
1

Hunting for Insider Threats Using
LSTM-based Anomaly Detection

Miguel Villarreal-Vasquez,Gaspar Modelo-Howard, Senior Member, IEEE, Bharat Bhargava, Fellow, IEEE,
and Simant Dube

Abstract—Insider threats are one of the most difficult problems to solve, given the privileges and information available to insiders to
launch different types of attacks. Current security systems can record and analyze sequences from a deluge of log data, potentially
becoming a tool to detect insider threats. The issue is that insiders mix the sequence of attack steps with valid actions, reducing the
capacity of security systems to programmatically detect the attacks. To address this shortcoming, we introduce LADOHD, an anomaly
detection framework based on Long-Short Term Memory (LSTM) models, which learns the expected event patterns in a computer
system to identify attack sequences even when attacks span for a long time. The applicability of the framework is demonstrated on a
dataset of 38.9 million events collected from a commercial network of 30 computers over twenty days and where a 4-day long insider
threat attack occurs. Results show that LADOHD is able to detect anomalies generated by the attack with a True Positive Rate of
97.29% and False Positive Rate of 0.38%. LADOHD outperforms the endpoint detection system used to protect the commercial
network, as well as frameworks based on other methods like Hidden Markov Models.

Index Terms—Anomaly detection, endpoint detection and response (EDR), high-dimensional data, insider threats, long short-term
memory (LSTM), order-aware recognition (OAR) problem, sequence analysis, variable-length system activity event sequences.

F

1 INTRODUCTION

ADemanding challenge for security systems is to suc-
cessfully defend against insider threats because insid-

ers are in possession of credentials, have (some) knowledge
of the system operation, and are implicitly trusted as mem-
bers of the organization [1]. They are also located inside the
security perimeter, allowing them to unsuspiciously deploy
attacks such as data exfiltration, tampering with data, and
deletion of critical data [2], [3]. They commonly use sophis-
ticated strategies to avoid detection like those in multistage
persistent threats [4] and mimicry attack [5], [6], [7]. Namely,
insiders mix malicious event sequences with benign actions
to exploit the incapacity of defensive systems to discern
event sequences after certain length, which is referred to
as the order-aware recognition (OAR) problem [8]. Existing
enterprise protection systems endeavor to counter this in-
creased sophistication in insider evasion attacks through
the application of anomaly detection methods based on ad-
vanced machine learning. Machines in customer companies
run Endpoint Detection and Response (EDR) agents that
generate high volumes of system events that are exam-
ined through centralized analytics modules running at the
security-provider company. The ultimate goal is to detect
stealthy threats, including zero-day exploits, by analyzing
patterns and relationships of the aggregated data collected

• This work was supported by grants from the Northrop Grumman Cyber-
security Research Consortium (NGCRC).

• M. Villarreal-Vasquez and B. Bhargava are with the Department of
Computer Science, Purdue University, West Lafayette, IN 47907, USA
(email: mvillar@purdue.edu; bbshail@purdue.edu).

• G. Modelo-Howard is with Palo Alto Networks, Santa Clara, CA 95054
USA (email: gaspar@acm.org).

• S. Dube is with Broadcom Inc., Mountain View, CA 94043 USA (email:
simant.dube@broadcom.com).

Manuscript received June 18, 2020.

from these multiple endpoints at runtime. In current enter-
prise solutions, many of the collected malicious events are
correctly classified as alerts. However, others are ignored
and considered benign events despite being part of the
attacks that span for a long period of time. These undetected
malicious events are usually related to those detected and
identified as alerts, but they are missed because of the lack
of optimal solutions able to find the existing relationships
among distant events in a sequence. This brings the need
for precise system behavior modeling capable of capturing
long-range relationships (i.e., long term dependencies) in
multiple context for event sequence analysis and detection
of anomalies at runtime [9].

The paradigm of anomaly detection [8], [10], [11], [12],
[13], [14], [15], [16] involves the construction of patterns
of normal behavior of systems and deems as anomalous
(or possible intrusion) any action that does not conform
to the learned patterns [17], [18]. Prior research work have
been devoted to investigate and develop anomaly detection
systems using sequence analysis strategies. Some of these
detection techniques are based on n-gram [17], [19], [20] and
others on Hidden Markov Model (HMM) [9], [17], [21], [22],
[23], [24], [25]. In general, these techniques learn observed
patterns in a training phase and identify as anomalous event
sequences that deviate from them during testing. In partic-
ular, HMM-based methods estimate the likelihood of events
conditioned on some number of previous events (e.g., after
observing n − 1 previous events). This allows determining
not only whether a sequence of certain length (i.e., n in
this case) is feasible to occur, but also how likely it occurs
in normal (non-attack) conditions. However, Yao et al. [8]
presented a comprehensive analysis of these techniques and
showed they are incapable to discern the order of events
in long sequences due to the OAR problem, restricting the

2

length n of the analyzed sequences to small values.

In this paper, we present a LSTM-based anomaly de-
tection framework that collects and analyzes high volumes
of system events from multiple distributed EDR agents to
protect against insider threats at runtime. We refer to the
framework as LADOHD (LSTM-based Anomaly Detector
Over High-dimensional Data) due to the high feature di-
mensionality of the produced events. LADOHD tackles the
OAR problem by leveraging the event relationship infor-
mation extracted from different endpoints as well as the
properties ingrained to LSTMs and its variants [26], [27],
such as memory, short and long term dependencies, stateful
representation, and capacity to process variable length se-
quences [28], [29]. We hypothesize that these properties give
these models the ability to detect variable-length anomalous
sequences and the potential to recognize attacks deployed
by insiders that span for a long time. Specifically, our LSTM-
based technique answers the anomaly detection problem of
given a sequence of events e1, e2, . . . , en−1, whether or not
the sequence e1, e2, . . . , en−1, en should occur. Our tech-
nique operates with variable values of n and detects non-
conforming patterns with respect to the learned models by
analyzing the event sequences formed by system activities.
Each possible system activity is enumerated and uniquely
identified to form the vocabulary of system events. At any
time t, our detector computes the probability of each possi-
ble event to be the next one given the previous sequence of
events observed until time t-1. The detection is then made
by analyzing the distribution of these probability values.

The obtained results include quantitative measurements
of the detection capacity of the proposed technique tested
over a dataset of 38.9 million activity events. These events
were collected from multiple security endpoints running on
more than 30 machines for 28 days. It is shown through dif-
ferent experiments that our framework successfully achieve
detection with a TPR and a FPR of 97.29% and 0.38%
respectively. Below, our research contributions:

• We implement a prototype of LADOHD [30] evalu-
ated with a dataset of 38.9 million activity events col-
lected from an enterprise EDR system. Results show
that our method achieves a high detection rate above
97% while keeping a FPR < 0.5%. Furthermore, it
is shown that LADOHD detected more malicious
events under the same attack than the EDR of the
same company currently in production.

• A deep analysis of the features of the events gen-
erated by the EDR system is presented. Feature were
selected to form a vocabulary of events that allow the
model successfully learning long-term dependencies.

• We measure how far LSTM-based models look back-
ward to rank probable events in each timestep of a
sequence. We demonstrate that LSTMs have a better
capacity than alternative methods (e.g., HMM-based
methods) to solve the OAR problem.

• We are the first presenting a comprehensive analy-
sis of the strengths, limitations and applicability of
LSTM-based models to counter insider threats via
anomaly detection in real-word scenarios.

2 OVERVIEW AND THREAT MODEL

2.1 Overview
LADOHD builds LSTM-based behavioral profiles of appli-
cations using the system event sequences collected from
multiple endpoints running a renowned EDR agent. Its
goal is to detect anomalous or non-conforming execution
patterns at runtime in two phases. First, a training or obser-
vation phase, in which the profile of a selected application is
built by learning the relationships among events in patterns
or sequences observed when the application runs in nor-
mal (non-attack) conditions. Second, a testing or evaluation
phase, in which the learned model is used to estimate the
probability of each possible event to be the next event in a
sequence given the sequence of previous events. In the latter
phase, low probable events are classified as anomalous.

We assume that the generated event sequences follow
a well-structured pattern (e.g. execution path of programs)
with a consistent relationship among events. Consequently,
the resulting sequences are thought as an structured lan-
guage that can be analyzed using LSTM-based models as it
has been done via Natural Language Processing (NLP) to
solve problems such as language modeling (i.e., prediction
of the next word in a text) [31], [32].

LADOHD requires the definition of a finite set of possi-
ble symbols E = {1, 2, ..., N}, which corresponds to all the
possible events related to the application of interest that are
considered in the detection process (hereafter, we will refer
to this set as vocabulary of events). At training, LADOHD
extracts all the subsequences containing the events in E
from the set of event sequences S = {s1, s2, ...sN} gener-
ated by N endpoints. These subsequences are used to train
the LSTM-Based model.

The definition of the vocabulary of events E is crucial
because there is a trade-off between the granularity of the
events and the number of unseen events that appear it
the evaluation or testing phase. For our experiments, we
defined E in such a way that most of the events observed at
training are also observed at testing, reducing the number
of unseen events during the evaluation phase. Section 4
includes the details of our definition.

During the evaluation phase, given a previous sequence
of events until timestep t − 1 e1, e2, ..., et−1 (ei ∈ E), the
trained model outputs an array of probabilities of length
|E|, representing the probabilistic estimation of each event
in E to be the next event at timestep t. For the detection,
LADOHD uses this output and finds the set K of the top k
most likely events to occur at time t. When an event et ∈ E
is observed at time t, it is considered benign if et ∈ K ,
anomalous otherwise.

For any sequence s = e1e2...et−1, our framework com-
putes the probabilities of possible events next in the se-
quence P (ei|e1:i−1) for i = 1, 2, ... This versatile approach
allows not only validating each event at runtime, but also
estimating the probability the entire sequence s by applying
the chain rule as shown in Equation 1.

P (s) =
t∏

i=2

P (ei|e1:i−1) (1)

LADOHD operates with system events collected from mul-
tiple monitored machines. The EDR agent running in these

3

tanhσσ σ

tanh

Elementwise operation

Neural network layerxt

ht-1

Ct-1 Ct

ht

ft it ot
ct
~

(a) LSTM Cell

it = σ(Wi · xt + Ui · ht−1 + bi)

ft = σ(Wf · xt + Uf · ht−1 + bf)

ot = σ(Wo · xt + Uo · ht−1 + bo)

c̃t = tanh(Wc · xt + Uc · ht−1 + bc)

Ct = ft � Ct−1 + it � c̃t
ht = ot � tanh(Ct)

(b) Operations in the LSTM Cell

Fig. 1. Architecture of a LSTM cell. Figure 1a shows the internal connections of the different components and the output of the internal operations of
the cell. Figure 1b shows the details of these operations performed over the current input and previous hidden state to compute the current output.

machines generates an event for every activity conducted by
a specified process (whether malicious or not). Each event
includes a comprehensive set of information about the actor
(process executing the action), detailed description of the
action, and information about the target (object over which
the action is executed). The pieces of information consid-
ered during the monitoring process and their interpretation
define the vocabulary of events and its granularity. For
example, consider the scenario where a “process A (actor)
connects (action) to specific IPv4 address X.X.X.X (target).”
This event might be defined as “A connects X.X.X.X”, where
X.X.X.X represents any possible IPv4 address, producing a
vocabulary with high granularity. The same event, however,
might be defined as “A connects X”, with X being either
0 or 1 to represent whether the IPv4 address is internal
or external respectively. In the latter case, due to the low
granularity, the vocabulary size is significantly reduced.

2.2 Threat Model

We consider an insider threat who launches a multistage
advance persistent attack. The insider is assumed knowl-
edgeable in computer security and is initially assigned non-
administrative privileges in a local machine. The goal of
the attacker is stealing information by executing multiple
steps, including a user escalation followed by a data exfil-
tration phase. The insider initially exploits already installed
applications such as Powershell and runs malicious scripts
to establish remote connections to send the stolen data.

3 BACKGROUND AND RELATED WORK

3.1 LSTM Networks

LSTMs are a type of recurrent neural network (RNN) able
to learn long-term dependencies (i.e., relationships between
elements in distant positions of a sequence) [37]. They
achieve this goal through a complex memory structure in
the LSTM cell not included in traditional RNN cells. Figure
1 shows this structure. The matrices and vectors Wx, Ux,
and bx (with x ∈ {f, i, c, o}) in Figure 1b are the parameters
θ of a LSTM [37]. Their interaction is shown in Figure 1a.
Like traditional RNNs, LSTMs process each input at time
t along with the output of the previous timestep (ht−1). In
addition, they include a unit called cell state (C) that carries
on information of the entire sequence. LSTMs adds to or

removes minor pieces of information from C through the
operations in the forget (ft) and input (it) gates. The new C
represents the event history used to compute the output ht
by filtering C out with the output gate ot. This architecture
gives LSTMs the capacity to relate current events with
distant past events in a sequence, making them suitable to
detect anomalies produced by insider threat activities.

LSTMs can be implemented as multi-class classifiers that
map a m-dimensional input symbol x ∈ Rm into one of n
classes (each class corresponding to one of the the possible
events). The output of a LSTM (with a sofmax [38] layer at
the end) is a n-dimensional tensor y ∈ Rn, which represents
the probability distribution of the n classes. Namely, the ele-
ment yi of the output y represents the probability that input
x corresponds to the class i. To operate as a sequential multi-
class classifier, LSTMs are trained using backpropagation
[39] with a set of pairs (x, y), where x is an input sequence
of classes and y the expected next class of the sequence x.
The training pair (x, y) is customized to control the timestep
windows (w) used to update the parameters θ. For example,
given a input sequence x = x1, x2, ..., xt−1, the network can
be trained to predict either the element xt (w = t − 1) or
each of the elements x2, ..., xt−1, xt (w = 1). When w = 1
(our case as described in Section 4.4), the LSTM outputs the
probability P (xt|x1:t−1) at each timestep t, which allows
classifying low probable events as anomalous regardless the
length of the previous sequence.

3.2 Order-Aware Recognition (OAR) Problem

The OAR problem is an anomaly detection problem that
refers to the incapacity of distinguishing sequences after
certain length [8]. Given a ordered sequence of events abcba
the corresponding set of 2-tuple adjacent events is {ab, bc,
cb, ba}. The same set results from these other two ordered
sequences cbabc and bcbab. As the 2-tuple adjacent event set
is the same for these three ordered sequences of the example,
methods able to analyze sequences of length 2 or less cannot
discern among these ordered sequences. This can be better
observed if the 3-tuple adjacent events of the sequences
abcba, cbabc and bcbab are considered, which respectively are
{abc, bcb, cba}, {cba, bab, abc} and {bcb, cba, bab}. Clearly,
in this case methods able to analyze sequences of length
3 can distinguish the three ordered sequences abcba, cbabc
and bcbab as the resulting sets are different. We investigate

4

TABLE 1
Comparison With Existing LSTM-based Security Solutions

Research Anomaly Detection Benign Data Only LSTM Only Basic Analysis Extended Analysis

System Call Language Modeling [33] 7 7 7 7 7
Multi-level Detector (For ICS) [34] 3 3 7 7 7
Deeplog [35] 3 3 3 7 7
Tiresias [36] 7 7 3 3 7
LADOHD [this work] 3 3 3 7 3

how feasible and until what extend LSTM-based models can
solve the OAR problem. This is an unsolved question and
one of our main contributions.

3.3 Endpoint Detection and Response
Endpoint Detection and Response (EDR) systems work by
monitoring endpoint and network activity and storing the
corresponding logs in a central database where further
analysis and alerting takes place. An EDR agent is installed
in each of the protected endpoints, acting as the first line
of defense against attacks and providing the foundation
for event monitoring and reporting across the network.
EDR systems evolved from malware protection solutions,
as software vendors added data collection and exploration
capabilities, thanks to the increasing computing and storage
capacity of the hosts where the agents run. The present
challenge for EDR systems is to significantly increase its de-
tection capabilities from the vast amounts of data collected,
especially for attacks that are recorded as long sequences
like those deployed by insider threats.

3.4 Anomaly Detection Based on Sequence Analysis
Using Non-LSTM Approaches
The methods presented in this section proposed sequence
analysis as an anomaly detection mechanism to detect
control-flow violations.The methods build behavioral mod-
els based on n-gram and n-order HMM to detect unseen or
low probable patterns.

Anomaly detection methods based on n-gram [19], [20]
work by enumerating all observed sequences of length n
(n-grams) to subsequently monitor for unknown patterns.
The scalability problem of these methods (impossibility of
listing all possible sequences and high false positive rate) is
described by Warrender et al. [17], who proposed an alter-
native frequency based method. In this new method each
n-gram is assigned a probability to form a histogram vector
corresponding to a point in a multidimensional space. At
evaluation time, the similarity of a new sequence of length n
(represented as a vector) with respect to the observed points
is estimated to determine whether the sequence is anoma-
lous. Despite its improvement in scalability, this approach
and the previous enumerating based method were proved
to be effective for small value of n only (e.g., 3–15), making
them not convenient for the detection of attacks consisting
of long sequences [8].

Other previous work [9], [21], [22] focused on the ap-
plication of n-order HMM to probabilistically determine
how feasible a sequence of system events is. In [21], a
comparison of different hidden states configuration of first-
order HMM (n = 1) for anomaly detection is presented.

It was found that both configurations full connected HMM
(i.e., number of hidden states equal to the number of all
possible events), and a left-to-right HMM (i.e., number of
hidden states corresponds to the length of the training
sequences) provide similar results differing mainly in the re-
quired training time. Results, although, show the efficiency
of both configurations is significantly low having in some
cases a TPR of only 55.6%. The other two HMM based
methods [9], [22] use a first-order full connected HMM
to detect anomalous sequences of system or library calls.
These methods are similar to the one described in [21],
with the addition of a new HMM initialization approach
for the transition, emission and initial probabilities. The
information for the initialization is extracted through static
analysis of the programs. With this strategy, the results show
a significant improvement in the TPR. All the described
HMM based methods [9], [21], [22] applied the dynamic
programming algorithm Viterbi [40] for inference. The time
complexity of this algorithm is O(|S|2), with S being the set
of hidden states [41]. As the lengths of the sequences to be
processed by these methods depend on the number of states
used in the configuration, this scalability issue restricts these
methods to operate over short event sequences only.

3.5 Anomaly Detection Based on Sequence Analysis
Using LSTM
Some research work havs endeavored to investigate the
application of LSTM-based models to anomaly detection
and similar security problems [33], [34], [35], [36]. In essence,
these approaches work based on the same assumptions
described in Section 2.1. Although this prior work proved
the efficiency of LSTMs to accurately estimate the likeli-
hood of a given event sequence, their ability to solve the
order-aware recognition problem and their potential against
modern evasion attacks seems not to have received much
attention.

Kim et al. [33] present an ensemble method of LSTM
models followed by threshold-based classifiers for intrusion
detection in flows of system calls. The resulting ensemble
is trained in a supervised manner (with both benign and
malicious sequences) to classify sequences as either normal
or anomalous. Obtained results are compared with other
classifiers such as k-nearest neighbor (kNN) and k-means
clustering (kMC). Details of neither the impact of sequence
lengths nor properties of LSTM models on the detection
process are included.

In [34] a multi-level approach for anomaly detection in
Industrial Control Systems (ICS) is proposed. It consists of
a bloom filter to discard events not seen during the train-
ing phase followed by a LSTM layer to detect unexpected

5

Filter

Vocabulary of events

M1

M2

MN
- Features Selection:

 actor, action, target, ...

- Define set E = {1,..,|E|}

 of possible events

Data Selection

N sequences

s1=e1, e2,.., ek

s2=e1, e2,.., ep

sN=e1, e2,.., er

- ei: Activity events

- k, p and r might be different
LSTM-Based Model

Model Generation

Data Splitter
By machine:

 - Trn: 0.8 M

 - Val: 0.2 M

By time:

 - Trn: 0.8 seq length

 - Val: 0.2 seq length

Process M out of N

sequences (M<N)

Training Process

M subsequences

Trained LSTN-

Based Model

SECTION 4.1 SECTION 4.2 SECTION 4.3

s*
1,.., s*

M

Data Generation Anomaly Detector

e1 e2 e3 ... et-1 et

[p1, p2, p3, ... p|E|]

Testing sequence witn ei ϵ E

Prob. of events in E

Form set K with the

events in E with the

top-k probabilities

SECTION 4.4

et ϵ K ?

yes

no

Benign

Anoma-
lous

1

2

3

4

Fig. 2. Components of our anomaly detection framework LADOHD to counter insider threats: (1) data generation, (2) data selection, (3) model
generation, and (4) anomaly detector. Below each component, there is a reference to the section providing a detailed explanation about its operation.

events. An event is considered unexpected or anomalous if
its probability is not among the top-k output probabilities
of the model (k being an adjustable parameter). The LSTM
layer of the detector is trained with non-malicious data only.
Results of the two layers combined are reported without
further analysis about the LSTM model itself and its impact
on the efficiency of the detector.

Du et al. [35] developed Deeplog, a technique to find
anomalies using information available in system logs. To
that end, a LSTM model is trained using a small portion
of the non-malicious data to determine the next action to
occur given a previous sequence of actions. Actions are con-
ducted using different parameter values in each occurrence
(e.g. files, execution time, etc.). For each identified action,
a different LSTM model is trained using the sequence of
observed parameter values. The goal is using these multiple
models for not only determining the set of expected actions
to occur, but also validating the probability of the parameter
value used in that action. The model for prediction of actions
is trained using a sliding length window h. Namely, given
a sequence of h actions, the model predicts the h+ 1 action.
The window moves forward one step at at time during
training. At testing, the probability of each sliding h + 1
action in the tested sequence is estimated. The sequence is
considered anomalous if there exists at least one action in it
whose probability is not among the top-k most likely output
probabilities of the model. The experiments were conducted
with small values of h (e.g. 10), and were not focused on
determining the limits of LSTM models with respect to the
length of the sequences.

A more recent work, called TIRESIAS [36], uses LSTM-
based models for attack intend prediction. That is, the
technique predicts the next step in an attack given the
previous sequence steps. The dataset used in this research
comprises events generated by security agents installed in
thousands of machines. The sequences generated by 80%
of the machines are used for training while the other 20%
for validation and testing purposes. The experiments show
the capacity of the model to predict the last event of a given
sequence only. Although no detection of attacks or malicious
sequences are included in this work, interesting results are

TABLE 2
Description of the Different Types of Events

ID Event type Actor Target No. Actions

0 Session User N/A 3
1 Process Process Process 5
2 Module Process Module (e.g. dll files) 3
3 File Process File 12
4 Directory Process Directory 14
5 Registry key Process Windows registry key 7
6 Registry value Process Windows registry value 4
7 Host Network Process IP address 3

presented with respect to the behavior of LSTM models,
which is one of the main objectives of this paper.

Table 1 presents a summary of the focus and details
found in the prior work discussed above [33], [34], [35],
[36] for comparison purposes with our research. LADOHD
is single layer LSTM-based anomaly detection mechanism
trained with benign data only particularly applied to learn
the behavior profile of an indicated application.

4 DESIGN

Figure 2 shows LADOHD and its workflow for the detec-
tion of anomalies. The framework involves four compo-
nents. First, a data generation phase, in which N machines
running an EDR agent generate activity event sequences
s1, s2, ..., sN that are collected in a centralized database.
Second, a data selection step that extracts from the collected
sequences the events related to the application of interest
and form the subsequences (s∗1, s

∗
2, ..., s

∗
M). Third, a model

generation phase that uses the selected subsequences to
form the training and validation datasets used to train the
LSTM-based model. Finally, the anomaly detector compo-
nent that deploys the trained model to determine whether
the events of a given testing sequence are anomalous.

4.1 Data Generation
A machineMi runs an enterprise EDR agent that records ac-
tivity events as they occur in the system. These events form
a corresponding event sequence referred to as si. A group of

6

N monitored machines generate the set of event sequences
S = {s1, s2, sN}, which is pre-processed and used as time-
series data to train the final LSTM-based model.

An activity event ei in the sequences can be thought as a
m-dimensional vector of features {f1i , f2i , ..., fmi }, where f ji
represents a categorical or continuous piece of information
of the reported activity. One of these features is event type.
The EDR product generates eight event types and each has
a specific set of features (including the event type itself).
Namely, the number of features m varies per event type.
Some features such as event type, actor, action and target are
common in all the activity events (regardless their types)
as they define a complete semantic for any given event ei:
“this is an event of this type in which this actor executes this
action over this target.” Table 2 summarizes the different
types of events generated by the EDR software and the
features actor, target, and action related to each type. There
is a set of specific actions available to each event type.
The complete list is not included per the request of the
company owning the security product. An example of an
event ei and its interpretation considering the four common
features listed above is as follows. The process svchost is an
integral part of Windows OS that manages system services
running from Dynamic Link Libraries (DLL). Its purpose
is to speed up the startup process by loading the required
services specified in the service portion of the registry. When
a DLL file is loaded by svchost, an event of type Module is
generated. The actor of the generated event is svchost, while
load (predefined in the product) is the action taken over the
target DLL file.

4.2 Data Selection

LADOHD requires the definition of a finite set of categorical
events (or symbols) E, which represents the set of all pos-
sible system activity events analyzed by the LSTM-based
model. This set is referred to as the vocabulary of events.

Vocabulary of Events Definition. It can be thought as a
transformation function FT (·) that changes the event feature
vector generated by the EDR agent. Given an event ei =

{f1i , f2i , ..., fmi } of type f ti = f
j∈{1,2,...,m}
i and a set F of

k ≤ m selected features for events of type f ti , the feature
transformation is given by:

FT (ei, F) =

{
e∗i = {t1i , t2i , ..., tki } if F ⊆ ei
∅ otherwise

(2)

In Equation 2, e∗i is the transformed version of the event
ei. Each transformed feature tj∈{1,2,...,k}i correspond to one
of the k selected features in F . The transformation of each
feature is a design choice that controls the granularity and
the total number of possible events (i.e., vocabulary size).
This is illustrated in Table 3 with the feature target, whose
final value can be of either low or high granularity. Rows
1 and 2 are two Module events in which the same process
loads two different DLL files. Assuming f ti (t ∈ {1, 2, ..., k})
were the target-related feature of these Module events, f ti
might correspond to either the frequency of the DLL file in
the distribution observed during training (low granularity)
or the individual file itself (high granularity). In the former
case, the two Module events would be represented by the

same transformed feature vector, which translates to the
same symbol in the final categorical vocabulary of events.
In the latter case, two different symbols are produced.
Similarly, if f ti were the target feature of the Host Network
events in rows 3 and 4, f ti might either indicate whether
the network connection is internal or external (low gran-
ularity) or the individual destination IP addresses (high
granularity). With the low granularity interpretation, the
Host Network events pass from including the entire set
of IP addresses to including a binary piece of information,
reducing the number of symbols that form the vocabulary.

Figure 2 shows the effect of applying the definition of the
vocabulary to the selection of events. From the N original
sequences, M ≤ N are chosen for the training phase. This
is because FT (·) does not produce an output when the
processed event does not include the features defined in
F . For a given sequence of activity events si, FT (·) and F
operate as a filter to select which events are kept and what
pieces of information from them are used to generate the
transformed events that form the training subsequences s∗i .
For instance, in order to build the profile of an applicationA,
the actor feature is included in the set F and FT (·) is defined
so that only events with application A as actor are selected.
Thereby, any sequence si with events produced by different
applications is reduced to the subsequence s∗i , which only
includes events whose actor is application A. Any sequence
si with no event with application A as actor is disregarded.

Based on the definition of FT (·) and the selected features
F for each event type, there is finite set of transformed
feature vectors, which are translated one-to-one to the set
of categorical symbols E = {1, 2, ..., |E|}. Whereby, a final
subsequence s∗i is comprised of these categorical symbols.

4.3 Model Generation
The selectedM subsequences s∗i are used to train the LSTM-
based model following an either by-machine or by-time
split. Splitting by machine refers to select approximately
80% of the the entire training subsequences s∗i for training,
leaving 20% for validation. Splitting by time, in contrast,
refers to approximately select the first 80% of events in each
subsequence s∗i for training, leaving the remaining 20% of
events for validation. In either splitting strategy, the result-
ing training and validation subsequences are concatenated
to respectively form the unique training and validation
sequence st and sv , such that st ∩ sv = ∅.

Our LSTM-based model consists of a encoder of three
layers of LSTM followed by a linear layer as suggested
in [42]. At training, we use a timestep window w = 1
to compute the probability of each event of the sequence
given the previous subsequence. For better results, we apply
a variety of strategies such as Stochastic Gradient Descent
with Restart (SGDR) [43] and Cyclical Learning Rates [44].
The hyperparamenters of the model were tuned to get the
best performance for the dataset described in Section 5: (1) a
batch size of 64, (2) an unrolling window (Batch Propagation
Through Time or BPTT) of 64, (3) an embedding size of 16,
and (4) 100 activations in the linear layer.

4.4 Anomaly Detector
At testing time, our trained LSTM-based model is used
to classify each event in a sequence as either benign or

7

TABLE 3
Examples of Activity Events With Different Granularities

Event type Actor Action Target (high granularity) Target (low granularity)

Module Process A Load DLL file1 Range 2 (100 ≤ frequency of file1 ≤ 500)
Module Process A Load DLL file30 Range 2 (100 ≤ frequency of file30 ≤ 500)
Host Network Process A Connect 200.12.12.10 External connection
Host Network Process A Connect 192.168.10.3 Internal connection

anomalous. To classify the event et observed a timestep t,
our detector follows four steps. In step 1, the previous sub-
sequence e1, e2, ..., et−1 observed until time t−1 is passed as
input to our trained LSTM-based model. In step 2, the model
computes the probabilities of each event in E (vocabulary
of events) to be the next event in the sequence given the
previous subsequence. Step 3 is a procedure that creates a set
of probable events K ⊂ E, whose elements are the events
with the hightest probabilities. The size of the set K can be
set either statically or dynamically. For the static assignment,
we customize the parameter k to chose all the events in
the output model whose probabilities are within the top-
k probabilities. This resemble the use a fixed threshold that
takes all the events above the smallest probability among the
the top-k ones. The dynamic assignment, in contrast, select
the most probable events based on the natural division
between high and low values found in the model output.
The natural division is achieved by using the most repeated
probability in the output array as threshold. Probabilities
above this threshold belong to the high-value set, while the
remaining probabilities are assigned to the set of low values.
In the final step (step 4), the event et is classified as benign
if et ∈ K , otherwise anomalous.

5 DATASET

The sequences for training and testing were collected on
normal and under attack conditions respectively. Security
experts (referred to as Red Team) conducted specific attacks
on a Windows machine during the collection period of the
testing sequence. The undue activities are reflected as either
specific unseen events or subsequences of expected events in
an unexpected order. Table 4 summarizes the entire dataset.
Pre-filter refers to the total number of events collected
from multiple endpoints before filtering them out using the
definition of the vocabulary of events. In contrast, post-
filter refers to the sequences obtained after filtering. The
collected data was filtered out to include events generated
by the process PowerShell as actor. This is an application
commonly used to conduct stealthy data exfiltration. Our
intuition was that learning its behavior in normal (or non-
attack) conditions would allow detecting malicious patterns
resulting from the activities of the insider threat.

Vocabulary of Events. The objective was to capture as
much information as possible from the PowerShell appli-
cation. The selection of the set of features F of each event
type was done based on the data observed in the training
sequence. We traded-off granularity with the total number
of possible events in order to avoid having a large number of
events observed only at training (and not at testing) and vice
versa. Following this guidance, each event ei was processed
using the set of features F = {f1i , f2i , f3i , f4i , f5i , f6i }, where:

TABLE 4
Dataset Description

Training / Validation Testing

Pre-filter Post-filter (trn) Post-filter (val) Pre-filter Post-filter (test)

38,899,995 63,282 13,280 727,275 66,972

• f1i : Actor feature. Its corresponding t1i is a unary
piece of information defining the actor (always 0 for
powershell.exe).

• f2i : Event type feature. Its corresponding t2i might be
any of the eight event type IDs described in Table 2.

• f3i : Action feature. Its corresponding transformed
featured t3i was defined per event type. It can vary
from 0 to 13 depending on the event type as specified
in Table 2.

• f4i : Target feature. Its t4i depends on the event type.
For Process events t4i = 0 (not powershell.exe) and
t4i = 1 (powershell.exe). For Module events t4i = 0
(not a DLL file) and t4i = 1 (DLL file). For Registry
Value events t4i = 0 (Others), t4i = 1 (HKEY USERS),
and t4i = 2 (HKEY LOCAL MACHINE). For the
rest of event types t4i operates as unitary piece of
information.

• f5i : Network feature. Its t5i is ternary piece of in-
formation about Host Network events only (0 for
self connection, 1 for internal connection, and 2 for
external connection). For the rest of event types this
feature operates as unitary piece of information.

• f6i : User feature. The transformed feature t6i is a
binary piece of information about the user executing
the action (0 for system-related user and 1 for non-
system-related user). For Session and Registry Value
events, this feature operates as a unary piece of
information.

Each event e∗i = {t1i , t2i , t3i , t4i , t5i , t6i } is extracted fol-
lowing the definitions above. With these definitions, the
vocabulary size is 175 (E = {0, 1, ..., 174}), from which
41 and 31 events are present in the training and testing
sequences respectively. Twenty out of the 41 training events
do not appear in the testing sequence. Likewise, ten out of
the 31 testing events are not present in the training sequence.
These 10 events are referred to as unseen events.

Training set. The final training (st) and validation (sv)
sequences were obtained by monitoring 30 machines. After
filtering the collected sequences, we got a total of 76,562
events in 30 subsequences (including only events with Pow-
erShell actor). We then applied a by-machine data split and
selected the subsequences of the first 24 machines for train-
ing, leaving the subsequences of the remaining 6 machines

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Machine ID

07/02/18
07/01/18
06/30/18
06/29/18
06/28/18
06/27/18
06/26/18
06/25/18
06/24/18
06/23/18
06/22/18
06/15/18
04/30/18
04/29/18
04/28/18
04/27/18
04/26/18
04/25/18
04/24/18

D
at

e

0

200000

400000

600000

800000

1000000

1200000

1400000

N
um

be
r o

f C
ol

le
ct

ed
 E

ve
nt

s

Fig. 3. Data collection dates from 30 machines, from April 27th to July
7th of 2018. This sparse collection timeframe was intended to capture
the behavior of the application Powershell in non-attack conditions.

for validation. After concatenating the corresponding sub-
sequences, the resulting training and validation sequences
had a length of 63,282 (82.65%) and 13,280 (17.35%) events
respectively. Figure 3 shows the collection dates from those
30 machines. This sparse collection timeframe was intended
to capture the behavior of PowerShell in normal conditions
as no attacks were reported in these collection periods.

Testing set. This sequence of 66,972 events after filtering
was obtained from a different victim machine monitored
from May 8th to May 11th. Among all its, a total of 117
events are unseen (observed at testing but not at training).
The Red Team launched an multi-stage persistent attack
consisting of a user escalation step followed by a data
exfiltration attack on this victim machine as follows:

• The Red Team was initially assigned a non-
administrative user for the victim computer.

• The hacking tool Mimikatz is used to steal credentials
from the memory of the victim machine, performing
a user escalation attack.

• The Red Team roams on the network to which the
victim computer is connected and discovers other
resources (shared folders, machines, users, domains).
Remote shares are discovered and the corresponding
files are copied to the victim machine.

• Powershell files are also copied to the machine and
then executed, in order to compromise other comput-
ers and extract files from them.

• An external remote connection is established from
the victim machine to bypass the firewall protection.
The copied files are sent outside the network through
this connection.

Ground Truth. The Red Team provided a manually
generated log file enumerating the sequence of steps fol-
lowed during the execution of the attack. Each entry in
this file contains a high-level description of the step and
a timestamp indicating the day and time of its execution.
Some of the steps in the file are identifiable as actions
executed by Powershell. This information was used to find
the corresponding events in the testing sequence, which is
formed by events in which Powershell functions as actor
only. Specifically, we found 110 matches. Additionally, the
EDR of the security company produced four alerts while
the Red Team conducted the attack on the victim machine.

These alerts were matched with 8 events in the testing
sequence. The alert-related events (8) along with the Red-
Team-matched events (110) and the unseen events (117)
form the sequence portions corresponding to malicious
activity. Namely,there are 295 malicious events throughout
the testing sequence. . Malicious events are expected to be
detected as anomalous. Events other than alert-related, Red-
Team-matched, and unseen events are regarded benign and
are expected to be as such. We set our ground truth based
on these assumptions and measure the performance of our
method accordingly.

6 EXPERIMENTS

This section presents the experiments conducted to evaluate
our LADOHD framework using the datasets described in
Section 5. The experiments were designed to answer a series
of of research questions, which are included along with our
findings in the following sections.

6.1 Dynamic vs. Static Selection of the Set of Probable
Events K
RQ1. What approach (either dynamic or static selection of
K) provides a better performance? If the static method does,
what is the best value of the parameter k?

We investigate whether our technique identifies the well-
identified malicious events. We are particularly interested
in finding which approach provides the best anomaly de-
tection performance. To this end, we measure the TPR and
FPR variations as we change the number of events in K
through both the dynamic and static approaches.

Figure 4a shows the results. In the x-axis k∗ means that
the size of K is dynamically adjusted in each timestep of the
sequence. The corresponding values of the metrics TPR and
FPR are marked with a black square to differentiate them
from the values obtained through the static approach. The
rest of values in the x-axis (from 2 to 42) corresponds to the
values of the parameter k of the static approach. The figure
illustrates how the dynamic approach outperforms the static
approach for any chosen k as the former gives a high TPR
of 97.29% while keeping a low FPR of 0.38%.

The static approach starts with a similar TPR but a
higher FPR in comparison with the dynamic approach.
As the parameter k increases, both the TPR and the FPR
decrease. The static approach achieves the same FPR as
the dynamic when k = 20. At this point however, the
corresponding TPR has decreased from 97.29% to 69.83%.
The non-functionality of the static method can be explained
by the high variance in the distribution of the natural
division between high and low values in output of the
model throughout the entire sequence. Figure 4b shows
this distribution. The dynamic approach produces sets K
with sizes between 6 and 28 (inclusive) with significant
differences in their frequencies. Setting a specific k in the
static approach to be used in each timestep of the analyzed
sequence goes away from the decision made by the model,
which clearly discriminates low and high values in the its
output probabilities.

Findings. The dynamic approach outperforms the static
method to select the set of probable events K , having a
1.31X higher TPR for the same FPR of 0.38.

9

k * 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Sizes of Set K Used to Evaluate the LSTM-based Model

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

) [
%

]
TPR FPR

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
P

os
iti

ve
 R

at
e

(F
P

R
) [

%
]

(a) Metric Variation With Static and Dynamic Selection of K

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Dynamic Sizes of Set K Trough the Sequence

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

(b) Distribution of Dynamic K Sizes Throughout the Sequence

Fig. 4. Selection of the set K through both the dynamic and static approaches. Figure 4a shows the variation of the TPR and FPR with respect to
different setting for K. Figure 4b presents the distribution of the dynamic sizes of K throughout the testing sequence. Notice its high variability.

6.2 Comparison With an Enterprise Endpoint Detection
and Response (EDR)

RQ2. What is the performance of LADOHD with respect to
enterprise-level EDR system currently in production?

One of the main challenges defending against insider
threats is the similarity between benign and malicious activ-
ities. Discerning between them is a difficult task. Due to this
restriction, this section evaluates how efficient LADOHD is
by comparing it with the the enterprise EDR of the company
already in production.

The enterprise EDR is a multi-layer system that em-
ploys signature-based, supervised (e.g. Random Forest), and
unsupervised (e.g., clustering) machine learning methods
for analysis, detection, and alerting. This system detected
4 alerts while monitored the victim machine during the
Red Team attack. These alerts were validated to corre-
spond to malicious activities and later matched with the
corresponding events in the generated testing sequence as
indicated in Section 5. The EDR did not detect the complete
multistage persistent attack, but rather a few steps. Figure
5 shows the malicious activities reported by the Red Team
in the log file that were matched with events in the testing
sequence. It shows their counts in log file and the number
of events matched per each activity. There is a total of 110
malicious events. All of them were classified by LADOHD
as anomalous.

Unlike the current analytics modules of the EDR,
LADOHD is trained with benign data only and learns se-
quence patters of a particular application. Uncommon event
sequences are classified as anomalous through the detection
of specific events regardless the meaning of the event itself.
It is important to mention that LADHD produced 254 FP
cases along with the with the 287 TP cases (including
unseen events). Although the number of FPs is low with
respect to the length of the sequence, they might represent
a high volume of cases to be revised by security experts in a
short periods of time.

Findings. LADOHD successfully detected the ongoing
attack generating more alerts than the enterprise EDR.
A relatively small number of FP cases with respect to
the sequence length were generated in the process.

m
im
ikatz

whoam
i

dum
p hashes

net user

spawns proc

klist

net share

net use

run dir

Malicious Activities Logged by the Red Team

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc
y

No. Red Team Logged Activities
No. Corresponding Events in the Sequence

Fig. 5. Malicious activities reported by the Red Team. These are the
activities that could be matched with events in the testing sequence.

6.3 Performance of LADOHD When Processing Se-
quences Without Unseen Events

RQ3. Does the capacity LSTM-based models to detect
anomalies improve when unseen events are discarded in
advance?

We now evaluate whether processing unseen events
improve or diminish the capacity of LSTM-based models
to detect malicious events. We are interested in knowing
whether the same Red-Team-matched events classified as
anomalous in experiment 1 (Section 6.1), when unseen
events are part of the sequence, are also classified as
anomalous when unseen events are ignored. We also want
to validate whether the missing alert-related events are
detected. To this end, we create a clean testing sequence
by removing the unseen events from the testing sequence.
We pass this clean testing sequences to our LSTM-based
model, which classifies each event in the sequence as either
benign or anomalous. Table 5 includes a comparison of the
results obtained with the original testing sequence and its
clean version. Removing the unseen events does not help
the model classify as anomalous new malicious events. The
number of TP cases related to observed events remains the

10

TABLE 5
Metric Values Obtained With the Original and Clean Testing Sequences

Testing Sequence TP FN FP TN TPR FPR

Original 287 8 254 66423 97.29% 0.38%

Clean 110 8 256 66421 93.22% 0.38%

same. The same phenomenon occurs with the number of
FPs, where an increase of only 2 is observed.

Findings. There is neither a significant improvement
nor detriment when unseen events are discarded. Their
removal from the sequence should be determined by the
performance cost they might cause only.

6.4 Effect of Long-Term Dependencies in the Detection
of Anomalies
RQ4. What impact does the length of the previous se-
quences have over the detection of anomalies?

One of the main characteristics of LSTM networks
is their capacity to learn long-term dependencies among
events in a sequence. One interesting question we aim to
answer is whether these long-term dependencies have an
impact in the classification. Namely, we want to validate
whether considering subsequences of different lengths (by
increasing the number of predecessors) cause different out-
puts in the classification of an event. To this end, we work
with the clean testing sequence of the Section 6.3.

Table 6 shows the results. It includes 9 randomly selected
events of these sequence classified as anomalous. These
events are referred to as targets and they correspond to
the last events of low probable subsequences in the se-
quence. Figure 6 illustrates the procedure followed in this
experiment using the target e145 (row 4 in the table) as
example. We incrementally move backward from each target
until the beginning of the sequence and find the number
of predecessors (length of previous sequence) that causes
a change in the classification. The number of predecessors
that causes the classification to be benign are called benign
shifters. Those that cause the classification to be anomalous
are referred to as anomalous shifters. Table 6 shows that
most of the targets have multiple shifters, which prove that
the history of events is what actually has a significant impact
in the classification process. LSTM-based models have the
potential to correctly classify events regardless the length of
the previous sequence. Their outputs are in fact affected by
the hidden state. An interesting observation is the capacity
of our LSTM-based model to look backward a variable num-
ber steps to estimate the probability of a particular event. We
have cases where the model makes the final decision based
on a few number of predecessors (e.g., 2 predecessors in the
case of e142) and others in which the model considers a large
number of them (e.g., 648 predecessors in the case of e1032).
This ability to relate current events with distant past events
in the sequence shows the potential of LSTM networks to
solve the OAR problem.

Another question we aim to answer in this experiment is
how the probabilities of the targets change as the number of
predecessors gets close to a shifter. We did not find a clear

e145e144

 Target

Target: Event to be classified

Target classification: Wheter anomalous or benign given a n predecessors

Predecessors: Events forming the previous subsequence to Target

Anomalous Shifter: ith predecessor that makes Target anomalous

 Anomalous

 Benign

58 68 67 69 2 1

Number of Target Predecessors

in Previous Subsequence

Benign Shifter: ith predecessor that makes Target benign

e143e87e78e77e78e76 e86
59

Fig. 6. Effect of long-term dependencies of LSTM models in the detec-
tion of anomalies. The example is based on the event e145 in Table 6

TABLE 6
Effect of Long-Term Dependencies on the Detection of Anomalies

Target Benign Shifters Anomalous Shifters

e142 [1] [98]
e143 [1] [75]
e144 [1] [75]
e145 [1, 67] [58, 69]
e146 [1] [54]
e147 [1] [50]
e148 [1] [47]
e1032 [1, 551, 619] [549, 587, 648]
e2292 [9] [1, 11]

relationship between the relative probability of the target
(with respect to the other possible events) in the output of
the model and the proximity to the shifters. The probability
of the target does not always increase or decrease as the
number of predecessors gets close to a benign or anomalous
shifter respectively. This phenomenon can be explained by
the fact that our model is trained to predict the next event in
the sequence and not to estimate the least probable events.

Findings. LADOHD can correctly classify events regard-
less the length of the previous subsequences. The history
of events (hidden state of the model) is what actually
affects the classification. The ability to look backward
more than 600 steps (e.g. target e1032) show the potential
of this solution against the OAR problem.

6.5 Prediction Capacity of LSTM and HMM Based mod-
els Over Variable-Length Sequences

RQ5. How much accurate are LSTM-based models com-
pared to other solutions such as HMM in the prediction of
the next event in variable length sequences?

This section presents a comparison of the prediction
capacity of our LSTM-based model and a full connected
HMM model built with the same dataset. As the ability to
discern between benign and anomalous events depends on
the prediction capacity of the model, we want to evaluate
which model predicts better the last event of sequences
of different lengths. To this end, we took 100 continuous
subsequences of a specific length and measure the accuracy
of the model predicting the last event of the sequences. The
lengths were chosen to vary from 2 to 1000. To ensure a fair

11

0 200 400 600 800 1000
Sequence Length

0.4

0.6

0.8

1.0

P
re
di
ct
io
n
A
cc

ur
ac

y
LSTM-Based Model HMM-Based Model

(a) Accuracy Witn Training Sequences

0 200 400 600 800 1000
Sequence Length

0.2

0.4

0.6

0.8

1.0

P
re
di
ct
io
n
A
cc

ur
ac

y

LSTM-Based Model HMM-Based Model

(b) Accuracy With Testing Sequences

Fig. 7. Prediction accuracy of our LSTM and the HMM models with sequences of incremental lengths. Figure 7a and Figure 7a show the accuracy
variation with subsequences extracted from the D1 training and testing sequences respectively.

comparison, we measure the prediction accuracy of both
models with incremental-length subsequences extracted
from both the training and testing sequences. The idea of
using these two sets of subsequences is to validate that
the results do not come from any bias that the testing
data might induce. We do so because we are interested
in observing how the prediction capacity of the models
changes as the lengths of the sequences increase in ideal
conditions (i.e. when sequences were observed in training)
and not in comparing which model is more efficient when
processing new data. Figure 7 shows that our LSTM-based
model constantly outperform the prediction capacity of the
HMM model. Our model keeps predicting well with larger
sequences, while the accuracy of the HMM-based model
decreases.

Findings. LSTM-based models have a better capacity
than HMM-based models to predict the next event in a
given sequence as its length increases.

7 CONCLUSION

This paper presents LADOHD, a generic LSTM-based
anomaly detection framework to protect against insider
threats. for high dimensional sequential data. We evaluated
the framework with an extensive dataset of activity events
generated by the EDR of a renown security company. Each
event in the dataset represents a hight dimensional vector of
features The framework filters out the events per application
and pre-specified features that define the vocabulary of
possible events that form the sequences analyzed by our
model. Each event in the sequence is classified as either
benign or anomalous given the previous observed subse-
quence. LADOHD reached a high TPR > 97% with a low
FPR < 0.4%,proving the effectiveness of the framework.
Furthermore, this work presents a comprehensive analysis
of how LSTM-based models work and compare them to
alternative solution such as HMM-based models. We found
that LSTM-based models rank better the set of expected
events in each timestep of sequence than HMM-based mod-
els, which favor their capacity to detect anomalies.

REFERENCES

[1] M. B. Salem, S. Hershkop, and S. J. Stolfo, “A survey of insider
attack detection research,” in Insider Attack and Cyber Security.
Springer, 2008, pp. 69–90.

[2] A. Sanzgiri and D. Dasgupta, “Classification of insider threat
detection techniques,” in Proceedings of the 11th annual cyber and
information security research conference, 2016, pp. 1–4.

[3] J. Hunker and C. W. Probst, “Insiders and insider threats-an
overview of definitions and mitigation techniques.” JoWUA, vol. 2,
no. 1, pp. 4–27, 2011.

[4] P. Chen, L. Desmet, and C. Huygens, “A study on advanced per-
sistent threats,” in IFIP International Conference on Communications
and Multimedia Security. Springer, 2014, pp. 63–72.

[5] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 2002, pp. 255–264.

[6] H. Xu, W. Du, and S. J. Chapin, “Context sensitive anomaly
monitoring of process control flow to detect mimicry attacks and
impossible paths,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2004, pp. 21–38.

[7] J. T. Giffin, S. Jha, and B. P. Miller, “Automated discovery of
mimicry attacks,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2006, pp. 41–60.

[8] D. Yao, X. Shu, L. Cheng, and S. J. Stolfo, “Anomaly detection
as a service: Challenges, advances, and opportunities,” Synthesis
Lectures on Information Security, Privacy, and Trust, vol. 9, no. 3, pp.
1–173, 2017.

[9] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic program
modeling for high-precision anomaly classification,” in Computer
Security Foundations Symposium (CSF), 2015 IEEE 28th. IEEE, 2015,
pp. 497–511.

[10] A. Patcha and J.-M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends,”
Computer networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[11] M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey
of numeric and symbolic outlier mining techniques,” Intelligent
Data Analysis, vol. 10, no. 6, pp. 521–538, 2006.

[12] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris, “A com-
parative study for outlier detection techniques in data mining,” in
2006 IEEE conference on cybernetics and intelligent systems. IEEE,
2006, pp. 1–6.

[13] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier
detection. John wiley & sons, 2005, vol. 589.

[14] V. Hodge and J. Austin, “A survey of outlier detection methodolo-
gies,” Artificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[15] P. Thompson, “Weak models for insider threat detection,” in Sen-
sors, and Command, Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security and Homeland Defense III, vol.
5403. International Society for Optics and Photonics, 2004, pp.
40–48.

12

[16] M. B. Salem and S. J. Stolfo, “Masquerade attack detection using
a search-behavior modeling approach,” Columbia University, Com-
puter Science Department, Technical Report CUCS-027-09, 2009.

[17] C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting intru-
sions using system calls: Alternative data models,” 1999.

[18] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 305–316.

[19] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A
sense of self for unix processes,” in Security and Privacy, 1996.
Proceedings., 1996 IEEE Symposium on. IEEE, 1996, pp. 120–128.

[20] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of computer security, vol. 6,
no. 3, pp. 151–180, 1998.

[21] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern recognition, vol. 36,
no. 1, pp. 229–243, 2003.

[22] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of
self: Probabilistic reasoning of program behaviors for anomaly
detection with context sensitivity,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2016, pp. 467–478.

[23] J. Hollmén and V. Tresp, “Call-based fraud detection in mobile
communication networks using a hierarchical regime-switching
model,” in Advances in Neural Information Processing Systems, 1999,
pp. 889–895.

[24] P. Smyth, “Clustering sequences with hidden markov models,” in
Advances in neural information processing systems, 1997, pp. 648–654.

[25] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Visu-
alization of navigation patterns on a web site using model-based
clustering,” in Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2000, pp. 280–
284.

[26] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber, “Lstm: A search space odyssey,” IEEE transactions
on neural networks and learning systems, vol. 28, no. 10, pp. 2222–
2232, 2017.

[27] G. Salton, R. Ross, and J. Kelleher, “Attentive language models,”
in Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol. 1, 2017, pp. 441–
450.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[29] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[30] M. Villarreal-Vasquez, LADOHD Repository to be Public
After Revision, 2020. [Online]. Available: https://github.com/
mvillarreal14/ladohd

[31] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks
for language modeling,” in Thirteenth annual conference of the
international speech communication association, 2012.

[32] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” in Advances in Neural Informa-
tion Processing Systems, 2015, pp. 2773–2781.

[33] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “Lstm-based system-
call language modeling and robust ensemble method for de-
signing host-based intrusion detection systems,” arXiv preprint
arXiv:1611.01726, 2016.

[34] C. Feng, T. Li, and D. Chana, “Multi-level anomaly detection
in industrial control systems via package signatures and lstm
networks,” in Dependable Systems and Networks (DSN), 2017 47th
Annual IEEE/IFIP International Conference on. IEEE, 2017, pp. 261–
272.

[35] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1285–1298.

[36] Y. Shen, E. Mariconti, P.-A. Vervier, and G. Stringhini, “Tiresias:
Predicting security events through deep learning,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: ACM, 2018.

[37] K. Rocki, “Recurrent memory array structures,” 07 2016.
[38] G. Bouchard, “Efficient bounds for the softmax function, applica-

tions to inference in hybrid models,” in Presentation at the Workshop

for Approximate Bayesian Inference in Continuous/Hybrid Systems at
NIPS-07. Citeseer, 2007.

[39] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[40] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE transactions on Infor-
mation Theory, vol. 13, no. 2, pp. 260–269, 1967.

[41] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[42] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimiz-
ing lstm language models,” arXiv preprint arXiv:1708.02182, 2017.

[43] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[44] L. N. Smith, “Cyclical learning rates for training neural networks,”
in Applications of Computer Vision (WACV), 2017 IEEE Winter Con-
ference on. IEEE, 2017, pp. 464–472.

Miguel Villarreal-Vasquez Miguel Villarreal-Vasquez is a Ph.D. Can-
didate in computer science at Purdue University, West Lafayette, IN
47907, USA. He a research and teaching assistant in the same institu-
tion His research interests are building resilient security systems using
machine learning, with special attention to deep learning. His research
also embraces improving the resiliency of deep learning architectures
against adversarial settings. In 2018, he worked for the Center for
Advanced Machine Learning (CAML) at Symantec, Mountain View CA,
where he started this research work.

Gaspar Model-Howard Gaspar Modelo-Howard (SM’12) received the
Ph.D. degree in electrical and computer engineering from Purdue Uni-
versity, West Lafayette, IN 47907, USA, in 2013. He is a principal data
scientist for the Public Cloud Security team at Palo Alto Networks, Santa
Clara, CA 95054 USA. His research interests are network and cloud
security, with a focus on web security, intrusion detection and response,
and malware detection. Dr. Modelo-Howard is an adjunct professor in
computer security at Universidad Tecnológica de Panamá and also
member of ACM and Usenix.

Bharat Bhargava Bharat Bhargava (F’90) received the Ph.D. degree
in electrical and computer engineering from Purdue University, West
Lafayette, IN 47907, USA, in 1974. He is a professor of computer
science at Purdue University and is leading a Northrop Grumman Cor-
poration (NGC) sponsored consortium on Real Applications of Machine
Learning (REALM) with MIT, CMU and Stanford. He is contributing to
Department of Defense on The Science of Artificial Intelligence and
Learning for Open-world Novelty (SAIL-ON) and another project with
NGC on explainable AI and adversarial machine learning. Prof. Bhar-
gava is the founder of the IEEE Symposium on Reliable and Distributed
Systems, IEEE conference on Digital Library, and the ACM Conference
on Information and Knowledge Management. He has won eight best
paper awards in addition to the technical achievement award and golden
core award from IEEE. He received Outstanding Instructor Awards from
the Purdue chapter of the ACM in 1996 and 1998. In 2003, he was
inducted in the Purdue’s Book of Great Teachers.

Simant Dube Simant Dube received the Ph.D. degree in computer
science from University of South Carolina, Columbia, SC 29208 USA,
in 1992. He is Technical Director in the Center for Advanced Machine
Learning (CAML) at Symantec, Mountain View, CA 94043 USA. His
areas of interest are artificial intelligence, machine learning, cyberse-
curity and computer vision. He has worked in companies such as Flu-
idigm, Microsoft and Amazon on diverse applications of AI and machine
learning. Dr. Dube held the Ramanujan Fellowship at Indian Institute of
Technology, Kanpur.

