
ANOMALY DETECTION AND SECURITY DEEP LEARNING METHODS

UNDER ADVERSARIAL SITUATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Miguel A. Villarreal-Vasquez

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Bharat Bhargava, Chair

Department of Computer Science

Dr. Vernon Rego

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Dr. Zhiyuan Li

Department of Computer Science

Dr. Christopher Brinton

Department of Electrical and Computer Engineering

Approved by:

Dr. Clifton W. Bingham

Department of Computer Science

iii

To my family, friends and beloved people of Monagrillo (Tierra Mı́a).

iv

ACKNOWLEDGMENTS

My special gratitude to my advisor Professor Bharat Bhargava for his uncon-

ditional support and encouragement. During my studies, Professor Bhargava was

always there to provide me with advice in the search for my dissertation topic. Of all

the good things for which I am grateful to him, I truly want to express my gratitude

for having given me the time to explore, think, choose, and solve real-world cyberse-

curity problems as part of my dissertation. To me, the Ph.D. journey requires a lot

more of this time-to-think than anything else. Afer all, we all join the great Depart-

ment of Computer Science at Purdue to learn and then contribute to the scientific

community with the new acquired knowledge. For that, many thanks Professor!

I am greateful to my advisory committee Professors Vernon Rego, Xiangyu Zhang,

and Zhiyuan Li for their time and attention while completing my Ph.D. degree. I

really appreciate you taking the time from your busy schedule to consider this work.

I also thank Professor Christopher Brinton for serving in my examining committee.

I cannot leave West Lafayette without thanking Mrs. Shail Bhargava for her

hospitaly and great indian food. Enjoying your good food while I was full on work

was definitely an injection of positive energy. Your plates are delicious, Shail!

I am deeply thankful to my Panamanian friend Gaspar Model-Howard (el pasiero

Gaspar) for his friendship and mentorship in both cybersecurity and life. One more

Ph.D. for Panama my friend, which I am sure makes you very happy.

To my family, good friends, and significant other my deepest gratitude for always

being there for me. Without your support, time, and help this life-goal of myself

called Ph.D. would not have being so enjoyable. The findings of my research in

cybersecurity included in this dissertation are dedicated to all of you.

Lastly, I want to thank the Department of Computer Science at Purdue University

and Northrop Grumman Corporation (NGC) for funding my Ph.D. program.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Dissertation Organization . 3

1.3 Dissertation Contribution . 5

1.4 Published Work . 6

2 CONFOC: CONTENT-FOCUS PROTECTION AGAINST TROJAN AT-
TACKS ON NEURAL NETWORKS . 7

2.1 Introduction . 7

2.2 Threat Model and Overview . 11

2.2.1 Threat Model . 11

2.2.2 Overview . 12

2.3 Background and Related Work . 13

2.3.1 Deep Neural Networks . 13

2.3.2 Trojan Attacks: Assumptions, Definition and Scope 14

2.3.3 Prior Work on Trojan Attacks 17

2.3.4 Existing Defensive Techniques Against Trojan Attacks 18

2.4 Content-Focus Approach . 21

2.4.1 Feature Extraction . 23

2.4.2 Content Image Generation . 24

2.4.3 Style Image Generation . 25

2.4.4 Styled Image Generation . 27

vi

Page

2.5 Evaluation Setup . 27

2.5.1 Evaluation Metrics and Testing Sets 29

2.5.2 BadNets Attack . 30

2.5.3 Trojaning Attacks: Square (SQ) and Watermark (WM) 32

2.5.4 Acronyms Used in Experiments 34

2.6 Experiments . 34

2.6.1 Robustness When Processing Original Inputs 34

2.6.2 Robustness When Processing Transformed Inputs 37

2.6.3 Effect on Non-Trojaned Models 39

2.6.4 Healing Set Size and Number of Styles 41

2.6.5 Performance and Comparison With the State-of-the-Art 42

2.6.6 Robustness Against Adaptive and Complex Triggers 44

2.7 Conclusions and Future Work . 47

3 HUNTING FOR INSIDER THREATS USING LSTM-BASED ANOMALY
DETECTION . 49

3.1 Introduction . 49

3.2 Overview and Threat Model . 52

3.2.1 Overview . 52

3.2.2 Threat Model . 54

3.3 Background and Related Work . 54

3.3.1 LSTM Networks . 54

3.3.2 Order-Aware Recognition (OAR) Problem 56

3.3.3 Endpoint Detection and Response 57

3.3.4 Anomaly Detection Based on Sequence Analysis Using Non-
LSTM approaches . 57

3.3.5 Anomaly Detection Based on Sequence Analysis Using LSTM . 59

3.4 Design . 62

3.4.1 Data Generation . 63

3.4.2 Data Selection . 64

vii

Page

3.4.3 Model Generation . 67

3.4.4 Anomaly Detector . 67

3.5 Evaluation Setup . 68

3.5.1 Dataset . 68

3.5.2 Metrics and Ground Truth . 72

3.6 Experiments . 73

3.6.1 Dynamic vs. Static Selection of the Set of Probable Events K . 73

3.6.2 Comparison With an Enterprise Endpoint Detection and Re-
sponse (EDR) . 75

3.6.3 Performance of LADOHD When Processing Sequences Without
Unseen Events . 77

3.6.4 Effect of Long-Term Dependencies in the Detection of Anomalies 78

3.6.5 Prediction Capacity of LSTM and HMM Based models Over
Variable-Length Sequences . 80

3.7 Conclusion . 81

4 AN MTD-BASED SELF-ADAPTIVE RESILIENCE APPROACH FOR CLOUD
SYSTEMS . 83

4.1 Introduction . 83

4.2 Related Work . 84

4.3 Proposed Approach . 85

4.3.1 Live Monitoring . 87

4.3.2 Moving Target Defense . 89

4.4 Experiments . 90

4.5 Conclusion . 92

5 FUTURE WORK . 93

5.1 Protecting Neural Networks Against Adversarial Attacks 93

5.2 Neural Networks on Anomaly Detection 94

REFERENCES . 96

VITA . 105

viii

LIST OF TABLES

Table Page

2.1 Comparison of the Properties of Model Hardening Techniques Against
Trojan Attacks . 19

2.2 Summary of Evaluated Trojan Attacks . 29

2.3 Explanation of Acronyms Used in Experiments 33

2.4 Best Healed Models After Applying ConFoc 41

2.5 Initial Metrics of Trojaned Models . 43

2.6 Metrics of Corrected Models After Applying ConFoc and Other State-of-
the-Art Model Hardening Techniques . 45

2.7 Performance With Adaptive/Complex Triggers 47

3.1 Comparison With Existing LSTM-based Security Solutions 60

3.2 Description of the Different Types of Events 63

3.3 Examples of Activity Events With Different Granularities 65

3.4 Dataset Description . 70

3.5 Metric Values Obtained With the Original and Clean Testing Sequences . 77

3.6 Effect of Long-Term Dependencies on the Detection of Anomalies 79

4.1 Reincarnation Process Times . 91

ix

LIST OF FIGURES

Figure Page

2.1 ConFoc Overview. Figure 2.1a shows the flow of the classification of
benign and adversarial samples with solid and dashed arrows respectively.
Image regions on which the classifiers focus on to make the decision are
surrounded in black (right side). Humans classify both samples correctly
because they focus on content only. Figure 2.1b shows the style transfer
strategy used by ConFoc. The content xc from input x is combined with
the style bs from the style base image b to form the styled image xbs 8

2.2 An illustration of a trojan attack conducted by poisoning the training data
(see details in Section 2.3.3). 15

2.3 A demonstration of our ConFoc healing process and its use for a secure
classification (see details in Section 2.4). 22

2.4 Split of the base set (90% of the GTSRB dataset). adversarial trj com-
prises samples in trj with triggers inserted. 31

2.5 Metric variations as ConFoc is progressively applied to MT by increasing
the number styles used in the healing process. Resulting healed models (in
x-axis) are evaluated with the original (non-transformed) testing datasets
(refer to Table 2.3). 35

2.6 Efficiency of ConFoc on making models focus on content at testing. MT

is healed with an incremental number of styles. Resulting healed models
are evaluated with test sets generated with different style bases: b1 ∈ B,
a1 ∈ A, and a2 ∈ A. 38

2.7 Accuracy (benign data) variation of the GTSRB-based non-trojaned model
when ConFoc is progressively applied. 40

3.1 Architecture of a LSTM cell. Figure 3.1a shows the internal connections
of the different components and the output of the internal operations of
the cell. Figure 3.1b shows the details of these operations performed over
the current input and previous hidden state to compute the current output. 55

3.2 Components of our anomaly detection framework LADOHD to counter in-
sider threats: (1) data generation, (2) data selection, (3) model generation,
and (4) anomaly detector. Below each component, there is a reference to
the section providing a detailed explanation about its operation. 62

x

Figure Page

3.3 Data collection dates from 30 machines, from April 27th to July 7th of
2018. This sparse collection timeframe was intended to capture the be-
havior of the application Powershell in non-attack conditions. 71

3.4 Selection of the set K through both the dynamic and static approaches.
Figure 3.4a shows the variation of the TPR and FPR with respect to dif-
ferent setting for K. Figure 3.4b presents the distribution of the dynamic
sizes of K throughout the testing sequence. Notice its high variability. . . 74

3.5 Malicious activities reported by the Red Team. These are the activities
that could be matched with events in the testing sequence. 76

3.6 Effect of long-term dependencies of LSTM models in the detection of
anomalies. The example is based on the event e145 in Table 3.6 78

3.7 Prediction accuracy of our LSTM and the HMM models with sequences
of incremental lengths. Figure 3.7a and Figure 3.7a show the accuracy
variation with subsequences extracted from the D1 training and testing
sequences respectively. 82

4.1 High-level view of resiliency framework . 86

4.2 Experiment setup . 91

5.1 Possible extension of ConFoc to detect adversarial inputs of both adver-
sarial sample and trojan attacks. 94

xi

ABSTRACT

Villarreal-Vasquez, Miguel A. PhD, Purdue University, August 2020. Anomaly
Detection and Security Deep Learning Methods Under Adversarial Situation . Major
Professor: Bharat Bhargava.

Advances in Artificial Intelligence (AI), or more precisely on Neural Networks

(NNs), and fast processing technologies (e.g. Graphic Processing Units or GPUs) in

recent years have positioned NNs as one of the main machine learning algorithms used

to solved a diversity of problems in both academia and the industry. While they have

been proved to be effective in solving many tasks, the lack of security guarantees and

understanding of their internal processing disrupts their wide adoption in general and

cybersecurity-related applications. In this dissertation, we present the findings of a

comprehensive study aimed to enable the absorption of state-of-the-art NN algorithms

in the development of enterprise solutions. Specifically, this dissertation focuses on (1)

the development of defensive mechanisms to protect NNs against adversarial attacks

and (2) application of NN models for anomaly detection in enterprise networks.

In this state of affairs, this work makes the following contributions. First, we

performed a thorough study of the different adversarial attacks against NNs. We

concentrate on the attacks referred to as trojan attacks and introduce a novel model

hardening method that removes any trojan (i.e. misbehavior) inserted to the NN

models at training time. We carefully evaluate our method and establish the correct

metrics to test the efficiency of defensive methods against these types of attacks: (1)

accuracy with benign data, (2) attack success rate, and (3) accuracy with adversarial

data. Prior work evaluates their solutions using the first two metrics only, which do

not suffice to guarantee robustness against untargeted attacks. Our method is com-

pared with the state-of-the-art. The obtained results show our method outperforms

xii

it. Second, we proposed a novel approach to detect anomalies using LSTM-based

models. Our method analyzes at runtime the event sequences generated by the End-

point Detection and Response (EDR) system of a renowned security company running

and efficiently detects uncommon patterns. The new detecting method is compared

with the EDR system. The results show that our method achieves a higher detection

rate. Finally, we present a Moving Target Defense technique that smartly reacts upon

the detection of anomalies so as to also mitigate the detected attacks. The technique

efficiently replaces the entire stack of virtual nodes, making ongoing attacks in the

system ineffective.

1

1. INTRODUCTION

1.1 Motivation

Neural Networks have significantly contributed to solve many enterprise-level

problems in a variety of areas. The application of NNs ranges from the detection

and classification of objects in images in large scales to the development of analytics

to counter a plethora of well-known cyberattacks that otherwise would be unnotice-

ably executed. In the entire range, the functionality of the NN-dependent application

depends not only on how well models are trained, but also on the robustness of

NN models against adversarial attacks. Becase of that, despite being broadly used

on critical-mission applications, the wide adoption of NNs is still threatened by two

main limitations: (1) their ingrained security concerns such as lack of integrity check

mechanisms and uncertain black-box nature [1, 2], wich affects any type of applica-

tions and (2) the lack of solid studies establishing the strengths and shortcomings of

current architectures in cybersecurity applications. As NNs ensuring are deployed,

the security of these models in general and understanding their capabilities within

the cybersecurity tasks (e.g. anomaly detection) become two key problems to solve.

There are well known adversarial threats against NNs such as adversarial sam-

ple attacks [3–8] , adversarial patch attacks (and variants) [9, 10] and trojan at-

tacks [11–14]. Adversarial sample and patch attacks are conducted at inference or

testing time by adding imperceptible perturbations to benign inputs through gradient

descent techniques to achieve either a targeted (to a class chosen by the adversary)

or untargeted (to a random class) misclassification [15]. Trojan attacks, on the other

hand, are training-time attacks in which adversaries slightly change original models to

insert a misbehavior that is exploited at testing time. At training, adversaries either

poison or retrain models with samples including a mark or trigger that is learned by

2

the models to belong to a target class. At testing, any sample with the trigger, is

misclassified to the target class (regardless their true class), while inputs without the

trigger (benign samples) are unaffected and normally classified [15]. The main differ-

ence among all these types of attacks lie on the assumptions and methods followed

to add the required perturbations to trigger the undesired misbehavior. Adversarial

sample and patch attacks require to have access to the victim model details or an

inferred version of it at testing time so as to run the chosen gradient descent method

that modifies the input. This is a challenging requirement not assumed by trojan

attacks. In the latter, adversaries can trigger the misbehavior by adding physical

marks to the objects (e.g. stickers) before the image is captured. Namely, once the

the model is compromised at training time, adversaries are able to trigger the misbe-

havior without manipulating the input at testing time. This makes trojan attacks a

dangerous and easy to deploy threat able to cause severe or even fatal consequences.

In this thesis, we present a novel technique to counter trojan attacks on Deep Neural

Network (DNNs). The technique takes as input a compromised model and remove

from it the trojan (i.e., misbehavior) inserted at training by teaching the models to

focus on the content or semantic information of the inputs.

One of the most promising cybersecurity-related applications of NNs is on the de-

velopment of new techniques for anomaly detection. In this context, the definition of

anomaly is a deviation from profiled behaviors previously learned by observing benign

patterns of a system while operates in non-attack or normal conditions. The applica-

bility of such as defensive methods today, however, has not proliferated as expected.

There is an obvious disparity between NN-based methods deployed at an enterprise

level and other techniques for intrusion detection. This occurs despite the high vol-

ume of security data logs available for which NN-based methods would intuitively be

the best option to analyze and learn patterns from them. Among the reasons that

hold the advancement of NNs on anomaly detection are the lack of understanding or

explanation about the obtained results with respect to the operational interpretation

and the ingrained difficulties to perform solid evaluations due to the lack of training

3

and validation data [16]. We tackle these problems and develop an anomaly detection

technique based on the recurrent neural network known as Long-Short Term Memory

(LSTM) [17]. The method identifies malicious activities conducted by insider threats.

The conducted research emphasizes on understanding the capacities and limitations

of LSTM-based models in the detection of anomalies by analyzing time-series data.

After completing our anomaly detection method, the question that raised was

“how should system react after the detection?” To answer this question we con-

sider a cloud computing environment, whose advances have made it a feasible and

cost-effective solution to improve the resiliency of enterprise systems. The current

replication approach taken by cloud computing to provide resiliency leads to an in-

crease in the number of ways an attacker can exploit or penetrate the systems. This

calls for designing cloud systems that can dynamically adapt themselves to keep per-

forming mission-critical functions after the detection of ongoing attacks. This thesis

presents a complementary self-adaptive resiliency solution for cloud enterprise sys-

tems. The solution leverage a moving target defense (MTD) that reconfigure critical

cloud processes to mitigate attacks and reduce system downtime upon the detection

of anomalies.

In summary, this dissertation is motivated by the different factors (ingrained to

NNs or not) that prevent a faster inclusion of AI techniques at a enterprise level

to solve cybersecurity-related and other problems. Our work provides tools to cyber

defenders in their endeavor to protect AI architectures themselves, apply AI to protect

computer systems and a methodology to adapt when computer systems are under

attack.

1.2 Dissertation Organization

Here we provide a summary of the rest of chapters included in this work. In

Chapter 2 we analyze the feature space that DNNs learn during training. We iden-

tify that these features, including those related to the inserted triggers, contain both

4

content (semantic information) and style (texture information), which are recognized

as a whole by DNNs at testing. We then introduce ConFoc, a novel content-focus

technique against trojan attacks, in which DNNs are taught to disregard the styles

of inputs and focus on their content only to mitigate the effect of triggers during

the classification. The generic applicability of this content-focus approach is demon-

strated in the context of a traffic sign and a face recognition application. Each is

exposed to a different attack with a variety of triggers. Results show that the method

reduces the attack success rate significantly to values < 1% in all the attacks while

keeping as well as improving the initial accuracy of the models when processing both

benign and adversarial data. Chapter 3 presents an overview about insider threats

and how these threats can be countered through a LSTM-based anomaly detection

method. Insider threats are considered one of the most serious and difficult problems

to solve, given the privileges and information available to insiders to launch different

types of attacks. Current security systems can record and analyze sequences from a

deluge of log data, potentially becoming a tool to detect insider threats. The issue

is that insiders mix the sequence of attack steps with valid actions, reducing the ca-

pacity of security systems to discern long sequences and programmatically detect the

executed attacks. To address this shortcoming, we introduce LADOHD, an anomaly

detection framework based on Long-Short Term Memory (LSTM) models that learns

the expected event patterns in a computer system to identify attack sequences even

when attacks span for a long time. The work includes a detailed analysis of the prop-

erties of the LSTM-based models, their capacity to discriminate sequences of large

length and their limitations. The applicability of the framework is demonstrated on

a dataset of 38.9 million events collected from a commercial network of 30 computers

over twenty days and where a 4-day long insider threat attack occurs. Results show

that LADOHD is able to detect anomalies generated by the attack with a True Posi-

tive Rate or TPR of 95.3% and False Positive Rate or FPR of 0.44%, outperforming

the endpoint detection system used to protect a commercial network, as well as frame-

works based on other methods like Hidden Markov Models. Chapter 4 presents a

5

MTD-based attack-resilient virtualization-based framework that reduces the vulner-

ability window of nodes (virtual machines) running a distributed application. The

main idea is allowing a node running a distributed application on a given computing

platform for a controlled period of time before replacing it by a new node with differ-

ent computing platform characteristics. Nodes are replaced in a Round Robin fashion

or randomly in fixed periods or upon the detection of an anomaly in such a manner

that successful ongoing attacks over the old node become ineffective to the system.

Experiments are conducted to evaluate the response time of the live reconfiguration

process. Results show that the solution is promising for real-time cloud computing.

Chapter 5 concludes the dissertation with a summary of the main contributions and

discussion of our future plans.

1.3 Dissertation Contribution

This dissertation aim to demonstrate the following statement:

Current NN architectures, when deployed with the proper security mechanisms,

are effective tools to build general and cybersecurity applications that protect computer

systems against attacks than otherwise would be undetected.

Through our research in this work, we obtain valuable findings. Our main contri-

butions are listed below.

• Novel content-focus approach to counter trojan attacks on NNs. We are the

first demonstrating that the content or semantic information of input images

suffice for models to achieve a high accuracy. Removing the dependency on

styles or texture information allows retraining models to remove the effect of

triggers more efficiently.

• Novel LSTM-based approach to find anomalies in computer systems by learning

the relationships of current events in an event sequence with distant past events.

Our work include a method to define the vocabulary of possible events that

capture the sought relationships.

6

• New Moving Target Defense approach that replaces the entire stack of a virtual

machine running a distributed application so as to disrupt any ongoing attack

in the system.

• Prototypes and evaluations of the three solutions presented in this dissertation.

1.4 Published Work

The main chapters of this thesis are published or have been submitted for publi-

cation. Below, the already-published work:

• M. Villarreal-Vasquez, B. Bhargava, P. Angin, N. Ahmed, D. Goodwin, K.

Brin, and J. Kobes, “An mtd-based self-adaptive resilience approach for cloud

sys- tems,” in 2017 IEEE 10th International Conference on Cloud Computing

(CLOUD). IEEE, 2017, pp. 723–726.

7

2. CONFOC: CONTENT-FOCUS PROTECTION

AGAINST TROJAN ATTACKS ON NEURAL

NETWORKS

2.1 Introduction

Advances in artificial intelligence have positioned Deep Neural Networks (DNNs)

as one of the main algorithms currently used for machine learning. They have suc-

cessfully been applied to solve problems in multiple areas such as natural language

processing [18] and computer vision [19]. For the later case, their success have been

proved in classification-based applications like object detection [20] and scene [21],

face [22], and traffic sign recognition [23]. Despite being broadly used in these ap-

plications, the wide adoption of DNNs in real-world missions is still threatened by

their ingrained security concerns (e.g., lack of integrity check mechanisms and their

uncertain black-box nature [1,2]), which make them vulnerable to trojan or backdoor

attacks (hereinafter trojan attacks) [11–14].

Trojan attacks against DNNs occur at training time and are later exploited during

testing. To execute them, adversaries slightly change original models at training

by either poisoning or retraining them with adversarial samples. These adversarial

samples are characterized by having a trigger (e.g., a set of pixels with specific values

in the computer vision scenario) and a label chosen by the adversary (target class).

The ultimate goal of the attack is inducing misbehavior at testing time as any input

with the trigger is misclassified to the target class. These attacks represent a powerful

threat because it is difficult to determine whether a model is compromised. Inputs

without the trigger (benign samples) are normally classified [15] and deployed triggers

can be designed to be unnoticeable (e.g., triggers may look like black spots by dirt in

cameras) [24].

8

Benign

Sample

Adversarial

Sample

Classifier 2: Humans

Classifier 1: DNNs

Inputs Classifiers Focus

Learned

Attributes

Inserted

Trigger

Image

Content

(a) Feature-Focus of Humans and Traditionally Trained DNNs

Input x

Style Base b

Content of x (xc)

Style of b (bs)

Styled Version of x (xbs
)

(b) Concept of Image Style Transfer

Fig. 2.1.: ConFoc Overview. Figure 2.1a shows the flow of the classification of benign

and adversarial samples with solid and dashed arrows respectively. Image regions on

which the classifiers focus on to make the decision are surrounded in black (right

side). Humans classify both samples correctly because they focus on content only.

Figure 2.1b shows the style transfer strategy used by ConFoc. The content xc from

input x is combined with the style bs from the style base image b to form the styled

image xbs .

9

The potential of these attacks is illustrated in the context of self-driving cars.

These vehicles capture pictures of objects on the streets and process them without ad-

versaries editing the captured images. If these cars were using a compromised model,

adversaries could induce the misclassification of street objects by simply stamping

marks (e.g., stickers) on them, which would act as triggers when images are captured.

Attackers might cause harm if stop signs are misclassified to speed signs. As DNNs

are incorporated by companies such as Google and Uber in their self-driving solutions

and are also used in other critical applications (e.g., authentication via face recogni-

tion of the Apple IPhone X) [24], protecting against trojan attacks on DNNs is an

important problem to solve.

Previous defensive strategies either harden DNNs by increasing their robustness

against adversarial samples [1, 14, 15] or detect adversarial inputs at testing time

[1,2,14,24]. This research is in the former category. Some existing techniques in this

category assume access to a large training dataset to train auxiliar models [14]. Others

reduce the attack effectiveness at the cost of accuracy by fine-tuning compromised

models after pruning a number of neurons [15]. A state-of-the-art model hardening

technique, called Neural Cleanse [1], proposed an improved solution. It assumes access

to a small training set and fine-tunes models with images including reverse-engineered

triggers. This technique significantly reduces the attack success rate. However, based

on our experiments in Section VI-C, it does not improve the accuracy of the models

enough when processing adversarial samples in some of the tested attacks, limiting

its generic applicability.

In this paper, we analyze the feature space that DNNs learn during training and

identify that images, and hence learned features (including those of the triggers),

have both content and style, which are recognized as a whole by DNNs at testing.

Content refers to the shapes of objects or semantic information of inputs, while style

refers to their colors or texture information. Our hypothesis is that it is possible

to teach models to focus on content only so that they resemble better the human

reasoning during the classification to avoid exploitation (Figure 2.1a). Based on

10

this, we devised a content-focus healing procedure, called ConFoc, which takes a

trojaned model and produces a healed version of it. ConFoc assumes access to a

small benign training set (healing set) and generates from each sample in it a variety

of new samples with the same content, but different styles. These samples are used

in a twofold healing strategy in which models: (1) forget trigger-related features as

they are fine-tuned with original and styled benign samples only and (2) improve

their accuracy with both benign and adversarial data due to the data augmentation

achieved with multiple styles. As the only common characteristic among the original

and styled samples is the content itself, models learn to focus on it. At testing, inputs

can be classified with either its original or a random style because styles are ignored.

ConFoc overcomes the limitations of previous work [1,14,15] as it is characterized

by: (1) being generic and effective against different trojan attacks, (2) functioning

without prior knowledge of the trigger, (3) depending on a small training set, and

(4) avoiding neuron pruning (which affect performance). Our main contributions are

listed below:

• We analyze the feature space learned by DNNs and identify that they have both

content and style. We are the first demonstrating that trojan attacks can be

countered by making models focus on content only.

• We built a prototype [25] and evaluate ConFoc with a variety of applications,

including a traffic sign recognition system implemented in Resnet34 [26] with

the GTSRB dataset [27] and a face recognition system (VGG-Face [28]). Each

application is exposed to a different type of trojan attack executed with a variety

of triggers. The former is tested against the trojan attack BadNets [11], while

the latter with Trojaning Attack [13]. Compared to the state-of-the-art [1],

ConFoc shows good results against both attacks, whereas the other technique

does it in one of the cases.

11

• ConFoc is agnostic to the image classification application for which models are

trained, with the benefit that it can be applied equally to any model (trojaned

or not) without impacting its classification performance.

• To our knowledge, we are the first establishing the importance of evaluating

defensive methods against trojan attacks with the correct metrics: (1) accuracy

with benign data, (2) accuracy with adversarial data, and (3) attack success

rate or ASR (percentage of adversarial samples classified to the target class).

This is crucial because it is possible to have models with both low ASR and

low accuracy with adversarial data, on which adversaries can still conduct an

untargeted attack by triggering the misclassification of adversarial samples to a

random rather than to a the target class.

Our work provides a new model hardening technique that reduces the sensitivity

of DNNs to inserted triggers. Although the interpretability of DNNs is out of our

scope, ConFoc features advantageous tools for defenders against trojan attacks.

2.2 Threat Model and Overview

2.2.1 Threat Model

We assume an adaptive attacker that gains access to an original non-trojaned

model and inserts a trojan into it before the model reaches the final user. The

adaptive attacker is knowledgable about the ConFoc approach and is able to infect

models with styled adversarial samples to mitigate the healing effect. Adversaries

can achieve the attack by either poisoning the training dataset (at training time) or

retraining the model (after the training period) before reaching the final user. That

is, adversaries have the capabilities of an insider threat who can efficiently poison the

data used to train the victim model. Also, adversaries have the ability to act as a man-

in-the-middle, who intercepts the original non-infected model, retrains it to insert the

trojan, and then tricks the final users to use the resulting trojaned model. The later

12

assumption is a plausible scenario as the most accurate neural network architectures

tend to be either deeper or wider [26,29]. Whereby, transfer learning in DNNs [30,31]

is a common practice and pre-trained models are often downloaded from public sites

without the proper integrity check [14]. Upon getting a model (either trojaned or not),

final users take them through the ConFoc method. We assume adversaries cannot

interfere in this process. At testing, adversaries endeavor to provide adversarial inputs

to the models without being able to modify them anymore.

2.2.2 Overview

A compromised model is referred to as a trojaned model (MT). In order to heal an

MT , ConFoc retrains it with a small set of samples and their strategically transformed

variants until the model learns to make the classification based on the content of

images. Our technique is founded on the concept of image style transfer [32], which is

applied for first time in a security setting to generate the training samples used in the

healing process. Figure 2.1b shows this concept. Images can be separated in content

and style, and it is possible to transfer the style of one image to another. Under the

assumption of holding a small healing set XH of m benign samples {xi | i = 1, ...,m}

and a set B of n style base images {bj | j = 1, ..., n}, ConFoc extracts from them

their image content {xic | i = 1, ...,m} and styles {bjs | j = 1, ..., n} respectively.

The styles are transferred to the content images to generate the set of styled images

{xi
bjs
| i = 1, ...,m, j = 1, ..., n}. During the healing process, each benign sample

xi ∈ XH , its content image xic, and corresponding n styled images {xi
bjs
| j = 1, ..., n}

are used as training data. Our intuition is that models learn to focus on the content

as it is the only common characteristic among these samples. The goal is to reduce

the sensitivity of DNNs to trigger-related features during the process.

Any model resulting from the healing process is referred to as a healed model

(MH). At inference time, any input x is classified by MH , which focus on its content

only. The input x can optionally be transformed to a particular styled version xbs

13

using any chosen style base image b before being classified because its style is ignored

in the process.

Limitations. We summarize three main limitations. First, ConFoc relies on

having access to a healing dataset. Although this is a challenging requirement, our

technique is proved to be effective with small datasets around 1.67% of the original

training set size. Second, ConFoc imposes an overhead at testing if inputs are first

transformed (optionally) to change their styles. Likewise, our method requires some

time to generate the content and styled images used in the healing process. These

overheads are limited, however, because the image transformation takes only a few

milliseconds and the healing process occurs offline. Finally, like previous techniques

[1, 14, 15], we assume adversaries cannot run attacks (e.g., poisoning) during the

healing process. This is a reasonable assumption that does not abate our contribution

to methods that remove trojans without impacting the performance of DNNs.

2.3 Background and Related Work

2.3.1 Deep Neural Networks

A DNN can be interpreted as a parameterized function Fθ : Rm → Rn, which

maps an m-dimensional input x ∈ Rm into one of n classes. The output of the DNN

is a n-dimensional tensor y ∈ Rn representing the probability distribution of the n

classes. That is, the element yi of the output y represents the probability that input

x belongs to the class i.

Specifically, a DNN is a structured feed-forward network Fθ(x) = fL(fL−1(fL−2(...

f1(x)))) in which each fi corresponds to a layer of the structure. A layer fi outputs a

tensor ai whose elements are called neurons or activations. Activations are obtained

in a sequential process. Each layer applies a linear transformation to the activations

of the previous layer followed by a non-linear operation as follows: ai = σi(wiai−1+bi).

The output of fL (aL) is referred to as output activations, while the input (x = a0)

as input activations. Outputs of middle layers are called hidden activations. The

14

elements wi and bi are tensors corresponding to the parameters θ and are called

weights and bias respectively. The component of the equation σi is the non-linear

operation of the layer fi. There are multiple non-linear operations, each with different

effects in their outputs. Some of them are sigmoid, hyperbolic tangent, Rectified

Linear Unit (ReLU) and Leaky ReLU [33,34].

A DNN is trained with a set of input-output pairs (x, y) provided by the trainers,

where x is the input and y the true label or class of x. Trainers define a loss function

L(Fθ(x), y), which estimates the difference between the real label y and the predicted

class Fθ(x). The objective of the training process is minimizing the loss function

by iteratively updating the parameters θ through backpropagation [35]. In essence,

backpropagation is a gradient descent technique that estimates the derivatives of

the loss function with respect to each parameter. These derivatives determine how

much each parameter varies and in what direction. The training process is controlled

by trainer-specified hyper-parameters such as learning rate, number of layers in the

model, and number of activations and non-linear function in each layer.

During testing, a trained DNN receives an unseen input x ∈ Rm, produces an

output y = Fθ(x) ∈ Rn, and assign to x the class C(x) = argmaxi yi.

This paper focuses on Convolutional Neural Networks (CNNs) trained for image

classification tasks. CNNs are a type of DNNs characterized by being: (1) sparse as

many of their weights are zero, and (2) especially structured as neuron values depend

on some related neurons of previous layers [15].

2.3.2 Trojan Attacks: Assumptions, Definition and Scope

Assumptions. Trojan attacks consist of adding semantically consistent patterns

to training inputs until DNNs learn those patterns and recognize them to belong

to either a specific or a set of target classes chosen by the adversary [24]. Several

approaches can be followed to insert a chosen pattern or trigger into the training data

to achieve the trojaned misbehavior. The difference among them lies on the strategy

15

L=Stop L=Speed L=Crossing

L=t L=t L=t

DNN

Normally Classified Misclassified to t

Trojaned Model Generation at Training Time Trojaned Model Exploitation at Testing Time

Benign Samples

Adversarial Samples

Adversary:
-Add tigger to samples

- Choose a target label t

- Mislabel samples to t

Training or

Retraining

Trojaned DNN

Benign Sample Adversarial Sample

2

1

3

Fig. 2.2.: An illustration of a trojan attack conducted by poisoning the training data

(see details in Section 2.3.3).

applied to generate the adversarial samples, the objective of the misclassification, and

the applicability of the attack. This research aims to feature a solution to counter

trojan attacks that comply with the following conditions:

C1 Adversarial samples include an unknown pattern (or trigger) inserted into the

victim DNNs during training.

C2 Benign samples are normally classified by compromised models.

C3 Both benign and adversarial samples are assumed to belong to the same distri-

bution. This implies that triggers, which might be perceptible, do not override

the interesting object in the image to be classified.

C4 Adversarial testing samples are generated without any manipulation or further

processing after the image is captured. It implies adversaries do not have access

to the model at inference or testing time.

Trojan attack definition. Assuming an original non-trojaned model MO =

FO(·) trained with a set of benign samples X. Given a correctly classified benign

16

input x ∈ X to the class FO(x), a labeling function L(·), and a target class t chosen

by the adversary, the input x∗ is an adversarial sample at training time if:

x∗ = x+ ∆ ∧ L(x∗) = t (2.1)

Now, let X∗ be the set of adversarial samples generated following Equation 2.1 and

MT = FT (·) the trojaned version resulting from training the model with both X

and X∗. At testing time, given x be a benign input correctly classified to the class

FT (x) 6= t, an input x∗ is an adversarial sample if:

FT (x∗) = t ∧ x∗ = x+ ∆ (2.2)

FT (x) = FO(x) (in most cases) (2.3)

In Equation 2.1 and Equation 2.2, ∆ represents the changes caused to sample x by

the addition of a trigger (C1). These changes might be obvious to humans as shown

in the example in the left side of Figure 2.1a. Despite the possible obvious difference

between benign and adversarial samples, for any benign sample x ∈ X at inference

time, it is also assumed that x∗ ∈ X since FT (x) ≈ FO(x) as established in Equation

2.3 and users are unaware of the triggers used in the attack (C2 and C3). The labeling

function L(·) in Equation 2.1 is controlled by the adversary at training time and is

used to assign the chosen target class t as label of the adversarial sample x∗. Equation

2.2 establishes that at testing, a sample x∗ (not originally belonging to the class t) is

considered adversarial if it contains the trigger and is classified by the trojaned model

to the target class t. Triggers can be added without manipulating testing samples

by, for example, attaching a sticker to the object to be classified before capturing its

image (C4).

In summary, trojaned models closely classify benign inputs as non-trojaned mod-

els, thwarting the ability to determine whether a given model has an inserted trojan.

Thereby, in trojan attacks it is assumed final users are deemed unaware of the com-

mitted attack and use the trojaned model MT = FT (·) under the believe the model

is MO = FO(·).

17

Scope. We evaluate our method against two trojan attacks that comply with

conditions C1-C4: BadNets [11], and Trojaning Attack [13]. We do not consider

trojan attacks with weak and strong assumptions about the capabilities of defenders

and attackers, respectively. One example is the attack that poisons the training

data using an instance of class A and a set of n variants of it (created by adding

random noise) labeled as B in order to misclassify inputs in A to B [12]. As benign

inputs themselves are used to insert the trojan, defenders can detect the misbehavior

by observing the misclassified samples (low defensive capability assumed). Another

example is the attack that inserts trojans by blending benign inputs with images

containing specific patterns that function as triggers [12]. In this case, adversaries

manipulate the inputs during both training and testing (high offensive capability

assumed).

Other threats known as adversarial sample attacks [3–8] and adversarial patch

attacks (and variants) [9, 10] (and hence their counter measures [36–45]) are also

out of the scope of this paper. These attacks cause misclassification as well, but the

assumptions and patterns added to inputs are different from those in trojan attacks.

These attack variations are executed at testing time only with samples generated via

gradient descent using the victim models in the process. [24].

2.3.3 Prior Work on Trojan Attacks

Gu et al. [11] introduced a trojan attack technique called BadNets, which inserts a

trojan into DNNs by poisoning the training dataset. Figure 2.2 illustrates the attack

in the context of a traffic sign recognition system. The attack is executed in two

phases: a trojaned model generation phase and a model exploitation phase. In the

former, adversaries follow three steps. Step1, adversaries sample a small set of images

from the training dataset. Step2, attackers choose a target class t and a trigger to

create the adversarial samples. Adversarial samples are created by adding the chosen

pattern to the selected samples and changing the labels of the samples to the class

18

t. Step 3, adversaries feed the generated adversarial samples into the model during

the training process, guaranteeing the pattern is recognized by the model to belong

to the class t.

The second phase is shown in the right side of the figure. The benign sample is

normally classified, whereas the corresponding adversarial sample is misclassified to

the class t. The efficiency of BadNets was proved over the MNIST dataset [46] and

the traffic sign object detection and recognition network Faster-RCNN (F-RCNN) [47]

with an ASR above 90%.

A more sophisticated trojan technique called Trojaning Attack was presented by

Liu et al. in [13]. Three main variations are added to the strategy followed by

this technique in comparison to BadNets [11]. First, the attack is conducted by

retraining a pre-trained model instead of poisoning the training data. Second, the

adversarial training samples used for retraining are obtained via a reverse-engineering

process rather than being generated from real benign training samples. Finally, the

trigger used in the attack is not arbitrarily chosen, but rather fine-tuned to maximize

the activations of some chosen internal neurons. Reverse-engineered images refer to

images whose pixels were tuned via gradient descent to be classified to a specific

class. Triggers were also obtained via gradient descent using a loss function defined

with respect to the activations of a specific layer l. Their pixels are tuned to induce

maximun response in certain neurons in l. During the retraining process with benign

and adversarial reverse-engineered images, only the layers following layer l are fine-

tuned. The attack was demonstrated over the VGG-Face model [28] with an ASR

greater than 98%.

2.3.4 Existing Defensive Techniques Against Trojan Attacks

Fine-Prunning [15] is a model-hardening technique that identifies trigger-related

neurons and removes them to eliminate their effect. The efficiency of the method

suffers for the high redundancy among internal neurons. Wan et al. [1] proved that

19

T
ab

le
2.

1.
:

C
om

p
ar

is
on

of
th

e
P

ro
p

er
ti

es
of

M
o
d
el

H
ar

d
en

in
g

T
ec

h
n
iq

u
es

A
ga

in
st

T
ro

ja
n

A
tt

ac
k
s

T
ec

h
n
iq

u
e

T
ra

in
in

g
D

at
as

et
M

o
d
if

y
M

o
d
el

K
n
ow

le
d
ge

of
T

ri
gg

er
R

ig
or

ou
sl

y
te

st
ed

R
et

ra
in

in
g

[1
4]

L
ar

ge
N

o
N

ot
re

q
u
ir

ed
N

o

E
n
co

d
er

[1
4]

L
ar

ge
N

o
N

ot
re

q
u
ir

ed
N

o

F
in

e-
P

ru
n
in

g
[1

5]
S
m

al
l

Y
es

N
ot

re
q
u
ir

ed
Y

es

N
eu

ra
l

C
le

an
se

(P
ru

n
in

g)
[1

]
S
m

al
l

Y
es

R
eq

u
ir

ed
Y

es

N
eu

ra
l

C
le

an
se

(U
n
le

ar
n
in

g)
[1

]
S
m

al
l

N
o

R
eq

u
ir

ed
Y

es

C
on
F
oc

[t
h
is

st
u
d
y
]

S
m

al
l

N
o

N
ot

re
q
u
ir

ed
Y

es

20

despite the fact that only 1% of the output neurons are activated by certain region

(set of pixels) of an input image, more than 30% of the total output neurons need to

be removed to eliminate the effect of that region on the classification process. This

implies a high cost in the performance of the model. In light of this observation,

unlike Fine-Prunning, ConFoc does not modify the architecture of models.

Liu eat al. [14] presented three methods against trojan attacks tested over the

MINST dataset [46]. First, a technique to detect adversarial samples by comparing

the outputs of the victim model with the outputs of binary models based on Decision

Trees (DTs) [48] and Support Vector Machines (SMV) [49] algorithms. Second, a

model hardening technique that fine-tunes the victim model with a set of benign

samples. Although the method reduces the attack, it also has an impact in the

accuracy of model [1]. Finally, a model hardening approach in which an encoder

is inserted between the input and the model. This encoder is trained with benign

samples only and is used to filter out samples at testing by compressing their features,

and decompressing them again to have samples that do not include the trigger before

being classified. The three described methods assume access to a training set without

any restriction to its size. ConFoc, in contrast, requires a small set of less than or

equal to 10% of the original training set size.

Ma et al. [24] attributes trojan attacks to the uncertain nature of DNNs and iden-

tify two main attack channels exploited by adversaries. First, a provenance channel

exploited when adversarial changes are added to inputs to alter the path of active

neurons in the model from input through all the middle layers until the output to

achieve misclassification. Second, an activation value distribution channel, in which

the path of activate neurons from input to output remains the same for both benign

and adversarial inputs, but with different value distributions for these two types of

inputs. The authors developed a technique that extracts the invariants of these two

channels and use them to detect adversarial samples.

Tao et al. [2] proposed an adversarial input detection technique that finds a bidi-

rectional relationships between neurons and image attributes easily recognized by

21

humans (e.g., eyes, nose, etc.) for face recognition systems. A parallel model is cre-

ated from the original model by strengthening these neurons while weakening others.

At testing time, any input is passed to both models and considered adversarial in case

of a classification mismatch. Although this work is proved to be effective, it assumes

attributes on which humans focus on to make the decisions are known in advance.

ConFoc, disregards this assumption as it lets models extract the content of images

on their own through the healing process.

Wang et al. [1] presents Neural Cleanse, a strategy with three main defensive

goals: (1) determining whether a given model has a trojan inserted, (2) if so, reverse-

engineering the trigger, and (3) mitigating the attack through complementary defen-

sive methods: Patching DNN Via Neuron Pruning and Patching DNN Via Unlearning.

Authors show that the former does not perform as well against Trojaning Attack [13]

as it does against BadNets [11]. The latter is proved to be effective against both

attacks, but only for targeted modalities as the performance is measured using accu-

racy with benign data and ASR only. In addition to these metrics, ConFoc is tested

using accuracy with adversarial data, proving its effectiveness against both targeted

and untargeted trojan attacks.

ConFoc falls into the category of model hardening. Hence, we focus on these types

of solutions. Table 2.1 shows a qualitative comparison with previous techniques in

this category.

2.4 Content-Focus Approach

Figure 2.3 illustrates our content-focus approach (ConFoc) to defend against tro-

jan attacks. The approach is executed in two phases. First, a ConFoc healing phase

(left side of the figure), which takes a trojan model MT and strategically retrains it

to produce a healed model MH . Second, a secure classification phase at testing time,

which uses the produced MH to classify inputs based on their content or semantic in-

22

Input x Content of x (xc) Styled x (xbs, j = 1,...,n)

Retraining Process

Processing of Each Sample in Healing Set XH

MH

MT

MH

Input x

Secure

Classification

IG

Base Image b

Styled input (xbs)

n base images b

ConFoc Healing Phase: Retrain to Focus on Content Secure Classification at Testing

Image Generator

Trojaned Model

Healed Model

Base Images Set B

+

m benign samples

Healing Set XH

Retraining Set (XR) Generation Process

j

Image Generator

Healed Model

(x, xc , xbs
, j = 1,...,n)

j

3

1

2

Option 2

Option 1

Fig. 2.3.: A demonstration of our ConFoc healing process and its use for a secure

classification (see details in Section 2.4).

formation, mitigating the effect of triggers when processing adversarial samples (right

side of the figure.)

The ConFoc healing process assumes defenders have access to a limited number

of benign samples from the same distribution as the benign data used during the

original training of MT . The process is completed in three steps. In step 1, a small

healing set XH of m of these benign samples is selected. Step 2 is a process that

uses the selected healing set XH and a set of randomly chosen style base images B

to generate a larger retraining dataset XR. The process takes each benign sample

x ∈ XH and passes them to the Image Generator IG. The IG generates from each

x its content xc and multiple versions of styled images {xbjs | j = 1, ..., n}, obtained

by transferring the style bs of each b ∈ B to the content xc. The retraining dataset

XR comprises each x ∈ XH , its content xc and its corresponding n generated styled

images. As the only common characteristic among these samples is their content, the

final step of the healing process (step 3) is retraining the trojaned model MT with

the set XR so that the model learns to focus on the content of inputs. The goal is

producing a healed model MH , in which the trojaned misbehavior becomes ineffective

and the accuracy is high for both benign and adversarial data.

23

At testing, a secure classification is achieved by either processing the original input

x (option 1) or passing it first through the IG (option 2) to produce a styled version

of it xbs using any chosen style base image b (not necessarily in B). Either image x

or xbs is classified by the healed model MH .

The IG is a crucial element in ConFoc. Its main purspose is generating the

retraining samples for the healing process and transforming the inputs at testing. It

comprises four components: (1) feature extraction, (2) content image generation, (3)

style image generation, and (4) styled image generation.

2.4.1 Feature Extraction

The output of each layer in a DNN model (i.e., neurons or activations) can be

thought as internal features of the input. Feature extraction refers to obtaining these

outputs (features) when an input sample is processed by a given model.

Our IG extracts features using a VGG16 model [50] pre-trained with the Im-

agenet dataset [51]. This model has 16 layers, from which 13 are convolutional

(Conv) and 3 are linear (Linear). The convolutional layers are either followed by

a ReLU [52] along with a MaxPool2d [53] or just a ReLU layer. More precisely,

the convolutional part of VGG16 is compounded by 2 consecutive arrangements of

Conv/ReLU/Conv/ReLU/MaxPool2d followed by 3 arrangements of Conv/ReLU/Conv/

ReLU/Conv/ReLU/MaxPool2d.

The selection of the proper layers for feature extraction is an important design

choice in the generation of content and styled images. The criterion for this selection

was identifying the last layer of a consecutive group of layers that does not remove

information. As MaxPool2d layers are intended to down-sample an input represen-

tation reducing its dimensionality [53], the layers before each of the five MaxPool2d

were chosen in an input-to-output order as potential candidates for feature extraction.

These layers form the set L = {li|i = 1, ..., 5} (with L[i] = li), which are used by the

next three algorithms.

24

Algorithm 1: Content image generation

Input: x,M, l, λc, N

1: xc ← rand init(x)

2: F ←M [: l]

3: fx ← F (x)

4: while N 6= 0 do

5: fxc ← F (xc)

6: lossc ←MSE(fx, fxc) · λc
7: ∆← ∂lossc/∂xc

8: xc ← xc − lr ·∆

9: N ← N − 1

10: end while

11: return xc

2.4.2 Content Image Generation

Algorithm 1 shows the procedure followed to generate a content image. It uses

gradient descent to find the local minimum of the defined loss function, which is the

Mean Square Error (MSE) between the features extracted from one layer li ∈ L of the

VGG16 model given two different inputs. One input is a benign sample x from which

the content will be extracted. The other is a random uniformly generated image xc.

After the random initialization, the algorithm updates the pixel values of xc using

the gradients estimated through the loss function in such a way that the eventual

values of the extracted features are close enough for both inputs. We found l2 ∈ L to

provide the best results to generate content.

Algorithm 1 uses five parameters. Parameter x denotes one benign input from

the available healing set XH ; M denotes the model used for the featured extraction

(VGG16 in our case); l corresponds to the layer of the model from which features

are extracted; λc represents the penalty term for the loss function used to control

25

how much information is included in the content; and N the maximum number of

iterations run by the selected optimizer (we chose LGBFS [54]).

Line 1 generates a random image xc of the same size as the provided input x.

Line 2 represents the feature extraction function, which can be thought as slicing the

model until the indicated layer l. Line 3 gets the features or output of layer l of

model M using the function created in line 2 with sample x as argument. From line

4 to 10 gradient descent is used to refine the values of the random image xc created

in line 1. Line 5 follows a procedure similar to the one described in line 3. In this

case, it extracts the features at layer l using the random image xc as argument of the

function F . Line 6 estimates the loss value, which is the Mean Square Error (MSE)

between the features obtained at layer l for input x (line 3) and input xc (line 5).

Line 7 estimates the gradients of the loss with respect to the random input xc. These

gradients are used to update the the random image as indicated at line 8.

2.4.3 Style Image Generation

Although the styles of base images are not used in ConFoc, the procedure to

generate them is an essential part in the generation of styled images. Therefore, a

step-by-step description is included in this section. The style of a given image can be

obtained following a similar procedure to the one used to generate content images.

The main difference lies on the loss function used to estimate the gradients, which is

based on Gramian matrices [55]. For a set of vectors T the Gramian matrix G(T) is

a square matrix containing the inner products among the vectors. In the context of

the VGG16 model or any DNN, for a particular layer of the model with p channels

in its output (features), a p × p Gramian matrix can be obtained by first flattening

each channel and then estimating the inner product among the resulting vectors.

Algorithm 2 shows the procedure to generate style images. The paramenter b

represents the image from which the style is extracted; M denotes the model used

for the extraction; L the set of candidate layers for feature extraction; and N the

26

Algorithm 2: Style Image Generation

Input: b,M,L,N

1: bs ← rand init(b)

2: fb ← []

3: for i : 1→ len(L) do

4: Fi ←M [: L[i]]

5: fb ← Fi(b)

6: end for

7: while N 6= 0 do

8: fbs ← []

9: for i : 1→ len(L) do

10: fbs ← Fi(bs)

11: end for

12: losss ←
∑len(L)

i=1 MSE(G(fb[i]), G(fbs [i]))

13: ∆← ∂losss/∂bs

14: bs ← bs − lr ·∆

15: N ← N − 1

16: end while

17: return bs

maximum number of iterations the optimizer runs. It was a design choice to use all

the candidate layers in L in the definition of the loss function.

In the algorithm, line 1 generates a random image bs of the same size as input

image b. From lines 2 to 6 a function to extract the features of each layer in L is

created. The features of each layer are extracted (line 5) with the corresponding

function (line 4) using image b as argument. The extracted features are stored in the

empty vector created in line 2. From lines 7 to 16 gradient descent is applied to refine

the random image bs after estimating the value of the loss function. From line 8 to

line 11 the functions created in line 4 extract the features of each layer in L using

27

the random image bs as input. The features are stored in the empty vector created

in line 8. Line 12 estimates the style-related loss. This loss sums up the MSE of the

Gramian matrices of the features extracted in each layer when the random image bs

and the given image b are passed as inputs to the model. From line 13 to 14 the

gradients are estimated and bs is updated accordingly.

2.4.4 Styled Image Generation

This procedure combines the steps followed in Algorithm 1 and Algorithm 2 for

content and style images respectively. It includes a new parameter j, which is the

index of the layer lj ∈ L from which to extract the features used for the generation

of the content. Lines 2 to 9 extract the features from each layer li ∈ L using image

b as input to the model. Features from the jth layer are extracted using image x

as input (line 7). From lines 10 to 21 the loss for content and the loss for style are

combined in one loss that is later used for the estimation of gradients. From line 11

to line 14 features from each layer li ∈ L are extracted using the random image xbs

(created in line 1) as input to the model. Line 15 estimates the content-related loss

using the features extracted from the jth layer with input x (line 7) and xbs (line 13)

as inputs. Line 16 computes the style-related loss using the Gramian matrices of the

features extracted when the random image xbs and the style base image b are passed

as inputs to the model. Line 17 combines the two loss functions in one, which is used

to estimate the gradients (line 18) used to update the random image xbs (line 19).

For both Algorithm 3 and Algorithm 1, a fixed rule was created to assign values to

λc based on the size of the input.

2.5 Evaluation Setup

We designed a number of experiments to evaluate ConFoc under the assumption

that a non-trojaned model MO is compromised by an adversary, who inserts a trojan

into it to produce a trojaned model MT . ConFoc can be thought as a function that

28

Algorithm 3: Styled Image Generation

Input: x, b,M,L, j, λc, N

1: xbs ← rand init(t)

2: fb ← []

3: for i : 1→ len(L) do

4: Fi ←M [: L[i]]

5: fb ← Fi(b)

6: if i = j then

7: fx ← Fi(x)

8: end if

9: end for

10: while N 6= 0 do

11: fxbs ← []

12: for i : 1→ len(L) do

13: fxbs ← Fi(xbs)

14: end for

15: lossc ←MSE(fx, fxbs [j]) · λc
16: losss ←

∑len(L)
i=1 MSE(G(fb[i]), G(fxbs [i]))

17: losst ← lossc + losss

18: ∆← ∂losst/∂xs

19: xbs ← xbs − lr ·∆

20: N ← N − 1

21: end while

22: return xbs

takes as input a model (either MO or MT) and produces a healed model MH . When

the input is MT , MH is expected to be a model without the trojaned misbehavior. In

the case of having MO as input, MH is expected to at least keep its accuracy. During

the experiments, all the models are fine-tuned with hyper-parameters (e.g., number

29

Table 2.2.: Summary of Evaluated Trojan Attacks

Properties BadNets Trojaning (SQ) Trojaning (WM)

Example of

Adv. Input

Strategy Poisoning Retraining Retraining

Architecture Resnet34 VGG-Face VGG-Face

Dataset GTSRSB VGG-FAce VGG-Face

No. Classes 43 40 40

of epochs, learning rates, etc.) chosen to get the best possible performance. This

allows evaluating ConFoc using different datasets and attacks.

ConFoc is tested against BadNets [11] and Trojaning Attack [13]. The latter is

executed with two triggers: square (SQ) and watermark (WM). Table 2.2 summarizes

these three attacks. In addition, this section presents a comparison between ConFoc

and the state-of-the-art [1] and includes results of our method when the attacks are

conducted with complex triggers.

2.5.1 Evaluation Metrics and Testing Sets

Metrics. The success of a trojan attack can be measured based on two aspects.

First, the efficiency to keep compromised models having a high accuracy (rate of

classification to the true class) when processing benign data. Second, the attack

success rate or ASR, which measures how well triggers in adversarial samples activate

the misbehavior [13]. As the latter is expected to be high, trojaned models are

also characterized by having low accuracy when processing adversarial data. As a

compromised model goes through the healing process our method aims to: (1) reduce

the ASR to avoid targeted exploits (misclassification to the target class), (2) keep or

improve the accuracy when processing benign inputs, and (3) improve the accuracy

30

with adversarial samples to avoid untargeted exploits (misclassification to random

classes). These three factors are the metrics used to measure the performance of

ConFoc.

Testing Sets. Experiments are run with two versions of a given testing set: (1)

the given benign version to measure accuracy with benign data and (2) its adversarial

version to measure accuracy with adversarial data and ASR. The adversarial versions

result from adding the trigger to the samples of the given set. The size of the sets

are given as a percentage of the original training set used to create the models.

2.5.2 BadNets Attack

Implementation. We conducted the attack against a traffic sign recognition

model following the steps described in [11]. The model was built on Resnet34 [26]

pre-trained with the Imagenet dataset [51]. The pre-trained model was fine-tuned

using the German Traffic Recognition System Benchmarks (GTRSB) dataset [27].

Dataset. GTRSB is a multi-class single-image dataset that contains 39209 col-

ored training images classified in 43 classes (0 to 42), and 12630 labeled testing images.

The classes are of traffic sign objects such as stop sign, bicycles crossing, and speed

limit 30 km/h. For each physical traffic sign object in the GTRSB training dataset

there are actually 30 images. To avoid leakage of information between the data used

for training and validation, the GTRSB training dataset was split by objects in two

sets: the validation set and the base set. The validation set was formed by taking

10% of the objects (30 images per each) of every class. The other 90% of objects

of each class formed the base set. The base set was further split to form the final

training, trojaning and healing sets as shown in Figure 2.4. The split in this case was

done based on images. For each particular object in the base set 3 out 30 images

were taken for the healing set. Other exclusive 3 images were taken for the trojaning

set (trj), leaving 24 images per object in the remaining set (rem). The trojaning set

is called adversarial when the chosen trigger is added to its samples and the samples

31

Fig. 2.4.: Split of the base set (90% of the GTSRB dataset). adversarial trj comprises

samples in trj with triggers inserted.

are mislabeled to the chosen target class. The training set (trn) comprises both the

remaining and trojaning sets (trn = rem + trj) and is used in the experiments to cre-

ate the original non-trojaned model MO. The adversarial training set, on the other

hand, comprises the remaining, trojaning, and adversarial trojaning sets (adversarial

trn = rem + trj + adversarial trj) and is used to train the trojaned version of MO

referred to as trojaned model MT . Notice that both the healing and trojaning sets are

the same size. This is an experimental design choice made to validate that ConFoc

operates having access to a set of benign samples not greater than the set used by

the adversary to conduct the attack.

Testing set. Ten images per class were randomly chosen out of the 12630 available

testing samples.

Attack strategy. The adversarial samples were generated by inserting a white

square as trigger in the botton right corner of the benign inputs. The size of the

square was chosen to be 10% the size of the smallest between the height and width

dimensions, and located 5% of this value from the borders. Table 2.2, in row and

32

column 2, shows an adversarial sample with the trigger. Each adversarial sample was

labeled with the target class 19, regardless the true class of the samples.

2.5.3 Trojaning Attacks: Square (SQ) and Watermark (WM)

Implementation. For these attacks, ConFoc was tested against two compro-

mised models provided in [13]. The two models correspond to the same pre-trained

face recognition application VGG-Face, infected using two different fine-tuned trig-

gers: square and watermark. As the accuracy of the provided models was relatively

low (< 90%) when tested with the original data in [13], we only consider those classes

with low rate of misclassification for our experiments. The idea was to have an ini-

tial trojaned model MT with high accuracy when processing benign data. To this

end, we randomly selected 40 classes including the taget class (0 or A.J. Buckley).

This experimental design choice does not affect the high ASR and low accuracy with

adversarial samples of the models.

Dataset. The original VGG-Face dataset includes 2622000 images of 2622 classes

(1000 images per class). Currently, no all the images are available and among them

there are a significant amount of mislabeled cases. Namely, cases in which random

images or images of a person A are labeled as person B. For our healing set, we chose

50 out of the available images for each of the selected 40 classes. This represents

5% of the size of the original dataset. To reduce the noise caused by the mislabeled

cases, only images with frontal pose faces were selected. We then manually cleaned

the resulting dataset by removing obvious mislabeled samples. The authors of the

attack [13] used two sets for testing, being one of them extracted from the VGG-Face

dataset. This testing set (referred to by the authors as original dataset) is compound

of one image per class, and was used to measure the accuracy and ASR of the model.

The other testing set was called external dataset and was extracted from the LFW

dataset [56]. The images in this set do not necessarily belog to any of the 2622 classes,

and were used to measure the ASR only. As one of our main goals is to measure the

33

Table 2.3.: Explanation of Acronyms Used in Experiments

Acronym Description

B Set of style base images {bj|j = 1, ..., 8} used in the ConFoc healing

process.

A Set of style base images {aj|j = 1, ..., 2} not used in the ConFoc healing

process such that A ∩B = ∅.

Orig Indicates that the model was evaluated with the original testing set (i.e.,

without transforming the inputs).

∗ Indicates that the model was evaluated with styled versions of the test-

ing set (i.e., inputs are transformed).

MO Original non-trojaned model.

MT Trojaned model.

MH(X) Healed model retrained with the retraining set XR. XR is compound of

the healing set XH only.

MH(X−0) Healed model retrained with the retraining set XR. XR comprises the

healing set XH , and its corresponding content images (via Algorithm

1).

MH(X−k) Healed model retrained with the retraining set XR. XR is formed by

the healing set XH , its content images (via Algorithm 1), and the styled

images generated with the first k style base images in B (via Algorithm

3). E.g., MH(X−3) means the model is retrained with XH , the content

images and the styled images generated with the style bases b1, b2, and

b3 in B.

performance of models with the three metrics listed in Section 3.5.2, we conducted

the experiments with a variation of the original dataset only. This ensured a fair

comparison with results obtained in previous work.

34

Testing set. It is formed by 20 random images per class. Two adversarial versions

of it are used, one for each trigger.

Attack strategy. The two provided models were compromised through the re-

training process covered in Section 2.3.3. Row 2 of Table 2.2 shows examples of two

adversarial samples with the square and watermark triggers in columns 3 and 4 re-

spectively. The provided models classify any image with either trigger to the target

class (0 or A.J. Buckley).

2.5.4 Acronyms Used in Experiments

Table 2.3 lists the acronyms used to refer to the models and data used in the

experiments. It also indicates how to identify the testing set used in the evaluation

of each model.

2.6 Experiments

This section describes the experiments conducted to evaluate ConFoc against tro-

jan attacks. The experiments were designed to answer a series of research questions,

included in each of the following subsections along with our findings.

2.6.1 Robustness When Processing Original Inputs

RQ1. How do the evaluation metrics change as ConFoc is progressively applied

using an incremental number of styles?

We investigate whether the performance of trojaned models (based on the three

metrics described in Section 3.5.2) improve as we increase the number of styles used

in the healing process. We conduct our evaluation against BadNets, Trojaning (SQ),

and Trojaning (WM) using the corresponding original testing sets. Figure 2.5 shows

the results. For each of the attacks, we start with the corresponding trojaned model

MT and proceed as follows. First, MT is evaluated with the original testing samples

35

MOrig
T MOrig

H(x) MOrig
H(x−0) M

Orig
H(x−2) M

Orig
H(x−4) M

Orig
H(x−6) M

Orig
H(x−8)

Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
(B
en

ig
n
an

d
A
dv
. D

at
a)

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
)

Accuracy with benign data
Accuracy with adversarial data
ASR with adversarial data

(a) BadNets

MOrig
T MOrig

H(x) MOrig
H(x−0) M

Orig
H(x−2) M

Orig
H(x−4) M

Orig
H(x−6) M

Orig
H(x−8)

Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
(B
en

ig
n
an

d
A
dv
. D

at
a)

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
)

Accuracy with benign data
Accuracy with adversarial data
ASR with adversarial data

(b) Trojaning (SQ)

MOrig
T MOrig

H(x) MOrig
H(x−0) M

Orig
H(x−2) M

Orig
H(x−4) M

Orig
H(x−6) M

Orig
H(x−8)

Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
(B
en

ig
n
an

d
A
dv
. D

at
a)

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
)

Accuracy with benign data
Accuracy with adversarial data
ASR with adversarial data

(c) Trojaning (WM)

Fig. 2.5.: Metric variations as ConFoc is progressively applied to MT by increasing

the number styles used in the healing process. Resulting healed models (in x-axis) are

evaluated with the original (non-transformed) testing datasets (refer to Table 2.3).

36

to measure the performance of the model before applying ConFoc (MOrig
T in x-axis).

The corresponding points in the plots are marked with a black square to highlight that

these are the initial values of the metrics. Then, MT is taken through the ConFoc

healing process multiple times using incremental retraining sets to measure how the

metrics vary as more styles are used (points MOrig
H(X) to MOrig

H(X−8) in x-axis).

Figures 2.5a, 2.5b, and 2.5c show that the performance improves as ConFoc is

progressively applied. The three metrics tend to converge to the aimed values with

just a few styles (considering the graphs of all the metrics, two styles suffice for all the

cases). For the three attacks, the ASR drops to or close to 0.0%. Simultaneously, the

accuracy with benign data converges to high values that outperform the initial accu-

racy of the trojaned model. This metric has percentage increases of 0.24%, 7.28%,

and 3.63% in the best obtained healed models MH(X−6), MH(X−4), and MH(X−4) for

the attacks BadNets, Trojaning (SQ), and Trojaning (WM) respectively. For the

accuracy with adversarial data, we also obtain a significant increase in these models.

This accuracy increases 88.14%, 94.02%, and 72.66% in the models for the same order

of attacks. An interesting behavior is observed in the case of Trojaning (WM). The

accuracy with adversarial data significantly improves to values above 90% in all the

cases, but always remains lower than the accuracy achieved with benign data. This

phenomenon can be explained by the fact that the watermark overrides the object of

interest (i.e., faces), covering certain key attributes of the faces (e.g., eyes, lips, etc.)

used by models during the classification (a violation to the condition C3 listed in Sec-

tion 2.3.2). As a consequence, some adversarial inputs with the watermark covering

key attributes of the faces cannot be recognized to their true classes after applying

ConFoc because the resulting contents (face shapes plus watermark) are not part of

the content of images present in the healing set XH . Note that a violation to condition

C3 means that attackers assume weak defenders who cannot perceive triggers even

when they cover a significant portion of the input images (a less real-world feasible

scenario from the standpoint of the attacker).

37

Findings. With a few styles (two in our case), ConFoc reduces the ASR to or

close to 0.00%, while ensures that both accuracies converge to close values equal

or above the original accuracy when conditions C1-C4 are satisfied.

2.6.2 Robustness When Processing Transformed Inputs

RQ2. How well do models learn to focus on content and how effective ConFoc is

when processing styled inputs?

Following the methodology of the previous section, we now evaluate how well

healed models learn to focus on the content of images, disregarding their styles. To

this end, models are evaluated using three different styled or transformed versions of

the testing set. One version is generated with the style base image b1 ∈ B, which

is used in the healing process. The other two versions are obtained using the style

base images a1 and a2 in A, which are not used during the healing of the models.

For each attack, we start again with the corresponding trojaned model MT evaluated

with original samples to get the initial values of the metrics before applying ConFoc

(MOrig
T in x-axis). Following, MT is tested using transformed samples to measure

the impact that the input transformation itself has on the performance (M∗
T in x-

axis). Finally, transformed samples are used to test the models healed through an

incremental application of ConFoc (points M∗
H(X) to M∗

H(X−8) in x-axis).

Figure 2.6 shows the results. Each subfigure in it corresponds to one of the metrics

and an attack. For all the metrics, the final performance of the healed models are

nearly the same, regardless the styled version of the testing set used in the evaluation.

The metrics tend to converge to sought values as more styles are used. This is

a consequence of the increasing data augmentation achieved through the addition

of new styles to the ConFoc process. Both accuracies improve because the larger

the retraining set is, the more samples with common content information the model

receives. With the increasing sets, models are fine-tuned with enough samples for

them to extract the contents of the training sample features, which are also present

in the testing samples. Simultaneously, the attack success rate also drops because of

38

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
W

ith
 B

en
ig

n
D

at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(a) BadNets: Accuracy (Benign

Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y
W
ith

 A
dv

. D
at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(b) BadNets: Accuracy (Adver-

sarial Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
) Test samples generated with b1∈B

Test samples generated with a1∈A
Test samples generated with a2∈A

(c) BadNets: ASR (Adversarial

Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
W

ith
 B

en
ig

n
D

at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(d) Trojaning (SQ): Accuracy

(Benign Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y
W
ith

 A
dv

. D
at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(e) Trojaning (SQ): Accuracy

(Adversarial Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
) Test samples generated with b1∈B

Test samples generated with a1∈A
Test samples generated with a2∈A

(f) Trojaning (SQ): ASR (Ad-

versarial Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
W

ith
 B

en
ig

n
D

at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(g) Trojaning (WM): Accuracy

(Benign Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y
W
ith

 A
dv

. D
at
a

Test samples generated with b1∈B
Test samples generated with a1∈A
Test samples generated with a2∈A

(h) Trojaning (WM): Accuracy

(Adversarial Data)

MOrig
T M*

T M*
H(x) M*

H(x ⋅ 0) M*
H(x ⋅ 2) M*

H(x ⋅ 4) M*
H(x ⋅ 6) M*

H(x ⋅ 8)
Models from an Increasing Number of Styles When Healing

0.0

0.2

0.4

0.6

0.8

1.0

A
tta
ck
 S
uc
ce
ss
 R
at
e
(A
S
R
) Test samples generated with b1∈B

Test samples generated with a1∈A
Test samples generated with a2∈A

(i) Trojaning (WM): ASR (Ad-

versarial Data)

Fig. 2.6.: Efficiency of ConFoc on making models focus on content at testing. MT is

healed with an incremental number of styles. Resulting healed models are evaluated

with test sets generated with different style bases: b1 ∈ B, a1 ∈ A, and a2 ∈ A.

this data augmentation. As the retraining set increases, models tend to forget the

trigger because more parameter updates are executed in one epoch of training with

samples not including the trigger. This is an expected behavior based on the findings

of Liu et al. [14], who shows that this metric decreases as more benign data samples

(original version only) are used to fine-tune DNN models.

39

Notice that the transformed testing datasets used in this evaluation are generated

with both styles used and not used in the healing process. Hence, this experiment

shows the effectiveness of ConFoc on making models focus on content and not on

styles during the classification. One interesting observation is that using styled im-

ages without healing the models does not prevent the attacks. The attacks become

ineffective after applying ConFoc with a few styles. Considering all the plots and

metrics in Figure 2.6, four styles suffice.

After ConFoc, the ASR is reduced to or close to 0.0%. In all the attacks, the

accuracies with benign data (regardless the style) achieve high values that outper-

form the initial accuracies of the trojaned model. Using the best resulting healed

models MH(X−6), MH(X−4) and MH(X−4) for the attacks BadNets, Trojaning (SQ),

and Trojaning (WM) respectively, this metric grows 0.47%, 6.71%, and 3.2% when

evaluated with the transformed testing set generated with b1 ∈ B. With respect to

the accuracy with adversarial data, the metric increases 89.30%, 94.41%, and 75.65%

with the same healed models.

Findings. With a few styles (four in our case), ConFoc reduces the ASR to or

close to 0.00%, while ensures both accuracies get values equal or above the original

accuracy regardless the input style when conditions C1-C4 hold.

2.6.3 Effect on Non-Trojaned Models

RQ3. What is the impact of ConFoc on the accuracy (only benign data applies)

of non-trojaned models?

One of the main challenges defending against trojan attacks is the lack of tools to

determine whether a given model has a trojan. Due to this restriction, this section

evaluates the impact ConFoc has on the accuracy of an original non-trojaned model

MO. Our goal is determining whether ConFoc can be applied to any model (whether

infected or not) without impairing its current performance (accuracy with benign

data).

40

MOrig
O M(Orig, *)

H(X) M(Orig, *)
H(X⋅0) M(Orig, *)

H(X⋅2) M(Orig, *)
H(X⋅4) M(Orig, *)

H(X⋅6) M(Orig, *)
H(X⋅8)

Models from an Increasing Number of Styles When Healing

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
w
ith

 b
en

ig
n
da

ta

Original test samples
Test Samples generated with b1∈B
Test Samples generated with a1∈A
Test Samples generated with a1∈A

Fig. 2.7.: Accuracy (benign data) variation of the GTSRB-based non-trojaned model

when ConFoc is progressively applied.

We take the non-trojaned version of the models created with the datasets GTSRB

and VGG-Face through the ConFoc healing process. Figure 2.7 shows the metric vari-

ation of the GTSRB model as styles are added to the healing process. Taking model

MH(X−4) tested with the transformed samples generated with b1 ∈ B as example, the

accuracy improves from 97.91% to 98.37%. We get a similar graph (not included) with

the VGG-Face model. In this case, the best performance is obtained with the model

MH(X−6), with a percentage increase of 0.17%. These results prove that ConFoc does

not affect the accuracy of non-trojaned models. In contrast, the trends of the graphs

shows that it at least remains the same if enough styles are used in the healing process.

Findings. ConFoc can be equally applied to any model (either trojaned or not)

as it does not impair its performance.

41

Table 2.4.: Best Healed Models After Applying ConFoc

Experimental Setup Best Healed Model

Attack DS Model ID No. Styles (Including Content)

BadNets 10% MH(X−6) 7

Trojaning (SQ) 5% MH(X−2) 3

Trojaning (WM) 5% MH(X−4) 5

BadNets 6.6% MH(X−4) 5

Trojaning (SQ) 3.3% MH(X−2) 3

Trojaning (WM) 3.3% MH(X−1) 2

BadNets 3.3% MH(X−4) 5

Trojaning (SQ) 1.67% MH(X−1) 2

Trojaning (WM) 1.67% MH(X−2) 3

2.6.4 Healing Set Size and Number of Styles

RQ4. Does the number of styles required in the ConFoc healing process depend

on the size of the healing set XH?

We investigate the relationship between the number of styles required to success-

fully apply ConFoc and the size of the healing set. This is a key question because

having access to extra training sets is challenging in real-world scenarios. As specified

in Section 3.5, previous experiments are run with healing sets of size 10% and 5% for

the models infected with BandNets and Trojaning Attack respectively.

We now replicate the same experiments progressively decreasing the size of these

sets and selecting the model with the best performance in each case. Table 2.4 shows

that there is no relationship between size of the healing set and the number of styles

needed to apply ConFoc. This can be explained because the combination of some

contents and styles add noise to the resulting retraining set, which make models to

42

not monotonically improve as more styles are added. Whereby, defenders need to

apply the best training practices to fine-tune the models with the generated data so

as to obtain the best possible results.

Findings. There is no relationship between the XH size and the number of styles

needed to successfully apply ConFoc.

2.6.5 Performance and Comparison With the State-of-the-Art

RQ5. How well does ConFoc perform compared to the state-of-the-art and what

overhead it imposes at testing?

Table 2.6 shows the performance of ConFoc and its comparison with the state-

of-art Neural Cleanse [1]. To be complete in our comparison with fine-tuning-based

methods, we also include a comparison with Retraining [14]. The table contains the

accuracies (with both begin and adversarial data) and the ASR after applying the

defensive methods. The first column specifies the attack used for the evaluation. DS

refers to the size of the healing set. The initial values of the trojaned models (before

applying any method) are included in Table 2.5.

In Table 2.6, columns below ConFoc (Original Inputs) and ConFoc (Transformed

Inputs) summarize the performance of our method using the best healed models

(specified in Table 2.4) for different sizes of the healing set. As the names indicate, we

tested ConFoc with both original and transformed inputs. The other two techniques

(Retraining and Neural Cleanse) were evaluated with original inputs as the methods

require. With Retraining, we fine-tuned the model using the original healing set for

multiple epochs and selected the best resulting model. In the case of Neural Cleanse,

we proceeded exactly as indicated by the authors in [1]. We added the reversed-

engineered triggers to 20% of the samples in the healing set and retrained the model

for one epoch. The reversed-engineered triggers are provided by the authors in [57].

During the execution of this method, only the trigger related to Trojaning (WM)

worked as expected. Whereby, we ran the Neural Cleanse method against BadNets

43

Table 2.5.: Initial Metrics of Trojaned Models

Attack Acc (Ben) Acc (Adv) ASR

BadNets 96.98% 8.37% 93.81%

Trojaning (SQ) 91.15% 2.73% 99.73%

Trojaning (WM) 93.36% 18.62% 81.18%

and Trojaning (SQ) with the actual triggers used to conduct the attacks. This action

does affect the performance of Neural Cleanse. In contrast, it represents the ideal

scenario in which triggers are perfectly reverse-engineered and the produced corrected

models provide the best possible results.

As shown in the Table 2.6, all the defensive methods produce high accuracy with

benign data regardless the size of the healing set. In most cases, this metric is superior

to the initial value of the trojaned model (see to Table 2.5). The main differences

between the methods are observed in the accuracy with adversarial data (highlighted

in light grey for all the methods) and the ASR. ConFoc (with both original and

transformed inputs) constantly gets high values in these two metrics, while the other

methods produce values below 90% for the former and above 1% for the latter as the

healing set decreases. These cases are marked in red in the table.

With respect to the accuracy with adversarial data, Retraining, as expected, tends

to produce models with lower values in this metric as the healing sets become smaller

in all the attacks [14]. Neural Cleanse produces models that perform well against both

Trojaning Attacks and unwell against BadNets regardless the size of the healing set.

This is because Neural Cleanse relies on updating the model parameters for one epoch

only, which does not suffice to remove the learned trigger-related features. BadNets

is conducted via poisoning, which means that the parameters of all model layers are

adjusted during training. Whereby, to remove the effect of triggers, larger datasets or

more epochs are required [14]. Trojaning Attack, in contrast, is a retraining technique

44

that fine-tunes the last layers of the models (i.e., it changes less parameters) while

inserting the trojan (see Section 2.3.3). Hence, one epoch is enough to remove the

trigger effect.

At this point, it is important to highlight that due to the violation of the condition

C3 as explained Section 3.6.1, ConFoc produces models with lower values in the

accuracy with adversarial data than those obtained with benign data in the case of

Trojaning Attack (WM) (see dark grey cells in the table). These values, however are

constantly above 90% and do not tend to decrease with the sizes of the healing set.

ConFoc Overhead. There is no clear advantage (with respect to the metrics)

on using either original or transformed inputs with ConFoc. However, there is a

difference in the overhead caused at testing time. Transforming the inputs with Al-

goritm 3 directly imposes an 10-run average overhead of 3.14 s with 10 iterations of

the optimizer LGBFS [54] over a Titan XP GPU. We reduce this runtime overhead to

values around 0.015 s by applying the principles of Algorithm 1 and Algorithm 3 to

train image transformation neural networks offline for each chosen style as proposed

in [58]. This implementation is included in our prototype [25]. ConFoc does not

impose any overhead at testing if original inputs are used.

Findings. ConFoc outperforms the state-of-the-art method regardless the size of

the healing set, without imposing any overhead when original inputs are used in

the evaluation.

2.6.6 Robustness Against Adaptive and Complex Triggers

RQ6. How effective is ConFoc protecting DNN models when adaptive and com-

plex triggers are used?

This section evaluates ConFoc against trojan attacks conducted with complex

triggers. We conduct the attacks with BadNets because this approach extracts trigger-

related features in all the layers of the model, making it more difficult to eliminate.

The idea is to test of ConFoc in the most complex scenarios. We make sure that the

45

T
ab

le
2.

6.
:

M
et

ri
cs

of
C

or
re

ct
ed

M
o
d
el

s
A

ft
er

A
p
p
ly

in
g

C
on

F
o
c

an
d

O
th

er
S
ta

te
-o

f-
th

e-
A

rt
M

o
d
el

H
ar

d
en

in
g

T
ec

h
n
iq

u
es

E
x
p

er
im

en
ta

l
S
et

u
p

C
on

F
o
c

(O
ri

gi
n
al

In
p
u
ts

)
C

on
F

o
c

(T
ra

n
sf

or
m

ed
In

p
u
ts

)
R

et
ra

in
in

g
(H

ea
li
n
g

S
et

O
n
ly

)
N

eu
ra

l
C

le
an

se

A
tt

ac
k

D
S

A
cc

(B
en

)
A

cc
(A

d
v
)

A
S
R

A
cc

(B
en

)
A

cc
(A

d
v
)

A
S
R

A
cc

(B
en

)
A

cc
(A

d
v
)

A
S
R

A
cc

(B
en

)
A

cc
(A

d
v
)

A
S
R

B
ad

N
et

s
10

.0
%

97
.2

1%
96

.5
1%

0.
00

%
97

.4
4%

97
.6

7%
0.

00
%

96
.9

8%
96

.5
1%

0.
00

%
97

.2
1%

65
.3

5%
0.

00
%

T
ro

ja
n
in

g
(S

Q
)

5.
0%

97
.7

9%
96

.7
5%

0.
53

%
97

.2
7%

97
.1

4%
0.

27
%

97
.4

0%
92

.4
5%

0.
94

%
97

.5
3%

97
.2

7%
0.

27
%

T
ro

ja
n
in

g
(W

M
)

5.
0%

96
.7

5%
91

.2
8%

0.
80

%
96

.3
5%

94
.2

7%
0.

53
%

97
.7

9%
90

.1
0%

0.
40

%
96

.8
8%

93
.3

6%
0.

27
%

B
ad

N
et

s
6.

66
%

97
.2

1%
96

.9
8%

0.
00

%
97

.2
1%

97
.2

1%
0.

00
%

96
.2

8%
94

.4
2%

0.
00

%
97

.2
1%

54
.4

2%
0.

00
%

T
ro

ja
n
in

g
(S

Q
)

3.
33

%
97

.4
0%

97
.2

7%
0.

53
%

96
.7

5%
97

.1
4%

0.
66

%
98

.3
1%

82
.6

8%
0.

16
%

97
.5

3%
97

.7
9%

0.
13

%

T
ro

ja
n
in

g
(W

M
)

3.
33

%
96

.8
8%

92
.3

2%
0.

13
%

96
.0

9%
91

.6
7%

0.
27

%
98

.0
5%

92
.1

9%
1.

73
%

97
.0

1%
92

.4
5%

0.
00

%

B
ad

N
et

s
3.

33
%

96
.0

5%
96

.0
5%

0.
00

%
97

.2
1%

97
.2

1%
0.

00
%

95
.1

2%
96

.0
5%

0.
00

%
97

.2
1%

,
58

.8
4%

3.
33

%

T
ro

ja
n
in

g
(S

Q
)

1.
67

%
98

.0
5%

96
.0

9%
0.

67
%

96
.3

5%
96

.8
8%

0.
27

%
98

.0
5%

82
.9

4%
0.

16
%

96
.6

1%
96

.0
9%

0.
00

%

T
ro

ja
n
in

g
(W

M
)

1.
67

%
97

.2
7%

91
.1

5%
0.

13
%

95
.9

6%
92

.8
4%

0.
27

%
97

.6
6%

83
.7

2%
9.

08
%

96
.4

8%
89

.5
8%

1.
34

%

46

attacks comply with the conditions C1-C4 specified in Section 2.3.2. The complex

triggers are described below using as reference the trigger (referred here to as original)

and data split presented in Section 2.5.2 (see Figure 2.4). In the description, the sizes

of the triggers correspond to a percentage of the larger side of the inputs.

• Adaptive. We assume an adaptive attacker knowledgeable about ConFoc

who seek to mitigate the healing procedure by infecting the model with styled

adversarial samples. The original trigger is added to the samples in the trojan

set (trj). These samples are then transformed via ConFoc using the base b1 ∈ B,

which is used in the healing process enacting so the best scenario for the attacker.

The target class is 19.

• Larger. A white square of size is 15% (rather than the 10% size of original)

located in the botton-right corner of the image. The target class is 19.

• Random Pixel. A square of size 10% located in botton-right corner of the

image, whose pixel values are randomly chosen. The target class is 19.

• Multiple Marks. A trigger consisting of four marks: (1) the original white

square in the botton-right corner, (2) the random pixel square described above

located in the botton-left corner, (3) a white circle (circumscribed by a square

of size 15%) located in top-left corner, and (4) the same circle but filled with

random pixels located in the top-right corner. The target class is 19.

• Many-to-One. Each of the multiple marks described above are added indi-

vidually to the samples in the torjan set (trj). Namely, we create four trojan

sets, each with one of the marks. The target class assigned to all the resulting

adversarial samples in these sets is 19.

• Many-to-Many. In this case we assign a different target class to each of

trojan sets described above. The assignment is as follows: (1) botton-right

mark targets class 19, (2) botton-left mark targets class 20, (3) top-right mark

targets class 21, and (4) top-left mark targets class 22.

47

Table 2.7.: Performance With Adaptive/Complex Triggers

Before ConFoc After ConFoc

Trigger Acc (Ben) Acc (Adv) ASR Acc (Ben) Acc (Adv) ASR

Adaptive 98.14% 2.33% 100.0% 98.14% 97.91% 0.00%

Larger 97.67% 2.56% 99.76% 97.67% 97.91% 0.00%

Random Pixel 97.91% 2.33% 100.0% 98.14% 97.44% 0.00%

Multiple Marks 97.44% 2.33% 100.0% 97.67% 97.91% 0.00%

Many-to-One 96.51% 20.93% 80.48% 97.44% 97.21% 0.00%

Many-to-Many 97.91% 21.63% 80.00% 97.91% 98.14% 0.00%

Table 2.7 shows the metric of the trojaned models before and after applying

ConFoc. Results show that ConFoc effectively reduces the ASR to the minimum

while ensures both accuracies remain close or better than the initial values.

Findings. ConFoc effectively eliminate trojans on DNNs compromised with com-

plex triggers, while ensures accuracy values that in average either equal or outper-

form the initial values of the model when conditions C1-C4 are satisfied.

2.7 Conclusions and Future Work

We present a generic model hardening technique called ConFoc to protect DNNs

against trojan attacks. ConFoc takes as input an infected model and produces a

healed version of it. These models are healed by fine-tuning them with a small dataset

of benign inputs augmented with styles extracted from a few random images. We run

experiments on different models and datasets, infected with a variety of triggers by two

different trojan attacks: BadNets and Trojaning Attack. Results show that ConFoc

increasingly reduces the sensitivity of trojaned models to triggers as more styles are

used in the healing process. We proved that our method can be equally applied to any

model (trojaned or not) since it does not impact the initial accuracy of the model. In

48

comparison with the state-of-the-art, we validate that ConFoc consistently correct

infected models, regardless the dataset, architecture or attack variation. Our results

leads us to new research questions related to the internal behavior of models. Future

work will aim to investigate which neurons relate to the content of inputs. This

information will be used to devise a novel white-box approach to detect misbehaviors

based on the activation of these neurons.

49

3. HUNTING FOR INSIDER THREATS USING

LSTM-BASED ANOMALY DETECTION

3.1 Introduction

A demanding challenge for security systems is to successfully defend against insider

threats because insiders are in possession of credentials, have (some) knowledge of

the system operation, and are implicitly trusted as members of the organization [59].

They are also located inside the security perimeter, allowing them to unsuspiciously

deploy attacks such as data exfiltration, tampering with data, and deletion of critical

data [60,61]. They commonly use sophisticated strategies to avoid detection like those

in multistage persistent threats [62] and mimicry attack [63–65]. Namely, insiders mix

malicious event sequences with benign actions to exploit the incapacity of defensive

systems to discern event sequences after certain length, which is referred to as the

order-aware recognition (OAR) problem [66]. Existing enterprise protection systems

endeavor to counter this increased sophistication in insider evasion attacks through

the application of anomaly detection methods based on advanced machine learning.

Machines in customer companies run Endpoint Detection and Response (EDR) agents

that generate high volumes of system events that are examined through centralized

analytics modules running at the security-provider company. The ultimate goal is to

detect stealthy threats, including zero-day exploits, by analyzing patterns and rela-

tionships of the aggregated data collected from these multiple endpoints at runtime.

In current enterprise solutions, many of the collected malicious events are correctly

classified as alerts. However, others are ignored and considered benign events despite

being part of the attacks that span for a long period of time. These undetected

malicious events are usually related to those detected and identified as alerts, but

they are missed because of the lack of optimal solutions able to find the existing

50

relationships among distant events in a sequence. This brings the need for precise

system behavior modeling capable of capturing long-range relationships (i.e., long

term dependencies) in multiple context for event sequence analysis and detection of

anomalies at runtime [67].

The paradigm of anomaly detection [66, 68–74] involves the construction of pat-

terns of normal behavior of systems and deems as anomalous (or possible intrusion)

any action that does not conform to the learned patterns [16, 75]. Prior research

work have been devoted to investigate and develop anomaly detection systems using

sequence analysis strategies. Some of these detection techniques are based on n-

gram [75–77] and others on Hidden Markov Model (HMM) [67,75,78–82]. In general,

these techniques learn observed patterns in a training phase and identify as anomalous

event sequences that deviate from them during testing. In particular, HMM-based

methods estimate the likelihood of events conditioned on some number of previous

events (e.g., after observing n− 1 previous events). This allows determining not only

whether a sequence of certain length (i.e., n in this case) is feasible to occur, but

also how likely it occurs in normal (non-attack) conditions. However, Yao et al. [66]

presented a comprehensive analysis of these techniques and showed they are incapable

to discern the order of events in long sequences due to the OAR problem, restricting

the length n of the analyzed sequences to small values.

In this paper, we present a LSTM-based anomaly detection framework that col-

lects and analyzes high volumes of system events from multiple distributed EDR

agents to protect against insider threats at runtime. We refer to the framework

as LADOHD (LSTM-based Anomaly Detector Over High-dimensional Data) due to

the high feature dimensionality of the produced events. LADOHD tackles the OAR

problem by leveraging the event relationship information extracted from different

endpoints as well as the properties ingrained to LSTMs and its variants [17,83], such

as memory, short and long term dependencies, stateful representation, and capacity

to process variable length sequences [84, 85]. We hypothesize that these properties

give these models the ability to detect variable-length anomalous sequences and the

51

potential to recognize attacks deployed by insiders that span for a long time. Specif-

ically, our LSTM-based technique answers the anomaly detection problem of given

a sequence of events e1, e2, . . . , en−1, whether or not the sequence e1, e2, . . . , en−1, en

should occur. Our technique operates with variable values of n and detects non-

conforming patterns with respect to the learned models by analyzing the event se-

quences formed by system activities. Each possible system activity is enumerated

and uniquely identified to form the vocabulary of system events. At any time t, our

detector computes the probability of each possible event to be the next one given the

previous sequence of events observed until time t-1. The detection is then made by

analyzing the distribution of these probability values.

The obtained results include quantitative measurements of the detection capac-

ity of the proposed technique tested over a dataset of 38.9 million activity events.

These events were collected from multiple security endpoints running on more than

30 machines for 28 days. It is shown through different experiments that our frame-

work successfully achieve detection with a TPR and a FPR of 97.29% and 0.38%

respectively. Below, our research contributions:

• We implement a prototype [86] tested with a dataset of 38.9 million activity

events collected from an enterprise EDR system. The attack detection capacity

of our method is compared with the EDR of same company. Results show that

our method achieves an increase in the detection rate of while keeping an FPR

< 0.5%.

• A novel approach to define the vocabulary of events for the data collected from

multiple enterprise EDR agents is introduced. Event features are carefully an-

alyzed and selected so that long-term dependencies among the different events

are successfully learned.

• We measure how far LSTM-based models look backward to rank probable events

in each timestep of a sequence. We demonstrate that LSTMs have a better

52

capacity than alternative methods (e.g., HMM-based methods) to solve the

OAR problem.

• To the best of our knowledge, we are the first presenting a comprehensive anal-

ysis of the strengths, limitations and applicability of LSTM-based models to

counter insider threats through the detection of anomalies in real-word scenar-

ios.

3.2 Overview and Threat Model

3.2.1 Overview

LADOHD builds LSTM-based behavioral profiles of applications using the system

event sequences collected from multiple endpoints running a renowned EDR agent. Its

goal is to detect anomalous or non-conforming execution patterns at runtime in two

phases. First, a training or observation phase, in which the profile of a selected ap-

plication is built by learning the relationships among events in patterns or sequences

observed when the application runs in normal (non-attack) conditions. Second, a

testing or evaluation phase, in which the learned model is used to estimate the prob-

ability of each possible event to be the next event in a sequence given the sequence of

previous events. In the latter phase, low probable events are classified as anomalous.

Like some previous LSTM-related work [87–92], We assume that the generated

event sequences follow a well-structured pattern (e.g. execution path of programs)

with a consistent relationship among events. Consequently, the resulting sequences

are thought as an structured language that can be analyzed using LSTM-based models

as it has been done via Natural Language Processing (NLP) to solve problems such

as language modeling (i.e., prediction of the next word in a text) [93, 94].

LADOHD requires the definition of a finite set of possible symbols E = {1, 2, ..., N},

which corresponds to all the possible events related to the application of interest that

are considered in the detection process (hereafter, we will refer to this set as vo-

53

cabulary of events). At training, LADOHD extracts all the subsequences containing

the events in E from the set of event sequences S = {s1, s2, ...sN} generated by N

endpoints. These subsequences are used to train the LSTM-Based model.

The definition of the vocabulary of events E is crucial because there is a trade-off

between the granularity of the events and the number of unseen events that appear

it the evaluation or testing phase. For our experiments, we defined E in such a way

that most of the events observed at training are also observed at testing, reducing

the number of unseen events during the evaluation phase. Section 3.4 includes the

details of our definition.

During the evaluation phase, given a previous sequence of events until timestep

t − 1 e1, e2, ..., et−1 (ei ∈ E), the trained model outputs an array of probabilities of

length |E|, representing the probabilistic estimation of each event in E to be the next

event at timestep t. For the detection, LADOHD uses this output and finds the set K

of the top k most likely events to occur at time t. When an event et ∈ E is observed

at time t, it is considered benign if et ∈ K, anomalous otherwise.

For any sequence s = e1e2...et−1, our framework computes the probabilities of

possible events next in the sequence P (ei|e1:i−1) for i = 1, 2, ... This versatile approach

allows not only validating each event at runtime, but also estimating the probability

the entire sequence s by applying the chain rule as shown in Equation 3.1.

P (s) =
t∏
i=2

P (ei|e1:i−1) (3.1)

LADOHD operates with system events collected from multiple monitored machines.

The EDR agent running in these machines generates an event for every activity con-

ducted by a specified process (whether malicious or not). Each event includes a

comprehensive set of information about the actor (process executing the action), de-

tailed description of the action, and information about the target (object over which

the action is executed). The pieces of information considered during the monitoring

process and their interpretation define the vocabulary of events and its granularity.

For example, consider the scenario where a “process A (actor) connects (action) to

54

specific IPv4 address X.X.X.X (target).” This event might be defined as “A connects

X.X.X.X”, where X.X.X.X represents any possible IPv4 address, producing a vocabu-

lary with high granularity. The same event, however, might be defined as “A connects

X”, with X being either 0 or 1 to represent whether the IPv4 address is internal or

external respectively. In the latter case, due to the low granularity, the vocabulary

size is significantly reduced.

3.2.2 Threat Model

We consider an insider threat who launches a multistage advance persistent attack.

The insider is assumed knowledgeable in computer security and is initially assigned

non-administrative privileges in a local machine. The goal of the attacker is stealing

information by executing multiple steps, including a user escalation followed by a

data exfiltration phase. The insider initially exploits already installed applications

such as Powershell and runs malicious scripts to establish remote connections to send

the stolen data.

3.3 Background and Related Work

3.3.1 LSTM Networks

LSTMs are a type of recurrent neural network (RNN) able to learn long-term

dependencies (i.e., relationships between elements in distant positions of a sequence)

[95]. They achieve this goal through a complex memory structure in the LSTM cell

not included in traditional RNN cells. Figure 3.1 shows this structure. The matrices

and vectors Wx, Ux, and bx (with x ∈ {f, i, c, o}) in Figure 3.1b are the parameters

θ of a LSTM [95]. Their interaction is shown in Figure 3.1a. Like traditional RNNs,

LSTMs process each input at time t along with the output of the previous timestep

(ht−1). In addition, they include a unit called cell state (C) that carries on information

of the entire sequence. LSTMs adds to or removes minor pieces of information from C

55

tanhσσ σ

tanh

Elementwise operation

Neural network layerxt

ht-1

Ct-1 Ct

ht

ft it ot
ct
~

(a) LSTM Cell

it = σ(Wi · xt + Ui · ht−1 + bi)

ft = σ(Wf · xt + Uf · ht−1 + bf)

ot = σ(Wo · xt + Uo · ht−1 + bo)

c̃t = tanh(Wc · xt + Uc · ht−1 + bc)

Ct = ft � Ct−1 + it � c̃t

ht = ot � tanh(Ct)

(b) Operations in the LSTM Cell

Fig. 3.1.: Architecture of a LSTM cell. Figure 3.1a shows the internal connections

of the different components and the output of the internal operations of the cell.

Figure 3.1b shows the details of these operations performed over the current input

and previous hidden state to compute the current output.

56

through the operations in the forget (ft) and input (it) gates. The new C represents

the event history used to compute the output ht by filtering C out with the output gate

ot. This architecture gives LSTMs the capacity to relate current events with distant

past events in a sequence, making them suitable to detect anomalies produced by

insider threat activities.

LSTMs can be implemented as multi-class classifiers that map a m-dimensional

input symbol x ∈ Rm into one of n classes (each class corresponding to one of the the

possible events). The output of a LSTM (with a sofmax [96] layer at the end) is a

n-dimensional tensor y ∈ Rn, which represents the probability distribution of the n

classes. Namely, the element yi of the output y represents the probability that input

x corresponds to the class i. To operate as a sequential multi-class classifier, LSTMs

are trained using backpropagation [35] with a set of pairs (x, y), where x is an input

sequence of classes and y the expected next class of the sequence x. The training

pair (x, y) is customized to control the timestep windows (w) used to update the

parameters θ. For example, given a input sequence x = x1, x2, ..., xt−1, the network

can be trained to predict either the element xt (w = t − 1) or each of the elements

x2, ..., xt−1, xt (w = 1). When w = 1 (our case as described in Section 3.4.4), the

LSTM outputs the probability P (xt|x1:t−1) at each timestep t, which allows classifying

low probable events as anomalous regardless the length of the previous sequence.

3.3.2 Order-Aware Recognition (OAR) Problem

The OAR problem is an anomaly detection problem that refers to the incapacity

of distinguishing sequences after certain length [66]. Given a ordered sequence of

events abcba the corresponding set of 2-tuple adjacent events is {ab, bc, cb, ba}.

The same set results from these other two ordered sequences cbabc and bcbab. As

the 2-tuple adjacent event set is the same for these three ordered sequences of the

example, methods able to analyze sequences of length 2 or less cannot discern among

these ordered sequences. This can be better observed if the 3-tuple adjacent events

57

of the sequences abcba, cbabc and bcbab are considered, which respectively are {abc,

bcb, cba}, {cba, bab, abc} and {bcb, cba, bab}. Clearly, in this case methods able to

analyze sequences of length 3 can distinguish the three ordered sequences abcba, cbabc

and bcbab as the resulting sets are different. We investigate how feasible and until

what extend LSTM-based models can solve the OAR problem. This is an unsolved

question and one of our main contributions.

3.3.3 Endpoint Detection and Response

Endpoint Detection and Response (EDR) systems work by monitoring endpoint

and network activity and storing the corresponding logs in a central database where

further analysis and alerting takes place. An EDR agent is installed in each of the

protected endpoints, acting as the first line of defense against attacks and providing

the foundation for event monitoring and reporting across the network. EDR systems

evolved from malware protection solutions, as software vendors added data collection

and exploration capabilities, thanks to the increasing computing and storage capacity

of the hosts where the agents run. The present challenge for EDR systems is to

significantly increase its detection capabilities from the vast amounts of data collected,

especially for attacks that are recorded as long sequences like those deployed by insider

threats.

3.3.4 Anomaly Detection Based on Sequence Analysis Using Non-LSTM

approaches

The methods presented in this section proposed sequence analysis as an anomaly

detection mechanism to detect control-flow violations.The methods build behavioral

models based on n-gram and n-order HMM to detect unseen or low probable patterns.

Anomaly detection methods based on n-gram [76, 77] work by enumerating all

observed sequences of length n (n-grams) to subsequently monitor for unknown pat-

terns. The scalability problem of these methods (impossibility of listing all possible

58

sequences and high false positive rate) is described by Warrender et al. [75], who

proposed an alternative frequency based method. In this new method each n-gram is

assigned a probability to form a histogram vector corresponding to a point in a mul-

tidimensional space. At evaluation time, the similarity of a new sequence of length

n (represented as a vector) with respect to the observed points is estimated to deter-

mine whether the sequence is anomalous. Despite its improvement in scalability, this

approach and the previous enumerating based method were proved to be effective for

small value of n only (e.g., 3–15), making them not convenient for the detection of

attacks consisting of long sequences [66].

Other previous work [67, 78, 79] focused on the application of n-order HMM to

probabilistically determine how feasible a sequence of system events is. In [78], a

comparison of different hidden states configuration of first-order HMM (n = 1) for

anomaly detection is presented. It was found that both configurations full connected

HMM (i.e., number of hidden states equal to the number of all possible events), and

a left-to-right HMM (i.e., number of hidden states corresponds to the length of the

training sequences) provide similar results differing mainly in the required training

time. Results, although, show the efficiency of both configurations is significantly

low having in some cases a TPR of only 55.6%. The other two HMM based meth-

ods [67, 79] use a first-order full connected HMM to detect anomalous sequences of

system or library calls. These methods are similar to the one described in [78], with

the addition of a new HMM initialization approach for the transition, emission and

initial probabilities. The information for the initialization is extracted through static

analysis of the programs. With this strategy, the results show a significant improve-

ment in the TPR. All the described HMM based methods [67, 78, 79] applied the

dynamic programming algorithm Viterbi [97] for inference. The time complexity of

this algorithm is O(|S|2), with S being the set of hidden states [98]. As the lengths

of the sequences to be processed by these methods depend on the number of states

used in the configuration, this scalability issue restricts these methods to operate over

short event sequences only.

59

3.3.5 Anomaly Detection Based on Sequence Analysis Using LSTM

Some research work hava endeavored to investigate the application of LSTM-based

models to anomaly detection and similar security problems [89–92]. In essence, these

approaches work based on the same assumptions described in Section 3.2.1. Although

this prior work proved the efficiency of LSTMs to accurately estimate the likelihood

of a given event sequence, their ability to solve the order-aware recognition problem

and their potential against modern evasion attacks seems not to have received much

attention.

Kim et al. [89] present an ensemble method of LSTM models followed by threshold-

based classifiers for intrusion detection in flows of system calls. The resulting ensemble

is trained in a supervised manner (with both benign and malicious sequences) to

classify sequences as either normal or anomalous. Obtained results are compared

with other classifiers such as k-nearest neighbor (kNN) and k-means clustering (kMC).

Details of neither the impact of sequence lengths nor properties of LSTM models on

the detection process are included.

In [90] a multi-level approach for anomaly detection in Industrial Control Systems

(ICS) is proposed. It consists of a bloom filter to discard events not seen during the

training phase followed by a LSTM layer to detect unexpected events. An event is

considered unexpected or anomalous if its probability is not among the top-k output

probabilities of the model (k being an adjustable parameter). The LSTM layer of the

detector is trained with non-malicious data only. Results of the two layers combined

are reported without further analysis about the LSTM model itself and its impact on

the efficiency of the detector.

Du et al. [91] developed Deeplog, a technique to find anomalies using information

available in system logs. To that end, a LSTM model is trained using a small portion

of the non-malicious data to determine the next action to occur given a previous

sequence of actions. Actions are conducted using different parameter values in each

occurrence (e.g. files, execution time, etc.). For each identified action, a different

60

T
ab

le
3.

1.
:

C
om

p
ar

is
on

W
it

h
E

x
is

ti
n
g

L
S
T

M
-b

as
ed

S
ec

u
ri

ty
S
ol

u
ti

on
s

R
es

ea
rc

h
A

n
om

al
y

D
et

ec
ti

on
B

en
ig

n
D

at
a

O
n

ly
L

S
T

M
O

n
ly

B
as

ic
A

n
al

y
si

s
E

x
te

n
d

ed
A

n
al

y
si

s

S
y
st

em
C

al
l

L
an

gu
ag

e
M

o
d

el
in

g
[8

9]
7

7
7

7
7

M
u

lt
i-

le
ve

l
D

et
ec

to
r

(F
or

IC
S

)
[9

0]
3

3
7

7
7

D
ee

p
lo

g
[9

1]
3

3
3

7
7

T
ir

es
ia

s
[9

2]
7

7
3

3
7

L
A

D
O

H
D

[t
h

is
w

or
k
]

3
3

3
7

3

61

LSTM model is trained using the sequence of observed parameter values. The goal

is using these multiple models for not only determining the set of expected actions

to occur, but also validating the probability of the parameter value used in that

action. The model for prediction of actions is trained using a sliding length window

h. Namely, given a sequence of h actions, the model predicts the h + 1 action. The

window moves forward one step at at time during training. At testing, the probability

of each sliding h + 1 action in the tested sequence is estimated. The sequence is

considered anomalous if there exists at least one action in it whose probability is not

among the top-k most likely output probabilities of the model. The experiments were

conducted with small values of h (e.g. 10), and were not focused on determining the

limits of LSTM models with respect to the length of the sequences.

A more recent work, called TIRESIAS [92], uses LSTM-based models for attack

intend prediction. That is, the technique predicts the next step in an attack given the

previous sequence steps. The dataset used in this research comprises events generated

by security agents installed in thousands of machines. The sequences generated by

80% of the machines are used for training while the other 20% for validation and

testing purposes. The experiments show the capacity of the model to predict the

last event of a given sequence only. Although no detection of attacks or malicious

sequences are included in this work, interesting results are presented with respect to

the behavior of LSTM models, which is one of the main objectives of this paper.

Table 3.1 presents a summary of the focus and details found in the prior work dis-

cussed above [89–92] for comparison purposes with our research. Column Anomaly

Detection indicates whether the developed technique is an anomaly detection ap-

proach, column Benign Data Only whether the used model is trained with benign

data only, column LSTM Only specifies whether the solution is based on LSTM mod-

els only or integrates other algorithms in it, and finally columns Basic Analysis and

Extended Analysis indicate whether the research study includes an initial or a more

comprehensive study respectively about the detection performance and limitations of

LSTM-based models with respect to the length of processed sequences. As shown in

62

Filter

Vocabulary of events

M1

M2

MN
- Features Selection:

 actor, action, target, ...

- Define set E = {1,..,|E|}

 of possible events

Data Selection

N sequences

s1=e1, e2,.., ek

s2=e1, e2,.., ep

sN=e1, e2,.., er

- ei: Activity events

- k, p and r might be different
LSTM-Based Model

Model Generation

Data Splitter
By machine:

 - Trn: 0.8 M

 - Val: 0.2 M

By time:

 - Trn: 0.8 seq length

 - Val: 0.2 seq length

Process M out of N

sequences (M<N)

Training Process

M subsequences

Trained LSTN-

Based Model

SECTION 4.1 SECTION 4.2 SECTION 4.3

s*
1,.., s*

M

Data Generation Anomaly Detector

e1 e2 e3 ... et-1 et

[p1, p2, p3, ... p|E|]

Testing sequence witn ei ϵ E

Prob. of events in E

Form set K with the

events in E with the

top-k probabilities

SECTION 4.4

et ϵ K ?

yes

no

Benign

Anoma-
lous

1

2

3

4

Fig. 3.2.: Components of our anomaly detection framework LADOHD to counter

insider threats: (1) data generation, (2) data selection, (3) model generation, and (4)

anomaly detector. Below each component, there is a reference to the section providing

a detailed explanation about its operation.

the table, our work introduces a LSTM-based anomaly detection mechanism trained

with benign data only. No additional algorithms are used for the detection and a full

analysis of the properties and limitations of the model is presented.

3.4 Design

Figure 3.2 shows LADOHD and its workflow for the detection of anomalies. The

framework involves four components. First, a data generation phase, in which N ma-

chines running an EDR agent generate activity event sequences s1, s2, ..., sN that are

collected in a centralized database. Second, a data selection step that extracts from

the collected sequences the events related to the application of interest and form the

subsequences (s∗1, s
∗
2, ..., s

∗
M). Third, a model generation phase that uses the selected

subsequences to form the training and validation datasets used to train the LSTM-

based model. Finally, the anomaly detector component that deploys the trained

model to determine whether the events of a given testing sequence are anomalous.

63

Table 3.2.: Description of the Different Types of Events

ID Event type Actor Target No. Actions

0 Session User N/A 3

1 Process Process Process 5

2 Module Process Module (e.g. dll files) 3

3 File Process File 12

4 Directory Process Directory 14

5 Registry key Process Windows registry key 7

6 Registry value Process Windows registry value 4

7 Host Network Process IP address 3

3.4.1 Data Generation

A machine Mi runs an enterprise EDR agent that records activity events as they

occur in the system. These events form a corresponding event sequence referred

to as si. A group of N monitored machines generate the set of event sequences

S = {s1, s2, sN}, which is pre-processed and used as time-series data to train the final

LSTM-based model.

An activity event ei in the sequences can be thought as a m-dimensional vector

of features {f 1
i , f

2
i , ..., f

m
i }, where f ji represents a categorical or continuous piece of

information of the reported activity. One of these features is event type. The EDR

product generates eight event types and each has a specific set of features (including

the event type itself). Namely, the number of features m varies per event type. Some

features such as event type, actor, action and target are common in all the activity

events (regardless their types) as they define a complete semantic for any given event

ei: “this is an event of this type in which this actor executes this action over this

target.” Table 3.2 summarizes the different types of events generated by the EDR

software and the features actor, target, and action related to each type. There is a

64

set of specific actions available to each event type. The complete list is not included

per the request of the company owning the security product. An example of an

event ei and its interpretation considering the four common features listed above is as

follows. The process svchost is an integral part of Windows OS that manages system

services running from Dynamic Link Libraries (DLL). Its purpose is to speed up the

startup process by loading the required services specified in the service portion of the

registry. When a DLL file is loaded by svchost, an event of type Module is generated.

The actor of the generated event is svchost, while load (predefined in the product) is

the action taken over the target DLL file.

3.4.2 Data Selection

LADOHD requires the definition of a finite set of categorical events (or symbols)

E, which represents the set of all possible system activity events analyzed by the

LSTM-based model. This set is referred to as the vocabulary of events.

Vocabulary of Events Definition. It can be thought as a transformation

function FT (·) that changes the event feature vector generated by the EDR agent.

Given an event ei = {f 1
i , f

2
i , ..., f

m
i } of type f ti = f

j∈{1,2,...,m}
i and a set F of k ≤ m

selected features for events of type f ti , the feature transformation is given by:

FT (ei, F) =

e
∗
i = {t1i , t2i , ..., tki } if F ⊆ ei

∅ otherwise

(3.2)

In Equation 3.2, e∗i is the transformed version of the event ei. Each transformed fea-

ture t
j∈{1,2,...,k}
i correspond to one of the k selected features in F . The transformation

of each feature is a design choice that controls the granularity and the total number

of possible events (i.e., vocabulary size). This is illustrated in Table 3.3 with the

feature target, whose final value can be of either low or high granularity. Rows 1 and

2 are two Module events in which the same process loads two different DLL files. As-

suming f ti (t ∈ {1, 2, ..., k}) were the target-related feature of these Module events, f ti

might correspond to either the frequency of the DLL file in the distribution observed

65

T
ab

le
3.

3.
:

E
x
am

p
le

s
of

A
ct

iv
it

y
E

ve
n
ts

W
it

h
D

iff
er

en
t

G
ra

n
u
la

ri
ti

es

E
ve

n
t

ty
p

e
A

ct
or

A
ct

io
n

T
ar

ge
t

(h
ig

h
gr

an
u
la

ri
ty

)
T

ar
ge

t
(l

ow
gr

an
u

la
ri

ty
)

M
o
d

u
le

P
ro

ce
ss

A
L

oa
d

D
L

L
fi

le
1

R
an

ge
2

(1
00
≤

fr
eq

u
en

cy
of

fi
le

1
≤

50
0)

M
o
d

u
le

P
ro

ce
ss

A
L

oa
d

D
L

L
fi

le
30

R
an

ge
2

(1
00
≤

fr
eq

u
en

cy
of

fi
le

30
≤

50
0)

H
os

t
N

et
w

or
k

P
ro

ce
ss

A
C

on
n

ec
t

20
0.

12
.1

2.
10

E
x
te

rn
al

co
n

n
ec

ti
on

H
os

t
N

et
w

or
k

P
ro

ce
ss

A
C

on
n

ec
t

19
2.

16
8.

10
.3

In
te

rn
al

co
n

n
ec

ti
on

66

during training (low granularity) or the individual file itself (high granularity). In the

former case, the two Module events would be represented by the same transformed

feature vector, which translates to the same symbol in the final categorical vocabu-

lary of events. In the latter case, two different symbols are produced. Similarly, if f ti

were the target feature of the Host Network events in rows 3 and 4, f ti might either

indicate whether the network connection is internal or external (low granularity) or

the individual destination IP addresses (high granularity). With the low granularity

interpretation, the Host Network events pass from including the entire set of IP ad-

dresses to including a binary piece of information, reducing the number of symbols

that form the vocabulary.

Figure 3.2 shows the effect of applying the definition of the vocabulary to the

selection of events. From the N original sequences, M ≤ N are chosen for the

training phase. This is because FT (·) does not produce an output when the processed

event does not include the features defined in F . For a given sequence of activity

events si, FT (·) and F operate as a filter to select which events are kept and what

pieces of information from them are used to generate the transformed events that

form the training subsequences s∗i . For instance, in order to build the profile of an

application A, the actor feature is included in the set F and FT (·) is defined so that

only events with application A as actor are selected. Thereby, any sequence si with

events produced by different applications is reduced to the subsequence s∗i , which

only includes events whose actor is application A. Any sequence si with no event

with application A as actor is disregarded.

Based on the definition of FT (·) and the selected features F for each event type,

there is finite set of transformed feature vectors, which are translated one-to-one to

the set of categorical symbols E = {1, 2, ..., |E|}. Whereby, a final subsequence s∗i is

comprised of these categorical symbols.

67

3.4.3 Model Generation

The selected M subsequences s∗i are used to train the LSTM-based model fol-

lowing an either by-machine or by-time split. Splitting by machine refers to select

approximately 80% of the the entire training subsequences s∗i for training, leaving

20% for validation. Splitting by time, in contrast, refers to approximately select the

first 80% of events in each subsequence s∗i for training, leaving the remaining 20%

of events for validation. In either splitting strategy, the resulting training and vali-

dation subsequences are concatenated to respectively form the unique training and

validation sequence st and sv, such that st ∩ sv = ∅.

Our LSTM-based model consists of a encoder of three layers of LSTM followed by

a linear layer as suggested in [99]. At training, we use a timestep window w = 1 to

compute the probability of each event of the sequence given the previous subsequence.

For better results, we apply a variety of strategies such as Stochastic Gradient Descent

with Restart (SGDR) [100] and Cyclical Learning Rates [101]. The hyperparamenters

of the model were tuned to get the best performance for the dataset described in

Section 3.5.1: (1) a batch size of 64, (2) an unrolling window (Batch Propagation

Through Time or BPTT) of 64, (3) an embedding size of 16, and (4) 100 activations

in the linear layer.

3.4.4 Anomaly Detector

At testing time, our trained LSTM-based model is used to classify each event in a

sequence as either benign or anomalous. To classify the event et observed a timestep

t, our detector follows four steps. In step 1, the previous subsequence e1, e2, ..., et−1

observed until time t−1 is passed as input to our trained LSTM-based model. In step

2, the model computes the probabilities of each event in E (vocabulary of events) to be

the next event in the sequence given the previous subsequence. Step 3 is a procedure

that creates a set of probable events K ⊂ E, whose elements are the events with the

hightest probabilities. The size of the set K can be set either statically or dynamically.

68

For the static assignment, we customize the parameter k to chose all the events in the

output model whose probabilities are within the top-k probabilities. This resemble the

use a fixed threshold that takes all the events above the smallest probability among

the the top-k ones. The dynamic assignment, in contrast, select the most probable

events based on the natural division between high and low values found in the model

output. The natural division is achieved by using the most repeated probability in the

output array as threshold. Probabilities above this threshold belong to the high-value

set, while the remaining probabilities are assigned to the set of low values. In the

final step (step 4), the event et is classified as benign if et ∈ K, otherwise anomalous.

3.5 Evaluation Setup

3.5.1 Dataset

The sequences for training and testing were collected on normal and under attack

conditions respectively. Security experts (referred to as Red Team) conducted specific

attacks on a Windows machine during the collection period of the testing sequence.

The undue activities are reflected as either specific unseen events or subsequences

of expected events in an unexpected order. Table 3.4 summarizes the entire dataset.

Pre-filter refers to the total number of events collected from multiple endpoints before

filtering them out using the definition of the vocabulary of events. In contrast, post-

filter refers to the sequences obtained after filtering. The collected data was filtered

out to include events generated by the process PowerShell as actor. This is an

application commonly used to conduct stealthy data exfiltration. Our intuition was

that learning its behavior in normal (or non-attack) conditions would allow detecting

malicious patterns resulting from the activities of the insider threat.

Vocabulary of Events. The objective was to capture as much information

as possible from the PowerShell application. The selection of the set of features F

of each event type was done based on the data observed in the training sequence.

We traded-off granularity with the total number of possible events in order to avoid

69

having a large number of events observed only at training (and not at testing) and

vice versa. Following this guidance, each event ei was processed using the set of

features F = {f 1
i , f

2
i , f

3
i , f

4
i , f

5
i , f

6
i }, where:

• f 1
i : Actor feature. Its corresponding t1i is a unary piece of information defining

the actor (always 0 for powershell.exe).

• f 2
i : Event type feature. Its corresponding t2i might be any of the eight event

type IDs described in Table 3.2.

• f 3
i : Action feature. Its corresponding transformed featured t3i was defined per

event type. It can vary from 0 to 13 depending on the event type as specified

in Table 3.2.

• f 4
i : Target feature. Its t4i depends on the event type. For Process events t4i = 0

(not powershell.exe) and t4i = 1 (powershell.exe). For Module events t4i = 0 (not

a DLL file) and t4i = 1 (DLL file). For Registry Value events t4i = 0 (Others),

t4i = 1 (HKEY USERS), and t4i = 2 (HKEY LOCAL MACHINE). For the rest

of event types t4i operates as unitary piece of information.

• f 5
i : Network feature. Its t5i is ternary piece of information about Host Network

events only (0 for self connection, 1 for internal connection, and 2 for external

connection). For the rest of event types this feature operates as unitary piece

of information.

• f 6
i : User feature. The transformed feature t6i is a binary piece of informa-

tion about the user executing the action (0 for system-related user and 1 for

non-system-related user). For Session and Registry Value events, this feature

operates as a unary piece of information.

Each event e∗i = {t1i , t2i , t3i , t4i , t5i , t6i } is extracted following the definitions above.

With these definitions, the vocabulary size is 175 (E = {0, 1, ..., 174}), from which 41

and 31 events are present in the training and testing sequences respectively. Twenty

70

Table 3.4.: Dataset Description

Training / Validation Testing

Pre-filter Post-filter (trn) Post-filter (val) Pre-filter Post-filter (test)

38,899,995 63,282 13,280 727,275 66,972

out of the 41 training events do not appear in the testing sequence. Likewise, ten out

of the 31 testing events are not present in the training sequence. These 10 events are

referred to as unseen events.

Training set The final training (st) and validation (sv) sequences were obtained

by monitoring 30 machines. After filtering the collected sequences, we got a total

of 76,562 events in 30 subsequences (including only events with PowerShell actor).

We then applied a by-machine data split and selected the subsequences of the first

24 machines for training, leaving the subsequences of the remaining 6 machines for

validation. After concatenating the corresponding subsequences, the resulting train-

ing and validation sequences had a length of 63,282 (82.65%) and 13,280 (17.35%)

events respectively. Figure 3.3 shows the collection dates from those 30 machines.

This sparse collection timeframe was intended to capture the behavior of PowerShell

in normal conditions as no attacks were reported in these collection periods.

Testing set. This sequence of 66,972 events was obtained from a different vic-

tim machine monitored from May 8th to May 11th. The Red Team launched an

multi-stage persistent attack consisting of a user escalation step followed by a data

exfiltration attack on this victim machine as follows:

• The Red Team was initially assigned a non-administrative user for the victim

computer.

• The hacking tool Mimikatz is used to steal credentials from the memory of the

victim machine, performing a user escalation.

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Machine ID

07/02/18
07/01/18
06/30/18
06/29/18
06/28/18
06/27/18
06/26/18
06/25/18
06/24/18
06/23/18
06/22/18
06/15/18
04/30/18
04/29/18
04/28/18
04/27/18
04/26/18
04/25/18
04/24/18

D
at

e

0

200000

400000

600000

800000

1000000

1200000

1400000

N
um

be
r o

f C
ol

le
ct

ed
 E

ve
nt

s

Fig. 3.3.: Data collection dates from 30 machines, from April 27th to July 7th of

2018. This sparse collection timeframe was intended to capture the behavior of the

application Powershell in non-attack conditions.

• The Red Team roams on the network to which the victim computer is connected

and discovers other resources (shared folders, machines, users, domains). Re-

mote shares are discovered and the corresponding files are copied to the victim

machine.

• Powershell files are also copied to the machine and then executed, in order to

compromise other computers and extract files from them.

• An external remote connection is established from the victim machine to bypass

the firewall protection. The copied files are sent outside the network through

this connection.

72

3.5.2 Metrics and Ground Truth

The Red Team provided a log file enumerating the sequence of steps followed

during the execution of the attack. Each entry in this file contains a high-level

description of the step and a timestamp indicating the day and time of its execution.

Some of the steps in the file are identifiable as actions executed by Powershell. This

information was used to find the corresponding events in the testing sequence, which

is formed by events in which Powershell functions as actor only. Specifically, we found

110 matches. Additionally, the EDR of the security company produced four alerts

while the Red Team conducted the attack on the victim machine. These alerts were

matched with the corresponding events in the testing sequence, which has 117 unseen

events (i.e. events present in the testing sequence but not in the training sequence).

These alert-related events along with the Red-Team-matched and the unseen events

form the sequence portions corresponding to malicious activity. As the events of two

of the alerts corresponded to unseen events, only the other two alerts add new well-

identified events to the malicious portions. Each of these two alerts are matched with

4 events in the sequence making a total of 295 malicious events. Malicious events are

expected to be detected as anomalous. Events other than alert-related, Red-Team-

matched, and unseen events are regarded benign and are expected to be classified

accordingly. We set our ground truth based on these assumptions and measure the

performance of our method according to the following metric definitions:

• True Positive(TP): Any malicious event classified as anomalous.

• False Negative(FN): Any malicious event classified as benign.

• True Negative (TN): Any non-malicious event classified as benign.

• False Positive (FP): Any non-malicious event classified as anomalous.

• True Positive Rate (TPR): TP/(TP + FN)

• False Positive Rate (FPR): FP/(FP + TN)

73

3.6 Experiments

This section presents the experiments conducted to evaluate our LADOHD frame-

work using the datasets described in Section 3.5.1. The experiments were designed

to answer a series of of research questions, which are included along with our findings

in the following sections.

3.6.1 Dynamic vs. Static Selection of the Set of Probable Events K

RQ1. What approach (either dynamic or static selection of K) provides a better

performance? If the static method does, what is the best value of the parameter k?

We investigate whether our technique identifies the well-identified malicious events.

We are particularly interested in finding which approach provides the best anomaly

detection performance. To this end, we measure the TPR and FPR variations as we

change the number of events in K through both the dynamic and static approaches.

Figure 3.4a shows the results. In the x-axis k∗ means that the size of K is dy-

namically adjusted in each timestep of the sequence. The corresponding values of the

metrics TPR and FPR are marked with a black square to differentiate them from the

values obtained through the static approach. The rest of values in the x-axis (from 2

to 42) corresponds to the values of the parameter k of the static approach. The figure

illustrates how the dynamic approach outperforms the static approach for any chosen

k as the former gives a high TPR of 97.29% while keeping a low FPR of 0.38%.

The static approach starts with a similar TPR but a higher FPR in comparison

with the dynamic approach. As the parameter k increases, both the TPR and the

FPR decrease. The static approach achieves the same FPR as the dynamic when

k = 20. At this point however, the corresponding TPR has decreased from 97.29%

to 69.83%. The non-functionality of the static method can be explained by the high

variance in the distribution of the natural division between high and low values in out-

put of the model throughout the entire sequence. Figure 3.4b shows this distribution.

The dynamic approach produces sets K with sizes between 6 and 28 (inclusive) with

74

k * 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Sizes of Set K Used to Evaluate the LSTM-based Model

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

) [
%

]

TPR FPR

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
P

os
iti

ve
 R

at
e

(F
P

R
) [

%
]

(a) Metric Variation With Static and Dynamic Selection of K

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Dynamic Sizes of Set K Trough the Sequence

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

(b) Distribution of Dynamic K Sizes Throughout the Sequence

Fig. 3.4.: Selection of the set K through both the dynamic and static approaches.

Figure 3.4a shows the variation of the TPR and FPR with respect to different setting

for K. Figure 3.4b presents the distribution of the dynamic sizes of K throughout

the testing sequence. Notice its high variability.

significant differences in their frequencies. Setting a specific k in the static approach

to be used in each timestep of the analyzed sequence goes away from the decision

75

made by the model, which clearly discriminates low and high values in the its output

probabilities.

Findings. The dynamic approach outperforms the static method to select the set

of probable events K, having a TPR 1.31X better than the static method for the

same FPR of 0.38.

3.6.2 Comparison With an Enterprise Endpoint Detection and Response

(EDR)

RQ2. What is the performance of LADOHD with respect to enterprise-level EDR

system currently in production?

One of the main challenges defending against insider threats is the similarity

between benign and malicious activities. Discerning between them is a difficult task.

Due to this restriction, this section evaluates how efficient LADOHD is by comparing

it with the the enterprise EDR of the company already in production.

The enterprise EDR is a multi-layer system that employs signature-based, super-

vised (e.g. Random Forest [102]), and unsupervised (e.g., clustering [103]) machine

learning methods for analysis, detection, and alerting. This system detected 4 alerts

while monitored the victim machine during the Red Team attack. These alerts were

validated to correspond to malicious activities and later matched with the correspond-

ing events in the generated testing sequence as indicated in Section 3.5.2. Although

the alerts suffice to detect the ongoing attack, the EDR missed the detection of the

execution of well-known exploitation tools such as mimicatz and related activities

Figure 3.5 shows the malicious activities reported by the Red Team in the log file

that were matched with events in the testing sequence. It shows their counts in log

file and the number of events matched per each activity. There is a total of 110

malicious events. All of them were classified by LADOHD as anomalous.

Unlike the current analytics modules of the EDR, LADOHD is trained with be-

nign data only and learns sequence patters of a particular application. Uncommon

76

m
im
ikatz

whoam
i

dum
p hashes

net user

spawns proc

klist

net share

net use

run dir

Malicious Activities Logged by the Red Team

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc
y

No. Red Team Logged Activities
No. Corresponding Events in the Sequence

Fig. 3.5.: Malicious activities reported by the Red Team. These are the activities

that could be matched with events in the testing sequence.

event sequences are classified as anomalous through the detection of specific events

regardless the meaning of the event itself. It is important to mention that LADHD

produced 254 FP cases along with the with the 287 TP cases (including unseen

events). Although the number of FPs is low with respect to the length of the se-

quence, they might represent a high volume of cases to be revised by security experts

in a short periods of time.

Findings. LADOHD successfully detected the ongoing attack generating more

alerts than the enterprise EDR. A relatively small number of FP cases with respect

to the sequence length were generated in the process.

77

Table 3.5.: Metric Values Obtained With the Original and Clean Testing Sequences

Testing Sequence TP FN FP TN TPR FPR

Original 287 8 254 66423 97.29% 0.38%

Clean 110 8 256 66421 93.22% 0.38%

3.6.3 Performance of LADOHD When Processing Sequences Without

Unseen Events

RQ3. Does the capacity LSTM-based models to detect anomalies improve when

unseen events are discarded in advance?

We now evaluate whether processing unseen events improve or diminish the capac-

ity of LSTM-based models to detect malicious events. We are interested in knowing

whether the same Red-Team-matched events classified as anomalous in experiment

1 (Section 3.6.1), when unseen events are part of the sequence, are also classified

as anomalous when unseen events are ignored. We also want to validate whether

the missing alert-related events are detected. To this end, we create a clean testing

sequence by removing the unseen events from the testing sequence. We pass this

clean testing sequences to our LSTM-based model, which classifies each event in the

sequence as either benign or anomalous. Table 3.5 includes a comparison of the re-

sults obtained with the original testing sequence and its clean version. Removing the

unseen events does not help the model classify as anomalous new malicious events.

The number of TP cases related to observed events remains the same. The same

phenomenon occurs with the number of FPs, where an increase of only 2 is observed.

Findings. There is neither a significant improvement nor detriment when unseen

events are discarded. Their removal from the sequence should be determined by

the performance cost they might cause only.

78

e145e144

 Target

Target: Event to be classified

Target classification: Wheter anomalous or benign given a n predecessors

Predecessors: Events forming the previous subsequence to Target

Anomalous Shifter: ith predecessor that makes Target anomalous

 Anomalous

 Benign

58 68 67 69 2 1

Number of Target Predecessors

in Previous Subsequence

Benign Shifter: ith predecessor that makes Target benign

e143e87e78e77e78e76 e86
57

Fig. 3.6.: Effect of long-term dependencies of LSTM models in the detection of anoma-

lies. The example is based on the event e145 in Table 3.6

3.6.4 Effect of Long-Term Dependencies in the Detection of Anomalies

RQ4. What impact does the length of the previous sequences have over the

detection of anomalies?

One of the main characteristics of LSTM networks is their capacity to learn long-

term dependencies among events in a sequence. One interesting question we aim to

answer is whether these long-term dependencies have an impact in the classification.

Namely, we want to validate whether considering subsequences of different lengths

(by increasing the number of predecessors) cause different outputs in the classification

of an event. To this end, we work with the clean testing sequence of the Section 3.6.3.

Table 3.6 shows the results. It includes 9 randomly selected events of these se-

quence classified as anomalous. These events are referred to as targets and they

correspond to the last events of low probable subsequences in the sequence. Figure

3.6 illustrates the procedure followed in this experiment using the target e145 (row 4

in the table) as example. We incrementally move backward from each target until

the beginning of the sequence and find the number of predecessors (length of previous

sequence) that causes a change in the classification. The number of predecessors that

79

Table 3.6.: Effect of Long-Term Dependencies on the Detection of Anomalies

Target Benign Shifters Anomalous Shifters

e142 [1] [98]

e143 [1] [75]

e144 [1] [75]

e145 [1, 67] [58, 69]

e146 [1] [54]

e147 [1] [50]

e148 [1] [47]

e1032 [1, 551, 619] [549, 587, 648]

e2292 [9] [1, 11]

causes the classification to be benign are called benign shifters. Those that cause

the classification to be anomalous are referred to as anomalous shifters. Table 3.6

shows that most of the targets have multiple shifters, which prove that the history of

events is what actually has a significant impact in the classification process. LSTM-

based models have the potential to correctly classify events regardless the length of

the previous sequence. Their outputs are in fact affected by the hidden state. An

interesting observation is the capacity of our LSTM-based model to look backward

a variable number steps to estimate the probability of a particular event. We have

cases where the model makes the final decision based on a few number of predecessors

(e.g., 2 predecessors in the case of e142) and others in which the model considers a

large number of them (e.g., 648 predecessors in the case of e1032). This ability to

relate current events with distant past events in the sequence shows the potential of

LSTM networks to solve the OAR problem.

Another question we aim to answer in this experiment is how the probabilities of

the targets change as the number of predecessors gets close to a shifter. We did not

80

find a clear relationship between the relative probability of the target (with respect

to the other possible events) in the output of the model and the proximity to the

shifters. The probability of the target does not always increase or decrease as the

number of predecessors gets close to a benign or anomalous shifter respectively. This

phenomenon can be explained by the fact that our model is trained to predict the

next event in the sequence and not to estimate the least probable events.

Findings. LSTM models can correctly classify events regardless the length of the

previous subsequences. The history of events (hidden state of the model) is what

actually affects the classification. This allows LSTMs being a potential solution

against the OAR problem.

3.6.5 Prediction Capacity of LSTM and HMM Based models Over Variable-

Length Sequences

RQ5. How much accurate are LSTM-based models compared to other solutions

such as HMM in the prediction of the next event in variable length sequences?

This section presents a comparison of the prediction capacity of our LSTM-based

model and a full connected HMM model built with the same dataset. As the ability

to discern between benign and anomalous events depends on the prediction capacity

of the model, we want to evaluate which model predicts better the last event of se-

quences of different lengths. To this end, we took 100 continuous subsequences of a

specific length and measure the accuracy of the model predicting the last event of the

sequences. The lengths were chosen to vary from 2 to 1000. To ensure a fair com-

parison, we measure the prediction accuracy of both models with incremental-length

subsequences extracted from both the training and testing sequences. The idea of

using these two sets of subsequences is to validate that the results do not come from

any bias that the testing data might induce. We do so because we are interested in

observing how the prediction capacity of the models changes as the lengths of the

sequences increase in ideal conditions (i.e. when sequences were observed in training)

81

and not in comparing which model is more efficient when processing new data. Figure

3.7 shows that our LSTM-based model constantly outperform the prediction capacity

of the HMM model. Our model keeps predicting well with larger sequences, while the

accuracy of the HMM-based model decreases.

Findings. LSTM-based models have a better capacity than HMM-based models

to predict the next event in a given sequence as its length increases.

3.7 Conclusion

This paper presents LADOHD, a generic LSTM-based anomaly detection frame-

work to protect against insider threats. for high dimensional sequential data. We

evaluated the framework with an extensive dataset of activity events generated by

the EDR of a renown security company. Each event in the dataset represents a hight

dimensional vector of features The framework filters out the events per application

and pre-specified features that define the vocabulary of possible events that form the

sequences analyzed by our model. Each event in the sequence is classified as either

benign or anomalous given the previous observed subsequence. LADOHD reached a

high TPR > 97% with a low FPR < 0.4%,proving the effectiveness of the frame-

work. Furthermore, this work presents a comprehensive analysis of how LSTM-based

models work and compare them to alternative solution such as HMM-based models.

We found that LSTM-based models rank better the set of expected events in each

timestep of sequence than HMM-based models, which favor their capacity to detect

anomalies.

82

0 200 400 600 800 1000
Sequence Length

0.4

0.6

0.8

1.0

P
re
di
ct
io
n
A
cc

ur
ac

y

LSTM-Based Model HMM-Based Model

(a) Accuracy Witn Training Sequences

0 200 400 600 800 1000
Sequence Length

0.2

0.4

0.6

0.8

1.0

P
re
di
ct
io
n
A
cc

ur
ac

y

LSTM-Based Model HMM-Based Model

(b) Accuracy With Testing Sequences

Fig. 3.7.: Prediction accuracy of our LSTM and the HMM models with sequences of

incremental lengths. Figure 3.7a and Figure 3.7a show the accuracy variation with

subsequences extracted from the D1 training and testing sequences respectively.

83

4. AN MTD-BASED SELF-ADAPTIVE RESILIENCE

APPROACH FOR CLOUD SYSTEMS

4.1 Introduction

Recent advances in cloud computing infrastructures have given increased trac-

tion to the adoption of cloud-based systems for reliable and elastic computing needs

of enterprises. However, in a cloud-based environment, the enlarged attack surface

hampers attack mitigation, especially when attacks originate at the kernel level. In a

virtualized environment, an adversary that has fully compromised a virtual machine

(VM) and has system privileges, exposes the cloud processes to attacks that might

compromise their integrity, jeopardizing mission-critical functions.

A major issue with existing cloud defense solutions is that they target specific

threats, which makes them ineffective for fighting against attacks lying outside their

protection perimeter. In order to provide effective threat mitigation across various

cloud systems, it is critical to design a resiliency solution in which the protection

against attacks is integrated across all layers of the system at all times.This requires

designing cloud enterprise frameworks that can accurately detect system anomalies

and dynamically adapt through starting secure, staying secure, and returning to se-

cure+ [104] state in cases of cyber-attacks.

We propose an approach for cloud system resiliency that is capable of dynami-

cally adapting to attack and failure conditions through performance/cost-aware pro-

cess replication, automated software-based monitoring and reconfiguration of virtual

machines. The proposed approach offers many advantages over existing solutions for

resiliency in trusted and untrusted clouds, among which are the following:

• The solution is generic and targets multiple layers of the cloud software stack,

as opposed to traditional techniques for mitigation targeting specific attacks.

84

• The proposed resiliency framework facilitates proactive mitigation of threats

and failures through active monitoring of the performance and behavior of ser-

vices and can incorporate new tools to resiliency and antifragility under various

failures and attacks.

• Continuous monitoring, restoration and healing of cloud system operations al-

lows for starting secure, staying secure and returning secure+ by learning from

the attacks and failures and reconfiguring processes accordingly to increase re-

siliency.

The rest of this paper is organized as follows: Section 4.2 provides an overview of

monitoring and security approaches in distributed computing. Section 4.3 introduces

the proposed resiliency framework. Section 4.4 discusses the results of preliminary

experiments for the feasibility of the approach. Section 4.5 concludes the paper.

4.2 Related Work

Current industry-standard cloud systems such as Amazon EC2 1 provide coarse-

grain monitoring capabilities (e.g. CloudWatch) for various performance parameters

for services deployed in the cloud. Although such monitors are useful for handling

issues such as load distribution and elasticity, they do not provide information re-

garding potentially malicious activity in the domain. Log management and analysis

tools such as Splunk2, Graylog3 and Kibana4 provide capabilities to store, search and

analyze big data gathered from various types of logs on enterprise systems, enabling

organizations to detect security threats through examination by system administra-

tors. Such tools mostly require human intelligence for detection of threats and need

to be complemented with automated analysis and accurate threat detection capabil-

1https://aws.amazon.com/ec2
2https://www.splunk.com
3https://www.graylog.org
4https://www.elastic.co/products/kibana

85

ity to quickly respond to possibly malicious activity in the enterprise and provide

increased resiliency by providing automation of response actions.

Various moving target defense (MTD) solutions have been proposed to provide

protection against specific threats in systems. However, these are only effective

against attacks within their scope. For instance, while application-level replication

schemes mitigate attacks targeting the application code base, they fail in the case of

code injection attacks targeting runtime execution. Randomizing runtime [105], and

system calls [106], instruction set randomization [107] and address space randomiza-

tion [108], have been successfully used to mitigate system-level attacks. Althought

most of these security mechanisms are effective for attacks they target, modern com-

plex attacks against cloud systems call for defense approaches that are deeply inte-

grated into the architecture, at all system layers and at all times.

4.3 Proposed Approach

We propose a novel approach that uses cloud-based domain activity monitors to

audit service behavior and performance changes to detect anomalies that trigger the

reconfiguration of the system. The reconfiguration is based on our virtualization-

based MTD strategy for distributed applications, which benefits from the flexibil-

ity offered by software-defined networking (SDN) and its capability of dynamically

configuring network devices via OpenFlow5. By integrating components for service

performance monitoring and dynamic reconfiguration, the proposed model aims to

provide a unified framework for agile and resilient computing in trusted and untrusted

clouds. Figure 4.1 illustrates a high level view of the framework, based on the idea of

starting, staying, and returning secure in the cloud process lifecycle as proposed by

Goodwin et al. [104].

General characteristics of the solution are as follows:

5http://archive.openflow.org

86

Fig. 4.1.: High-level view of resiliency framework

• The operations of each cloud-based service and domain are monitored using

monitoring tools (e.g. Heat6 and Monasca7 for OpenStack8) built on top of the

cloud platform. These tools report performance and security parameters such

as response time, response status, CPU usage, memory usage, etc. to anomaly

detection tools built on top of the same infrastructure.

• The analysis results by the anomaly detection tools are reported to a central

monitor in the form of summary statistics for the services/VMs. The central

monitor utilizes data submitted by the monitors to update trust values of ser-

vices and reconfigure services to provide resiliency against attacks and failures.

• A moving target defense approach that migrates services to different platforms

periodically to narrow the exposure window of a node to attacks is utilized,

which increases the cost of attacks on a system and lowers the likelihood of suc-

cess. Detection of service failures and/or suboptimal service performance, as

well as integrity violations detected with virtual machine introspection also trig-

6https://wiki.openstack.org/wiki/Heat
7https://wiki.openstack.org/wiki/Monasca
8http://www.openstack.org

87

ger restoration of optimal behavior through replication of services and adaptable

migration of virtual machines to different platforms.

The following subsections provide details of the main components of the proposed

resiliency approach.

4.3.1 Live Monitoring

Cyber-resiliency is the ability of a system to continue degraded operations, self-

heal, or deal with the present situation when attacked [104]. For this we need to

measure the assurance level (integrity/accuracy/trust) of the system from the Quality

of Service (QoS) parameters such as response time, throughput, packet loss, delays,

consistency, etc.

The solution developed for dynamic reconfiguration of service compositions as

described in [109] involved a distributed set of monitors in every service domain for

tracking performance and security parameters and a central monitor to keep track

of the health of various cloud services. Even though the solution enables dynamic

reconfiguration of entire service compositions in the cloud, it requires replication,

registration and tracking of services at multiple sites, which could have performance

and cost implications for the enterprise. To overcome these challenges, the framework

proposed in this work utilizes live monitoring of cloud resources to dynamically detect

deviations from normal behavior and integrity violations, and self-heal by reconfigur-

ing service compositions through software-defined networking [110] of automatically

migrated service/VM instances.

As the goal of the proposed resiliency solution is to provide a generic model,

for detection of possible threats and failures in a cloud-based runtime environment,

limiting the utilized anomaly detection models to supervised learning algorithms will

not provide the desired applicability. Hence, unsupervised learning models such as

k-means clustering [111] and one-class SVM classification [112] to detect outliers (i.e.

anomalies) in service and VM behavior will be more appropriate. Algorithm 4 shows

88

Algorithm 4: Content image generation

Input: x,M, l, λc, N

1: xc ← rand init(x)

2: F ←M [: l]

3: fx ← F (x)

4: while N 6= 0 do

5: xc ← xc − lr ·∆

6: N ← N − 1

7: end while

8: return xc

Algorithm 5: Content image generation

Input: x,M, l, λc, N

1: xc ← rand init(x)

2: F ←M [: l]

3: return xc

an adaptation of the k-means algorithm to cluster service performance data under

normal system operation conditions and algorithm 5 shows how to detect outliers

by measuring the distance of the performance vector of a service at a particular

point in time to all clusters formed during training. Additionally, virtual machine

introspection (VMI) [113] techniques need to be utilized to check the integrity of

VMs at runtime to ensure that the application’s memory structure has not been

modified in an unauthorized manner. The results of the monitoring and anomaly

detection processes help decide when to reincarnate VMs as described in the next

section.

89

4.3.2 Moving Target Defense

Moving target defense (MTD) as defined by the US Department of Homeland

Security is controlling change across multiple system dimensions to increase uncer-

tainty and complexity for attackers to increase the cost of their attack efforts [114].

The proposed MTD-based attack-resilient virtualization-based framework is based on

[115], a solution that reduces the vulnerability window of nodes (virtual machines)

mainly through three steps:

1. Partitioning the runtime execution of nodes in time intervals

2. Allowing nodes to run only with a predefined lifespan on heterogeneous plat-

forms (i.e. different OSs)

3. Live monitoring

The main idea of this MTD-technique is allowing a node running a distributed

application on a given computing platform for a controlled period of time before

vanishing it. The allowed running time is chosen in such a manner that successful

ongoing attacks become ineffective and a new node with different computing platform

characteristics is created and inserted in place of the vanishing node. The new node

is updated by the remaining nodes after completing the replacement. The required

synchronization time is determined by the application and the amount of data that

needs to be transferred to the new node. as the reincarnation process do not keep

the state of the old node.

The randomization and diversification technique of vanishing a node to appear in

another platform is called node reincarnation [115]. One key question is determining

when to reincarnate a node. One approach is setting a fixed period of time for each

node and reincarnating them after that lifespan. In this first approach nodes to be

reincarnated are selected either in Round Robin or randomly. However, attacks can

occur within the lifespan of each machine, which makes live monitoring mechanisms a

crucial element. Whether an attack is going on at the beginning of the reincarnation

90

process determines how soon the old node must be stopped to keep the system re-

silient. When no threats are present both the old node and new node can participate

in the reincarnation process. The old node can continue running until the new node

is ready to take its place. On the contrary, in case an attack is detected the old

node should be stopped immediately and the reincarnation should occur without its

participation, which from the perspective of the distributed application represents a

greater downtime of the node.

Our main contribution here is the design and implementation of a prototype that

speeds up the node reincarnation process using SDN, which allows configuring network

devices on-the-fly via OpenFlow. We avoid swapping virtual network interfaces of the

nodes involved in the process as proposed in [115] to save time in the preparation of

the new virtual machine. The new virtual machine is created and automatically

connected to the network. The machine then starts participating in the distributed

application when routing flows are inserted to the network devices to redirect the

traffic directed to the old VM to the new one.

4.4 Experiments

Experiments to evaluate the operation times of the proposed MTD solution were

conducted. Figure 4.2 shows the experiment setup. A Byzantine fault tolerant (BFT-

SMaRt) distributed application was run on a set of Ubuntu (either 12.04 or 14.04

randomly selected) VMs in a private cloud, which are connected with an SDN network

using Open vSwitch9. The reincarnation is stateless, i.e. the new node (e.g. VM1’)

does not inherit the state of the replaced node (e.g. VM1). The set of new VMs are

periodically refreshed to start clean and the network is reconfigured using OpenFlow

when a VM is reincarnated to provide continued access to the application. Table 4.1

presents the results: virtual machine restarting and creation time, and Open vSwitch

flow injection time. Note that the important factor for system downtime here is the

9http://openvswitch.org/

91

Fig. 4.2.: Experiment setup

Table 4.1.: Reincarnation Process Times

Measurements Times

VM restart time ∼ 7s

VM creation time ∼ 11s

Open vSwitch flow injection time ∼ 250ms

Open vSwitch flow injection time, as VM creation and restart take place periodically

to create fresh backup copies, and do not affect the downtime.

92

4.5 Conclusion

We proposed a novel approach to introduce resiliency into cloud systems such that

they can mitigate attacks and failures to provide uninterrupted operation of critical

functions. The solution is based on distributed monitoring of cloud service/VM be-

havior and periodic refreshing of the related cloud resources to allow self-adaptive

reconfiguration through SDN with a moving target defense approach. We demon-

strated with preliminary experiments that the MTD-based solution is able to achieve

acceptable reconfiguration times. In future work we will focus on the development

and evaluation of a full resiliency framework for cloud systems based on the ideas

presented in this work, not only for stateless but also for stateful distributed applica-

tions.

93

5. FUTURE WORK

This chapter presents a brief description of our findings and new research directions

with respect to the work of this dissertation. The discussion about our future plan

and work is separated by topics in the sections below.

5.1 Protecting Neural Networks Against Adversarial Attacks

Deep Neural Networks (DNNs) are vulnerable to adversarial settings such as ad-

versarial sample, patch and trojan attacks. These attacks induce misclassification at

testing time, which diminishes the applicability of these models in real-world scenar-

ios. The work presented in Chapter 2 introduces a new model hardening technique

called ConFoc to protect against trojan attacks. The method changes the parame-

ters of compromised models through the healing process so as to remove any inserted

trojan. Whereby, adversaries lose the knowledge about the parameters of the model

once it is taken through the ConFoc process. As ConFoc assumes adversaries do not

have access to the details of the victim models at testing anymore, the technique is

not functional against adversarial sample and patch attacks. To overcome this lim-

itation, we are currently working on a adversarial input detection technique, which

determines whether an input includes malicious modifications that lead to misclas-

sification. The new research question is to answer whether there are neurons that

specifically relate to the content or semantic information of inputs. If so, we want

to find out whether it is possible to separate content-related from style-related neu-

rons. In the case of having positive answers to these two research questions, the next

step is to build a content-focus model parallel to the original one. This new model

is characterized for having its content-related neurons strengthened and weak non-

content neurons. At testing time, any input is passed to both the original and the

94

Fig. 5.1.: Possible extension of ConFoc to detect adversarial inputs of both adversarial

sample and trojan attacks.

content-focus models for evaluation. The input is considered adversarial in case of a

mismatch in the classification. Figure 5.1 sows the possible procedure to create the

content-focus model.

5.2 Neural Networks on Anomaly Detection

One of the main limitations on applying machine learning algorithms in cyber-

security is the lack of training and validation data. This situation is aggravated by

other factors such as the high cost of errors and lack of functional guarantees when

processing unobserved data. Neural Networks do not scape from these restrictions

and, in addition, add a lot of uncertainty due to their ingrained back-box nature.

Chapter 3 presents an anomaly detection solution based on LSTM models, which

demonstrates the potential of such algorithms to detect attacks unnoticed by current

enterprise systems. Although the results show the functionality and applicability of

the framework, the framework was not exhaustively tested with because of the lack

of testing data and ground truth, including a more diverse set of attacks. Therefore,

95

our first step in our feature work is the collection of more data logs including attacks

from diverse sources so as to test the soundness of our approach. Our second step is

directed to the automatic definition of the vocabulary of events. The work performed

with LADOHD required a manual definition of the vocabulary of events to avoid the

situation in which the events observed in training do not appear in the testing set and

vice versa. Although our goal is not to completely remove the intervention of humans

in the process, finding general rules or heuristics for this definition would speed up

the implementation and evaluation time significantly.

REFERENCES

96

REFERENCES

[1] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao,
“Neural cleanse: Identifying and mitigating backdoor attacks in neural net-
works,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
p. 0.

[2] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability: Attribute-
steered detection of adversarial samples,” in Advances in Neural Information
Processing Systems, 2018, pp. 7717–7728.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 39–57.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[5] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and
accurate method to fool deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2574–2582.

[7] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in 2016 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). IEEE, 2016, pp.
372–387.

[8] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing
of deep learning systems,” in proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 1–18.

[9] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,”
arXiv preprint arXiv:1712.09665, 2017.

[10] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity. ACM, 2016, pp. 1528–1540.

[11] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in
the machine learning model supply chain,” arXiv preprint arXiv:1708.06733,
2017.

97

[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on
deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526,
2017.

[13] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Tro-
janing attack on neural networks,” in 25nd Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, Febru-
ary 18-221, 2018. The Internet Society, 2018.

[14] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in 2017 IEEE International
Conference on Computer Design (ICCD). IEEE, 2017, pp. 45–48.

[15] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against back-
dooring attacks on deep neural networks,” in International Symposium on Re-
search in Attacks, Intrusions, and Defenses (RAID). Springer, 2018, pp. 273–
294.

[16] R. Sommer and V. Paxson, “Outside the closed world: On using machine learn-
ing for network intrusion detection,” in Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010, pp. 305–316.

[17] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,
“Lstm: A search space odyssey,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[18] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep
learning based natural language processing,” ieee Computational intelligence
magazine, vol. 13, no. 3, pp. 55–75, 2018.

[19] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep
learning for computer vision: A brief review,” Computational intelligence and
neuroscience, vol. 2018, 2018.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[21] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep
features for scene recognition using places database,” in Advances in neural
information processing systems, 2014, pp. 487–495.

[22] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.” in bmvc,
vol. 1, no. 3, 2015, p. 6.

[23] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale convolu-
tional networks.” in IJCNN, 2011, pp. 2809–2813.

[24] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “Nic: Detecting adversarial
samples with neural network invariant checking,” in 26th Annual Network and
Distributed System Security Symposium, NDSS, 2019, pp. 24–27.

[25] M. Villarreal-Vasquez, ConFoc Repository to be Public After Revision, 2019.
[Online]. Available: https://github.com/mvillarreal14/confoc

98

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[27] J. S. J. Stallkamp, M. Schlipsing and C. Igel, “Man vs. computer: Benchmark-
ing machine learning algorithms for traffic sign recognition,” Neural Networks,
no. 0, pp. –, 2012.

[28] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in British
Machine Vision Conference, 2015.

[29] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[30] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2014, pp.
806–813.

[31] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition,”
in International conference on machine learning, 2014, pp. 647–655.

[32] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convo-
lutional neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2414–2423.

[33] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

[34] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activa-
tions in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[35] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[36] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[37] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial exam-
ples in deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[38] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[39] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[40] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to
adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

99

[41] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing robustness
of machine learning systems via data transformations,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2018, pp.
1–5.

[42] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial
examples,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 135–147.

[43] R. Shin and D. Song, “Jpeg-resistant adversarial images,” in NIPS 2017 Work-
shop on Machine Learning and Computer Security, vol. 1, 2017.

[44] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg
compression on adversarial images,” arXiv preprint arXiv:1608.00853, 2016.

[45] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E. Kounavis,
and D. H. Chau, “Keeping the bad guys out: Protecting and vaccinating deep
learning with jpeg compression,” arXiv preprint arXiv:1705.02900, 2017.

[46] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[47] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[48] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp.
660–674, 1991.

[49] I. Steinwart and A. Christmann, Support vector machines. Springer Science &
Business Media, 2008.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[52] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural
networks with rectified linear units,” arXiv preprint arXiv:1611.01491, 2016.

[53] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi,
J. Schmidhuber, and L. M. Gambardella, “Max-pooling convolutional neu-
ral networks for vision-based hand gesture recognition,” in 2011 IEEE Inter-
national Conference on Signal and Image Processing Applications (ICSIPA).
IEEE, 2011, pp. 342–347.

[54] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[55] R. A. Brualdi, H. J. Ryser et al., Combinatorial matrix theory. Springer, 1991,
vol. 39.

100

[56] G. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
Tech. rep., 10 2008.

[57] B. Wang, ConFoc Repository to be Public After Revision, 2019. [Online].
Available: https://github.com/bolunwang/backdoor

[58] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style trans-
fer and super-resolution,” in European conference on computer vision. Springer,
2016, pp. 694–711.

[59] M. B. Salem, S. Hershkop, and S. J. Stolfo, “A survey of insider attack detection
research,” in Insider Attack and Cyber Security. Springer, 2008, pp. 69–90.

[60] A. Sanzgiri and D. Dasgupta, “Classification of insider threat detection tech-
niques,” in Proceedings of the 11th annual cyber and information security re-
search conference, 2016, pp. 1–4.

[61] J. Hunker and C. W. Probst, “Insiders and insider threats-an overview of defi-
nitions and mitigation techniques.” JoWUA, vol. 2, no. 1, pp. 4–27, 2011.

[62] P. Chen, L. Desmet, and C. Huygens, “A study on advanced persistent threats,”
in IFIP International Conference on Communications and Multimedia Security.
Springer, 2014, pp. 63–72.

[63] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection
systems,” in Proceedings of the 9th ACM Conference on Computer and Com-
munications Security. ACM, 2002, pp. 255–264.

[64] H. Xu, W. Du, and S. J. Chapin, “Context sensitive anomaly monitoring of
process control flow to detect mimicry attacks and impossible paths,” in In-
ternational Workshop on Recent Advances in Intrusion Detection. Springer,
2004, pp. 21–38.

[65] J. T. Giffin, S. Jha, and B. P. Miller, “Automated discovery of mimicry at-
tacks,” in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2006, pp. 41–60.

[66] D. Yao, X. Shu, L. Cheng, and S. J. Stolfo, “Anomaly detection as a service:
Challenges, advances, and opportunities,” Synthesis Lectures on Information
Security, Privacy, and Trust, vol. 9, no. 3, pp. 1–173, 2017.

[67] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic program modeling
for high-precision anomaly classification,” in Computer Security Foundations
Symposium (CSF), 2015 IEEE 28th. IEEE, 2015, pp. 497–511.

[68] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Ex-
isting solutions and latest technological trends,” Computer networks, vol. 51,
no. 12, pp. 3448–3470, 2007.

[69] M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey of numeric
and symbolic outlier mining techniques,” Intelligent Data Analysis, vol. 10,
no. 6, pp. 521–538, 2006.

101

[70] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris, “A comparative study
for outlier detection techniques in data mining,” in 2006 IEEE conference on
cybernetics and intelligent systems. IEEE, 2006, pp. 1–6.

[71] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection. John
wiley & sons, 2005, vol. 589.

[72] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artifi-
cial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[73] P. Thompson, “Weak models for insider threat detection,” in Sensors, and
Command, Control, Communications, and Intelligence (C3I) Technologies for
Homeland Security and Homeland Defense III, vol. 5403. International Society
for Optics and Photonics, 2004, pp. 40–48.

[74] M. B. Salem and S. J. Stolfo, “Masquerade attack detection using a search-
behavior modeling approach,” Columbia University, Computer Science Depart-
ment, Technical Report CUCS-027-09, 2009.

[75] C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” 1999.

[76] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self
for unix processes,” in Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on. IEEE, 1996, pp. 120–128.

[77] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using se-
quences of system calls,” Journal of computer security, vol. 6, no. 3, pp. 151–
180, 1998.

[78] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and
static behavioral models,” Pattern recognition, vol. 36, no. 1, pp. 229–243, 2003.

[79] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self: Probabilistic
reasoning of program behaviors for anomaly detection with context sensitivity,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). IEEE, 2016, pp. 467–478.

[80] J. Hollmén and V. Tresp, “Call-based fraud detection in mobile communication
networks using a hierarchical regime-switching model,” in Advances in Neural
Information Processing Systems, 1999, pp. 889–895.

[81] P. Smyth, “Clustering sequences with hidden markov models,” in Advances in
neural information processing systems, 1997, pp. 648–654.

[82] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Visualization of
navigation patterns on a web site using model-based clustering,” in Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2000, pp. 280–284.

[83] G. Salton, R. Ross, and J. Kelleher, “Attentive language models,” in Proceedings
of the Eighth International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), vol. 1, 2017, pp. 441–450.

102

[84] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[85] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[86] M. Villarreal-Vasquez, LADOHD Repository to be Public After Revision, 2020.
[Online]. Available: https://github.com/mvillarreal14/ladohd

[87] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recom-
mendations with recurrent neural networks,” arXiv preprint arXiv:1511.06939,
2015.

[88] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for session-
based recommendations,” in Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems. ACM, 2016, pp. 17–22.

[89] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “Lstm-based system-call lan-
guage modeling and robust ensemble method for designing host-based intrusion
detection systems,” arXiv preprint arXiv:1611.01726, 2016.

[90] C. Feng, T. Li, and D. Chana, “Multi-level anomaly detection in industrial con-
trol systems via package signatures and lstm networks,” in Dependable Systems
and Networks (DSN), 2017 47th Annual IEEE/IFIP International Conference
on. IEEE, 2017, pp. 261–272.

[91] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM,
2017, pp. 1285–1298.

[92] Y. Shen, E. Mariconti, P.-A. Vervier, and G. Stringhini, “Tiresias: Predict-
ing security events through deep learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: ACM, 2018.

[93] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language
modeling,” in Thirteenth annual conference of the international speech commu-
nication association, 2012.

[94] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, “Gram-
mar as a foreign language,” in Advances in Neural Information Processing Sys-
tems, 2015, pp. 2773–2781.

[95] K. Rocki, “Recurrent memory array structures,” 07 2016.

[96] G. Bouchard, “Efficient bounds for the softmax function, applications to in-
ference in hybrid models,” in Presentation at the Workshop for Approximate
Bayesian Inference in Continuous/Hybrid Systems at NIPS-07. Citeseer, 2007.

[97] A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm,” IEEE transactions on Information Theory, vol. 13,
no. 2, pp. 260–269, 1967.

103

[98] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[99] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing lstm
language models,” arXiv preprint arXiv:1708.02182, 2017.

[100] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016.

[101] L. N. Smith, “Cyclical learning rates for training neural networks,” in Applica-
tions of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE,
2017, pp. 464–472.

[102] A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” R
news, vol. 2, no. 3, pp. 18–22, 2002.

[103] S. Kotsiantis and P. Pintelas, “Recent advances in clustering: A brief survey,”
WSEAS Transactions on Information Science and Applications, vol. 1, no. 1,
pp. 73–81, 2004.

[104] S. Norman, J. Chase, D. Goodwin, B. Freeman, V. Boyle, and R. Eckman, “A
condensed approach to the cyber resilient design space,” INSIGHT, vol. 19,
no. 2, pp. 43–46, 2016.

[105] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomization for
security,” Tech. Rep. UILU-ENG-03-2207, 2003.

[106] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using sys-
tem calls: Alternative data models,” in Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy, 1999, pp. 133–145.

[107] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-injection at-
tacks with instruction-set randomization,” in Proceedings of the 10th ACM Con-
ference on Computer and Communications Security, 2003, pp. 272–280.

[108] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On
the effectiveness of address-space randomization,” in Proceedings of the 11th
ACM Conference on Computer and Communications Security, 2004, pp. 298–
307.

[109] B. Bhargava, P. Angin, R. Ranchal, and S. Lingayat, “A distributed monitoring
and reconfiguration approach for adaptive network computing,” in Proceedings
of the 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop
(SRDSW), 2015, pp. 31–35.

[110] K. Kirkpatrick, “Software-defined networking,” Communications of the ACM,
vol. 56, no. 9, pp. 16–19, Sep. 2013.

[111] M. H. Marghny and A. I. Taloba, “Outlier detection using improved genetic
k-means,” International Journal of Computer Applications, vol. 28, no. 11, pp.
33–36, August 2011.

[112] L. M. Manevitz and M. Yousef, “One-class svms for document classification,”
Journal of Machine Learning Research, vol. 2, pp. 139–154, Mar. 2002.

104

[113] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based archi-
tecture for intrusion detection,” in Proceedings of the Network and Distributed
Systems Security Symposium, 2003, pp. 191–206.

[114] DHS, “Moving target defense,” https://www.dhs.gov/science-and-
technology/csd-mtd, Accessed Feb. 2017.

[115] N. Ahmed and B. Bhargava, “Mayflies: A moving target defense framework for
distributed systems,” in Proceedings of the 2016 ACM Workshop on Moving
Target Defense, 2016, pp. 59–64.

VITA

105

VITA

Miguel Villarreal-Vasquez received his B.S. degree in Electronics and Communi-

cations Engineering from University of Panama, Panama in 2006. He obtained his

M.S. degree in Information Security at Purdue University in 2014. After completing

this degree, he joined the Department of Computer Science as a Ph.D. student in the

same institution, where he worked as a teaching and research assistant. He completed

the Ph.D. degree under the supervision of Professor Bharat Bhargava in August 2020.

His research interests are building resilient security systems using machine learning,

with special attention to deep learning. His research also embraces improving the

resiliency of deep learning architectures against adversarial settings.

During his Ph.D. studies, Miguel joined multiple companies as a research assistant

intern. In 2018, he worked for the Center for Advanced Machine Learning (CAML)

at Symantec, Mountain View CA, developing an anomaly detection system based on

LSTM models to process high dimensional sequential data. In 2015 and 2017, he

joined the Content-Protection group at IBM-Almaden Research, San Jose CA, where

he developed decentralized applications using Blockchain technologies. Miguel also

worked at Delphi Electronics and Safety, Kokomo IN, in 2014 right after his Master’s,

where he designed security mechanisms implemented in new infotainment systems.

Additionally, his Ph.D. research projects represented Purdue University in the

Northrop Grumman Cybersecurity Consortium (NGCRC) for three years. The per-

formed research received the CERIAS Symposium Best Poster Award in 2019.

