Possible solutions to fix this prob-
lem include modifying training data or 
introducing inductive bias when train-
ing the model. More seriously, machine 
learning models may rely on gender and 
ethnic biases to make decisions.9 Inter-
pretability could be exploited to iden-
tify whether models have utilized these 
biases to ensure models do not violate 
ethical and legal requirements.

Model debugging. Explanations also 
can be employed to debug and ana-
lyze the misbehavior of models when 
models give wrong and unexpected 
predictions. A representative example 
is adversarial learning.26 Recent work 
demonstrated that machine learning 
models, such as DNNs, can be guided 
into making erroneous predictions 
with high confidence, when process-
ing accidentally or deliberately crafted 
inputs.20,26 However, these inputs are 
quite easy to be recognized by humans. 
In this case, explanation facilitates hu-
mans to identify the possible model de-
ficiencies and analyze why these models 
may fail. More importantly, we may fur-
ther take advantage of human knowl-
edge to figure out possible solutions to 
promote the performances and reason-
ability of models.

Knowledge discovery. The derived ex-
planations also allow humans to obtain 
new insights from machine learning 
model through comprehending their 
decision-making process. With expla-
nation, the area experts and the end 
users could provide realistic feedbacks. 
Eventually, new science and new knowl-
edge, which are originally hidden in the 
data, could be extracted. For instance, 
a rule-based interpretable model has 
been utilized to predict the mortality 
risk for patients with pneumonia.6 One 
of the rules from the model suggests 
having asthma could lower a patient’s 
risk of dying from pneumonia. It turns 
out to be true since patients with asthma 
were given more aggressive treatments, 
which led to better outcomes.

Research Challenges
Despite recent progress in interpre-
table machine learning, there are 
still some urgent challenges, espe-
cially on explanation method design 
as well as evaluation.

Explanation method design. The 
first challenge is related to the method 
design, especially for post-hoc expla-
nation. We argue that an explanation 
method should be restricted to truly 
reflect the model behavior under nor-
mal operation conditions. This criteri-
on has two meanings. Firstly, the ex-
planations should be faithful to the 
mechanism of the underlying machine 
learning model.12 Post-hoc explana-
tion methods propose to approximate 
the behavior of models. Sometimes, 

the approximation is not sufficiently 
accurate, and the explanation may fail 
to precisely reflect the actual opera-
tion status of the original model. For 
instance, an explanation method may 
give an explanation that makes sense 
to humans, while the machine learn-
ing model works in an entirely differ-
ent way. Second, even when explana-
tions are of high fidelity to the 
underlying models, they may fail to 
represent the model behavior under 
normal conditions. Model explana-
tion and surprising artifacts are often 
two sides of the same coin. The expla-
nation process could generate exam-
ples that are out of distribution from 
the statistics in the training dataset, 
including nonsensical inputs and adver-
sarial examples,16 which are beyond 
the capability of current machine 
learning models. Without careful 
design, both global and local explana-
tions may trigger the artifacts of ma-
chine learning models, rather than 
produce meaningful explanations.

Explanation method evaluation. The 
second challenge involves the method 
evaluation. We introduce below the 
evaluation challenges for intrinsic ex-
planation and post-hoc explanation.

The challenge for intrinsic explana-
tion mainly lies in how to quantify the 
interpretability. There are broad sets of 
interpretable models designed accord-
ing to distinct principles and have vari-
ous forms of implementations. Take 
the recommender system as an ex-
ample, both interpretable latent topic 
model and attention mechanism could 
provide some extent of interpretability. 
Nevertheless, how can we compare the 
interpretability between globally inter-
pretable model and locally interpreta-
ble model? There is still no consensus 
on what interpretability means and 
how to measure the interpretability. 
Finale and Been propose three types 
of metrics: application-grounded met-
rics, human-grounded metrics, and 
functionally grounded metrics.10 These 
metrics are complementary to each 
other and bring their own pros and 
cons regarding the degree of validity 
and the cost to perform evaluations. 
Adopting what metrics heavily de-
pends on the tasks so as to make more 
informed evaluations.

For post-hoc explanation, compar-
ing to evaluate its interpretability, it is 
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prediction was made, but rather explain 
why this prediction was made instead of 
another, so as to answer questions like 
“Why Q rather than R?” Here Q is the 
fact that requires explanation, and R is 
the comparing case, which could be a 
real one or virtual one. Consider, for in-
stance, a user is declined mortgage. The 
user may compare with another real 
case and raise question: “Why didn’t I 
get a mortgage when my neighborhood 
did?” On the other hand, the user may 
ask: “Why was my mortgage rejected?” 
Here is an implicit contrast case, and 
actually the user is requesting expla-
nation for a virtual case “How to get 
my mortgage loan approved?” Since it 
is compared to an event that has not 
happened, thus the desirable expla-
nation here can also be called counter-
factual explanation.37

To provide contrastive explanations 
for a model prediction, similar strat-
egy could be used for both comparisons 
mentioned earlier. We first produce 
feature importance attribution for two 
instances: not-accepted case for the 
user, has-accepted case of a neighbor 
(or would-be-accepted case of the user), 
and then compare the two attribu-
tion vectors. Note that we could resort 
to adversarial perturbation to find the 
would-be-accepted case. Besides, it is 
recommended to provide a diverse set of 
reasons, that is, to find multiple contrast 
cases, to make the explanation more in-
formative. Ultimately, we generate ex-
planations of the form: “Your mortgage 
is rejected because your income is lower 
than your neighbor’s, your credit history 
is not as strong as your neighbor’s … or 
“Your mortgage would be accepted if 
your income is raised from x to y.”

Selective explanations. Usually, users 
do not expect an explanation can cover 
the complete cause of a decision. In-
stead, they wish the explanation could 
convey the most important informa-
tion that contributes to the decision.22 
A sparse explanation, which includes a 
minimal set of features that help justify 
the prediction is preferred, although 
incompletely. Still use the mortgage 
case for example. One good explana-
tion could be presenting users the top 
two reasons contributing to the deci-
sion, such as poor credit history or low 
income to debt ratio.

Credible explanations. Good expla-
nation might be consistent with prior 

equally important to assess the faithful-
ness of explanation to the original mod-
el, which is often omitted by existing 
literature. As mentioned earlier, gener-
ated explanations for a machine learn-
ing model are not always reasonable to 
humans. It is extremely difficult to tell 
whether the unexpected explanation is 
caused by misbehavior of the model or 
limitation of the explanation method. 
Therefore, better metrics to measure the 
faithfulness of explanations are needed, 
in order to complement existing evalua-
tion metrics. The degree of faithfulness 
can determine how confident we can 
trust an explanation. Nevertheless, the 
design of appropriate faithfulness met-
ric remains an open problem and de-
serves further investigation.

Discussion
We briefly introduce limitations of ex-
planation methods we have surveyed 
and then present explanation formats 
that might be more understandable 
and friendly to users.

Limitations of current explanations. 
A major limitation of existing work on 
interpretable machine learning is that 
the explanations are designed based on 
the intuition of researchers rather than 
focusing on the demands of endusers. 
Current local explanations are usually 
given in the format of feature impor-
tance vectors, which are a complete 
causal attribution and a low-level expla-
nation.23 This format would be satisfac-
tory if the explanation audiences are de-
velopers and researchers, since they can 
utilize the statistical analysis of the fea-
ture importance distribution to debug 
the models. Nevertheless, this format 
is less friendly if the explanation receiv-
ers are lay users of machine learning. 
It describes the full decision logic of a 
model, which contains a huge amount 
of redundant information and will be 
overwhelming to users. The presenta-
tion formats could be further enhanced 
to better promote user satisfaction.

Toward human-friendly explana-
tions. Based on findings in social sci-
ences and human behavioral studies,22 
we provide some directions toward 
user-oriented explanations, which 
might be more satisfying to humans as 
a means of communication.

Contrastive explanations. They are 
also referred as differential explana-
tions.22 They do not tell why a specific 

Model explanation 
and surprising 
artifacts are often 
two sides of  
the same coin.
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knowledge of general users.23 Suppose 
the generated top reasons for the mort-
gage case include marital status is sin-
gle and education status is high school 
graduate, then it would be less trust-
able than an explanation outputting 
poor credit history and low income to 
debt ratio, since the latter two are more 
reasonable causes leading to rejection. 
Low credibility could be caused by the 
poor fidelity of explanation to the origi-
nal model. On the other hand, the ex-
planations maybe faithful, however, the 
machine learning model does not adopt 
correct evidences to make decisions.

Conversational explanations. Expla-
nations might be delivered as a conver-
sation between the explainer and ex-
planation receivers.22 It means we must 
consider the social context, that is, to 
whom an explanation is provided,35 in 
order to determine the content and for-
mats of explanations. For instance, a 
preferred format is verbal explanation 
if it is explaining to lay-users.

Note there are many other paths to 
user-friendly explanations. We refer in-
terested readers to the survey by Miller22 
for a comprehensive list of directions. 
All the aforementioned directions serve 
an identical purpose that explanation 
should tell users why a decision was 
reached in a concise and friendly man-
ner. More importantly, the explanation 
could inform users what could be pos-
sibly changed to receive a desired deci-
sion next time. Granted, there is still a 
long way to go to render explanations 
that promote user’s satisfaction. In the 
future, researchers from different dis-
ciplines, including machine learning, 
human-computer interaction, and so-
cial science, are encouraged to closely 
cooperate to design really user-oriented 
and human-friendly explanations.

Conclusion
Interpretable machine learning is an 
open and active field of research, with 
numerous approaches continuously 
emerging every year. We have presented 
a clear categorization and comprehen-
sive overview of existing techniques for 
interpretable machine learning, aiming 
to help the community to better under-
stand the capabilities and weaknesses 
of different interpretation approaches. 
Although techniques for interpretable 
machine learning are advancing quickly, 
some key challenges remain unsolved, 

and future solutions are needed to fur-
ther promote the progress of this field.
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