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Abstract—Deep Neural Networks (DNNs) have been applied
successfully in computer vision. However, their wide adoption in
image-related applications is threatened by their vulnerability to
trojan attacks. These attacks insert a misbehavior at training
using samples with a mark or trigger, which is exploited at
inference or testing time. In this work, we analyze the feature
space that DNNs learn during training. We identify that these
features, including those related to the inserted triggers, contain
both content (semantic information) and style (texture informa-
tion), which are recognized as a whole by DNNs at testing. We
then propose a novel defensive technique against trojan attacks,
in which DNNs are taught to disregard the styles of inputs and
focus on their content only to mitigate the effect of triggers during
the classification. The generic applicability of this content-focus
approach is demonstrated in the context of a traffic sign and a
face recognition application. Each is exposed to a different attack
with a variety of triggers. Results show that the method reduces
the attack success rate significantly to values < 1% in all the
attacks while keeping as well as improving the initial accuracy of
the models when processing both benign and adversarial data.

I. INTRODUCTION

Advances in artificial intelligence have positioned Deep
Neural Networks (DNNs) as one of the main algorithms
currently used for machine learning. They have successfully
been applied to solve problems in multiple areas such as
natural language processing [1] and computer vision [2]. For
the later case, their success have been proved in classification-
based applications like object detection [3] and scene [4], face
[5], and traffic sign recognition [6]. Despite being broadly used
in these applications, the wide adoption of DNNs in real-world
missions is still threatened by their ingrained security concerns
(e.g., lack of integrity check mechanisms and their uncertain
black-box nature [7], [8]), which make them vulnerable to
trojan or backdoor attacks (hereinafter trojan attacks) [9]–[12].

Trojan attacks against DNNs occur at training time and
are later exploited during testing. To execute them, adversaries
slightly change original models at training by either poisoning
or retraining them with adversarial samples. These adversarial
samples are characterized by having a trigger (e.g., a set of
pixels with specific values in the computer vision scenario)
and a label chosen by the adversary (target class). The ultimate
goal of the attack is inducing misbehavior at testing time as
any input with the trigger is misclassified to the target class.
These attacks represent a powerful threat because it is difficult
to determine whether a model is compromised. Inputs without

the trigger (benign samples) are normally classified [13] and
deployed triggers can be designed to be unnoticeable (e.g.,
triggers may look like black spots by dirt in cameras) [14].

The potential of these attacks is illustrated in the context
of self-driving cars. These vehicles capture pictures of objects
on the streets and process them without adversaries editing
the captured images. If these cars were using a compromised
model, adversaries could induce the misclassification of street
objects by simply stamping marks (e.g., stickers) on them,
which would act as triggers when images are captured. At-
tackers might cause harm if stop signs are misclassified to
speed signs. As DNNs are incorporated by companies such as
Google and Uber in their self-driving solutions and are also
used in other critical applications (e.g., authentication via face
recognition of the Apple IPhone X) [14], protecting against
trojan attacks on DNNs is an important problem to solve.

Previous defensive strategies either harden DNNs by in-
creasing their robustness against adversarial samples [7], [12],
[13] or detect adversarial inputs at testing time [7], [8],
[12], [14]. This research is in the former category. Some
existing techniques in this category assume access to a large
training dataset to train auxiliar models [12]. Others reduce
the attack effectiveness at the cost of accuracy by fine-tuning
compromised models after pruning a number of neurons [13].
A state-of-the-art model hardening technique, called Neural
Cleanse [7], proposed an improved solution. It assumes access
to a small training set and fine-tunes models with images
including reverse-engineered triggers. This technique signifi-
cantly reduces the attack success rate. However, based on our
experiments in Section VI-C, it does not improve the accuracy
of the models enough when processing adversarial samples in
some of the tested attacks, limiting its generic applicability.

In this paper, we analyze the feature space that DNNs learn
during training and identify that images, and hence learned
features (including those of the triggers), have both content and
style, which are recognized as a whole by DNNs at testing.
Content refers to the shapes of objects or semantic information
of inputs, while style refers to their colors or texture infor-
mation. Our hypothesis is that it is possible to teach models
to focus on content only so that they resemble better the
human reasoning during the classification to avoid exploitation
(Figure 1a). Based on this, we devised a content-focus healing
procedure, called ConFoc, which takes a trojaned model and
produces a healed version of it. ConFoc assumes access to a
small benign training set (healing set) and generates from each
sample in it a variety of new samples with the same content,
but different styles. These samples are used in a twofold
healing strategy in which models: (1) forget trigger-related
features as they are fine-tuned with original and styled benign
samples only and (2) improve their accuracy with both benign
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Fig. 1: ConFoc Overview. Figure 1a shows the flow of the classification of benign and adversarial samples with solid and dashed
arrows respectively. Image regions on which the classifiers focus on to make the decision are surrounded in black (right side).
Humans classify both samples correctly because they focus on content only. Figure 1b shows the style transfer strategy used by
ConFoc. The content xc from input x is combined with the style bs from the style base image b to form the styled image xbs .

and adversarial data due to the data augmentation achieved
with multiple styles. As the only common characteristic among
the original and styled samples is the content itself, models
learn to focus on it. At testing, inputs can be classified with
either its original or a random style because styles are ignored.

ConFoc overcomes the limitations of previous work [7],
[12], [13] as it is characterized by: (1) being generic and
effective against different trojan attacks, (2) functioning with-
out prior knowledge of the trigger, (3) depending on a small
training set, and (4) avoiding neuron pruning (which affect
performance). Our main contributions are listed below:

• We analyze the feature space learned by DNNs and
identify that they have both content and style. We
are the first demonstrating that trojan attacks can be
countered by making models focus on content only.

• We built a prototype [15] and evaluate ConFoc with a
variety of applications, including a traffic sign recog-
nition system implemented in Resnet34 [16] with the
GTSRB dataset [17] and a face recognition system
(VGG-Face [18]). Each application is exposed to a dif-
ferent type of trojan attack executed with a variety of
triggers. The former is tested against the trojan attack
BadNets [9], while the latter with Trojaning Attack
[11]. Compared to the state-of-the-art [7], ConFoc
shows good results against both attacks, whereas the
other technique does it in one of the cases.

• ConFoc is agnostic to the image classification appli-
cation for which models are trained, with the benefit
that it can be applied equally to any model (trojaned or
not) without impacting its classification performance.

• To our knowledge, we are the first establishing the
importance of evaluating defensive methods against
trojan attacks with the correct metrics: (1) accuracy
with benign data, (2) accuracy with adversarial data,
and (3) attack success rate or ASR (percentage of
adversarial samples classified to the target class). This
is crucial because it is possible to have models with
both low ASR and low accuracy with adversarial data,
on which adversaries can still conduct an untargeted
attack by triggering the misclassification of adversarial
samples to a random rather than to a the target class.

Our work provides a new model hardening technique that
reduces the sensitivity of DNNs to inserted triggers. Although
the interpretability of DNNs is out of our scope, ConFoc fea-
tures advantageous tools for defenders against trojan attacks.

II. THREAT MODEL AND OVERVIEW

A. Threat Model

We assume an adaptive attacker that gains access to an
original non-trojaned model and inserts a trojan into it before
the model reaches the final user. The adaptive attacker is
knowledgable about the ConFoc approach and is able to infect
models with styled adversarial samples to mitigate the healing
effect. Adversaries can achieve the attack by either poisoning
the training dataset (at training time) or retraining the model
(after the training period) before reaching the final user. That
is, adversaries have the capabilities of an insider threat who can
efficiently poison the data used to train the victim model. Also,
adversaries have the ability to act as a man-in-the-middle, who
intercepts the original non-infected model, retrains it to insert
the trojan, and then tricks the final users to use the resulting
trojaned model. The later assumption is a plausible scenario
as the most accurate neural network architectures tend to be
either deeper or wider [16], [19]. Whereby, transfer learning in
DNNs [20], [21] is a common practice and pre-trained models
are often downloaded from public sites without the proper
integrity check [12]. Upon getting a model (either trojaned
or not), final users take them through the ConFoc method.
We assume adversaries cannot interfere in this process. At
testing, adversaries endeavor to provide adversarial inputs to
the models without being able to modify them anymore.

B. Overview

A compromised model is referred to as a trojaned model
(MT ). In order to heal an MT , ConFoc retrains it with a small
set of samples and their strategically transformed variants until
the model learns to make the classification based on the content
of images. Our technique is founded on the concept of image
style transfer [22], which is applied for first time in a security
setting to generate the training samples used in the healing
process. Figure 1b shows this concept. Images can be separated
in content and style, and it is possible to transfer the style of
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one image to another. Under the assumption of holding a small
healing set XH of m benign samples {xi | i = 1, ...,m} and
a set B of n style base images {bj | j = 1, ..., n}, ConFoc
extracts from them their image content {xic | i = 1, ...,m}
and styles {bjs | j = 1, ..., n} respectively. The styles are
transferred to the content images to generate the set of styled
images {xi

bjs
| i = 1, ...,m, j = 1, ..., n}. During the healing

process, each benign sample xi ∈ XH , its content image xic,
and corresponding n styled images {xi

bjs
| j = 1, ..., n} are

used as training data. Our intuition is that models learn to
focus on the content as it is the only common characteristic
among these samples. The goal is to reduce the sensitivity of
DNNs to trigger-related features during the process.

Any model resulting from the healing process is referred
to as a healed model (MH ). At inference time, any input x is
classified by MH , which focus on its content only. The input
x can optionally be transformed to a particular styled version
xbs using any chosen style base image b before being classified
because its style is ignored in the process.

Limitations. We summarize three main limitations. First,
ConFoc relies on having access to a healing dataset. Although
this is a challenging requirement, our technique is proved to
be effective with small datasets around 1.67% of the original
training set size. Second, ConFoc imposes an overhead at
testing if inputs are first transformed (optionally) to change
their styles. Likewise, our method requires some time to
generate the content and styled images used in the healing
process. These overheads are limited, however, because the
image transformation takes only a few milliseconds and the
healing process occurs offline. Finally, like previous techniques
[7], [12], [13], we assume adversaries cannot run attacks (e.g.,
poisoning) during the healing process. This is a reasonable
assumption that does not abate our contribution to methods that
remove trojans without impacting the performance of DNNs.

III. BACKGROUND AND RELATED WORK

A. Deep Neural Networks

A DNN can be interpreted as a parameterized function Fθ :
Rm → Rn, which maps an m-dimensional input x ∈ Rm into
one of n classes. The output of the DNN is a n-dimensional
tensor y ∈ Rn representing the probability distribution of the
n classes. That is, the element yi of the output y represents
the probability that input x belongs to the class i.

Specifically, a DNN is a structured feed-forward network
Fθ(x) = fL(fL−1(fL−2(...f1(x)))) in which each fi corre-
sponds to a layer of the structure. A layer fi outputs a tensor ai
whose elements are called neurons or activations. Activations
are obtained in a sequential process. Each layer applies a linear
transformation to the activations of the previous layer followed
by a non-linear operation as follows: ai = σi(wiai−1 + bi).
The output of fL (aL) is referred to as output activations,
while the input (x = a0) as input activations. Outputs of
middle layers are called hidden activations. The elements wi
and bi are tensors corresponding to the parameters θ and are
called weights and bias respectively. The component of the
equation σi is the non-linear operation of the layer fi. There
are multiple non-linear operations, each with different effects
in their outputs. Some of them are sigmoid, hyperbolic tangent,
Rectified Linear Unit (ReLU) and Leaky ReLU [23], [24].

A DNN is trained with a set of input-output pairs (x, y)
provided by the trainers, where x is the input and y the
true label or class of x. Trainers define a loss function
L(Fθ(x), y), which estimates the difference between the real
label y and the predicted class Fθ(x). The objective of the
training process is minimizing the loss function by iteratively
updating the parameters θ through backpropagation [25]. In
essence, backpropagation is a gradient descent technique that
estimates the derivatives of the loss function with respect to
each parameter. These derivatives determine how much each
parameter varies and in what direction. The training process
is controlled by trainer-specified hyper-parameters such as
learning rate, number of layers in the model, and number of
activations and non-linear function in each layer.

During testing, a trained DNN receives an unseen input
x ∈ Rm, produces an output y = Fθ(x) ∈ Rn, and assign to
x the class C(x) = argmaxi yi.

This paper focuses on Convolutional Neural Networks
(CNNs) trained for image classification tasks. CNNs are a type
of DNNs characterized by being: (1) sparse as many of their
weights are zero, and (2) especially structured as neuron values
depend on some related neurons of previous layers [13].

B. Trojan Attacks: Assumptions, Definition and Scope

Assumptions. Trojan attacks consist of adding semanti-
cally consistent patterns to training inputs until DNNs learn
those patterns and recognize them to belong to either a specific
or a set of target classes chosen by the adversary [14]. Several
approaches can be followed to insert a chosen pattern or trigger
into the training data to achieve the trojaned misbehavior. The
difference among them lies on the strategy applied to generate
the adversarial samples, the objective of the misclassification,
and the applicability of the attack. This research aims to
feature a solution to counter trojan attacks that comply with
the following conditions:

C1 Adversarial samples include an unknown pattern (or
trigger) inserted into the victim DNNs during training.

C2 Benign samples are normally classified by compro-
mised models.

C3 Both benign and adversarial samples are assumed to
belong to the same distribution. This implies that
triggers, which might be perceptible, do not override
the interesting object in the image to be classified.

C4 Adversarial testing samples are generated without any
manipulation or further processing after the image is
captured. It implies adversaries do not have access to
the model at inference or testing time.

Trojan attack definition. Assuming an original non-
trojaned model MO = FO(·) trained with a set of benign
samples X . Given a correctly classified benign input x ∈ X
to the class FO(x), a labeling function L(·), and a target class
t chosen by the adversary, the input x∗ is an adversarial sample
at training time if:

x∗ = x+ ∆ ∧ L(x∗) = t (1)

Now, let X∗ be the set of adversarial samples generated
following Equation 1 and MT = FT (·) the trojaned version
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Fig. 2: An illustration of a trojan attack conducted by poisoning the training data (see details in Section III-C).

resulting from training the model with both X and X∗. At
testing time, given x be a benign input correctly classified to
the class FT (x) 6= t, an input x∗ is an adversarial sample if:

FT (x∗) = t ∧ x∗ = x+ ∆ (2)

FT (x) = FO(x) (in most cases) (3)

In Equation 1 and Equation 2, ∆ represents the changes
caused to sample x by the addition of a trigger (C1). These
changes might be obvious to humans as shown in the example
in the left side of Figure 1a. Despite the possible obvious
difference between benign and adversarial samples, for any
benign sample x ∈ X at inference time, it is also assumed that
x∗ ∈ X since FT (x) ≈ FO(x) as established in Equation 3
and users are unaware of the triggers used in the attack (C2 and
C3). The labeling function L(·) in Equation 1 is controlled by
the adversary at training time and is used to assign the chosen
target class t as label of the adversarial sample x∗. Equation
2 establishes that at testing, a sample x∗ (not originally
belonging to the class t) is considered adversarial if it contains
the trigger and is classified by the trojaned model to the target
class t. Triggers can be added without manipulating testing
samples by, for example, attaching a sticker to the object to
be classified before capturing its image (C4).

In summary, trojaned models closely classify benign inputs
as non-trojaned models, thwarting the ability to determine
whether a given model has an inserted trojan. Thereby, in
trojan attacks it is assumed final users are deemed unaware of
the committed attack and use the trojaned model MT = FT (·)
under the believe the model is MO = FO(·).

Scope. We evaluate our method against two trojan attacks
that comply with conditions C1-C4: BadNets [9], and Trojan-
ing Attack [11]. We do not consider trojan attacks with weak
and strong assumptions about the capabilities of defenders and
attackers, respectively. One example is the attack that poisons
the training data using an instance of class A and a set of
n variants of it (created by adding random noise) labeled as
B in order to misclassify inputs in A to B [10]. As benign
inputs themselves are used to insert the trojan, defenders can
detect the misbehavior by observing the misclassified samples
(low defensive capability assumed). Another example is the
attack that inserts trojans by blending benign inputs with
images containing specific patterns that function as triggers

[10]. In this case, adversaries manipulate the inputs during
both training and testing (high offensive capability assumed).

Other threats known as adversarial sample attacks [26]–
[31] and adversarial patch attacks (and variants) [32], [33]
(and hence their counter measures [34]–[43] ) are also out of
the scope of this paper. These attacks cause misclassification
as well, but the assumptions and patterns added to inputs are
different from those in trojan attacks. These attack variations
are executed at testing time only with samples generated via
gradient descent using the victim models in the process. [14].

C. Prior Work on Trojan Attacks

Gu et al. [9] introduced a trojan attack technique called
BadNets, which inserts a trojan into DNNs by poisoning the
training dataset. Figure 2 illustrates the attack in the context
of a traffic sign recognition system. The attack is executed in
two phases: a trojaned model generation phase and a model
exploitation phase. In the former, adversaries follow three
steps. Step1, adversaries sample a small set of images from the
training dataset. Step2, attackers choose a target class t and a
trigger to create the adversarial samples. Adversarial samples
are created by adding the chosen pattern to the selected
samples and changing the labels of the samples to the class
t. Step 3, adversaries feed the generated adversarial samples
into the model during the training process, guaranteeing the
pattern is recognized by the model to belong to the class t.

The second phase is shown in the right side of the figure.
The benign sample is normally classified, whereas the corre-
sponding adversarial sample is misclassified to the class t. The
efficiency of BadNets was proved over the MNIST dataset [44]
and the traffic sign object detection and recognition network
Faster-RCNN (F-RCNN) [45] with an ASR above 90%.

A more sophisticated trojan technique called Trojaning
Attack was presented by Liu et al. in [11]. Three main
variations are added to the strategy followed by this technique
in comparison to BadNets [9]. First, the attack is conducted
by retraining a pre-trained model instead of poisoning the
training data. Second, the adversarial training samples used
for retraining are obtained via a reverse-engineering process
rather than being generated from real benign training samples.
Finally, the trigger used in the attack is not arbitrarily chosen,
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TABLE I: Comparison of the Properties of Model Hardening Techniques Against Trojan Attacks

Technique Training Dataset Modify Model Knowledge of Trigger Rigorously tested

Retraining [12] Large No Not required No
Encoder [12] Large No Not required No
Fine-Pruning [13] Small Yes Not required Yes
Neural Cleanse (Pruning) [7] Small Yes Required Yes
Neural Cleanse (Unlearning) [7] Small No Required Yes
ConFoc [this study] Small No Not required Yes

but rather fine-tuned to maximize the activations of some
chosen internal neurons. Reverse-engineered images refer to
images whose pixels were tuned via gradient descent to be
classified to a specific class. Triggers were also obtained via
gradient descent using a loss function defined with respect to
the activations of a specific layer l. Their pixels are tuned
to induce maximun response in certain neurons in l. During
the retraining process with benign and adversarial reverse-
engineered images, only the layers following layer l are fine-
tuned. The attack was demonstrated over the VGG-Face model
[18] with an ASR greater than 98%.

D. Existing Defensive Techniques Against Trojan Attacks

Fine-Prunning [13] is a model-hardening technique that
identifies trigger-related neurons and removes them to elim-
inate their effect. The efficiency of the method suffers for the
high redundancy among internal neurons. Wan et al. [7] proved
that despite the fact that only 1% of the output neurons are
activated by certain region (set of pixels) of an input image,
more than 30% of the total output neurons need to be removed
to eliminate the effect of that region on the classification
process. This implies a high cost in the performance of the
model. In light of this observation, unlike Fine-Prunning,
ConFoc does not modify the architecture of models.

Liu eat al. [12] presented three methods against trojan
attacks tested over the MINST dataset [44]. First, a technique
to detect adversarial samples by comparing the outputs of
the victim model with the outputs of binary models based
on Decision Trees (DTs) [46] and Support Vector Machines
(SMV) [47] algorithms. Second, a model hardening technique
that fine-tunes the victim model with a set of benign samples.
Although the method reduces the attack, it also has an impact
in the accuracy of model [7]. Finally, a model hardening
approach in which an encoder is inserted between the input
and the model. This encoder is trained with benign samples
only and is used to filter out samples at testing by compressing
their features, and decompressing them again to have samples
that do not include the trigger before being classified. The three
described methods assume access to a training set without any
restriction to its size. ConFoc, in contrast, requires a small set
of less than or equal to 10% of the original training set size.

Ma et al. [14] attributes trojan attacks to the uncertain
nature of DNNs and identify two main attack channels ex-
ploited by adversaries. First, a provenance channel exploited
when adversarial changes are added to inputs to alter the
path of active neurons in the model from input through all
the middle layers until the output to achieve misclassification.
Second, an activation value distribution channel, in which the
path of activate neurons from input to output remains the
same for both benign and adversarial inputs, but with different

value distributions for these two types of inputs. The authors
developed a technique that extracts the invariants of these two
channels and use them to detect adversarial samples.

Tao et al. [8] proposed an adversarial input detection tech-
nique that finds a bidirectional relationships between neurons
and image attributes easily recognized by humans (e.g., eyes,
nose, etc.) for face recognition systems. A parallel model
is created from the original model by strengthening these
neurons while weakening others. At testing time, any input
is passed to both models and considered adversarial in case of
a classification mismatch. Although this work is proved to be
effective, it assumes attributes on which humans focus on to
make the decisions are known in advance. ConFoc, disregards
this assumption as it lets models extract the content of images
on their own through the healing process.

Wang et al. [7] presents Neural Cleanse, a strategy with
three main defensive goals: (1) determining whether a given
model has a trojan inserted, (2) if so, reverse-engineering the
trigger, and (3) mitigating the attack through complementary
defensive methods: Patching DNN Via Neuron Pruning and
Patching DNN Via Unlearning. Authors show that the former
does not perform as well against Trojaning Attack [11] as it
does against BadNets [9]. The latter is proved to be effective
against both attacks, but only for targeted modalities as the
performance is measured using accuracy with benign data and
ASR only. In addition to these metrics, ConFoc is tested using
accuracy with adversarial data, proving its effectiveness against
both targeted and untargeted trojan attacks.

ConFoc falls into the category of model hardening. Hence,
we focus on these types of solutions. Table I shows a qualita-
tive comparison with previous techniques in this category.

IV. CONTENT-FOCUS APPROACH

Figure 3 illustrates our content-focus approach (ConFoc)
to defend against trojan attacks. The approach is executed
in two phases. First, a ConFoc healing phase (left side of
the figure), which takes a trojan model MT and strategically
retrains it to produce a healed model MH . Second, a secure
classification phase at testing time, which uses the produced
MH to classify inputs based on their content or semantic
information, mitigating the effect of triggers when processing
adversarial samples (right side of the figure.)

The ConFoc healing process assumes defenders have access
to a limited number of benign samples from the same distri-
bution as the benign data used during the original training of
MT . The process is completed in three steps. In step 1, a small
healing set XH of m of these benign samples is selected. Step
2 is a process that uses the selected healing set XH and a set
of randomly chosen style base images B to generate a larger
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Fig. 3: A demonstration of our ConFoc healing process and its use for a secure classification (see details in Section IV).

retraining dataset XR. The process takes each benign sample
x ∈ XH and passes them to the Image Generator IG. The
IG generates from each x its content xc and multiple versions
of styled images {xbjs | j = 1, ..., n}, obtained by transferring
the style bs of each b ∈ B to the content xc. The retraining
dataset XR comprises each x ∈ XH , its content xc and its
corresponding n generated styled images. As the only common
characteristic among these samples is their content, the final
step of the healing process (step 3) is retraining the trojaned
model MT with the set XR so that the model learns to focus
on the content of inputs. The goal is producing a healed model
MH , in which the trojaned misbehavior becomes ineffective
and the accuracy is high for both benign and adversarial data.

At testing, a secure classification is achieved by either
processing the original input x (option 1) or passing it first
through the IG (option 2) to produce a styled version of it xbs
using any chosen style base image b (not necessarily in B).
Either image x or xbs is classified by the healed model MH .

The IG is a crucial element in ConFoc. Its main purspose
is generating the retraining samples for the healing process
and transforming the inputs at testing. It comprises four com-
ponents: (1) feature extraction, (2) content image generation,
(3) style image generation, and (4) styled image generation.

A. Feature extraction

The output of each layer in a DNN model (i.e., neurons
or activations) can be thought as internal features of the input.
Feature extraction refers to obtaining these outputs (features)
when an input sample is processed by a given model.

Our IG extracts features using a VGG16 model [48]
pre-trained with the Imagenet dataset [49]. This model has
16 layers, from which 13 are convolutional (Conv) and 3
are linear (Linear). The convolutional layers are either fol-
lowed by a ReLU [50] along with a MaxPool2d [51] or
just a ReLU layer. More precisely, the convolutional part
of VGG16 is compounded by 2 consecutive arrangements
of Conv/ReLU/Conv/ReLU/MaxPool2d followed by 3 arrange-
ments of Conv/ReLU/Conv/ReLU/Conv/ReLU/MaxPool2d.

The selection of the proper layers for feature extraction is
an important design choice in the generation of content and
styled images. The criterion for this selection was identifying

Algorithm 1: Content image generation

Input: x,M, l, λc, N
1: xc ← rand init(x)
2: F ←M [: l]
3: fx ← F (x)
4: while N 6= 0 do
5: fxc ← F (xc)
6: lossc ←MSE(fx, fxc) · λc
7: ∆← ∂lossc/∂xc
8: xc ← xc − lr ·∆
9: N ← N − 1

10: end while
11: return xc

the last layer of a consecutive group of layers that does not re-
move information. As MaxPool2d layers are intended to down-
sample an input representation reducing its dimensionality
[51], the layers before each of the five MaxPool2d were chosen
in an input-to-output order as potential candidates for feature
extraction. These layers form the set L = {li|i = 1, ..., 5}
(with L[i] = li), which are used by the next three algorithms.

B. Content image generation

Algorithm 1 shows the procedure followed to generate
a content image. It uses gradient descent to find the local
minimum of the defined loss function, which is the Mean
Square Error (MSE) between the features extracted from one
layer li ∈ L of the VGG16 model given two different inputs.
One input is a benign sample x from which the content will be
extracted. The other is a random uniformly generated image
xc. After the random initialization, the algorithm updates the
pixel values of xc using the gradients estimated through the
loss function in such a way that the eventual values of the
extracted features are close enough for both inputs. We found
l2 ∈ L to provide the best results to generate content.

Algorithm 1 uses five parameters. Parameter x denotes one
benign input from the available healing set XH ; M denotes
the model used for the featured extraction (VGG16 in our
case); l corresponds to the layer of the model from which
features are extracted; λc represents the penalty term for the
loss function used to control how much information is included

6



Algorithm 2: Style Image Generation

Input: b,M,L,N
1: bs ← rand init(b)
2: fb ← [ ]
3: for i : 1→ len(L) do
4: Fi ←M [ : L[i] ]
5: fb ← Fi(b)
6: end for
7: while N 6= 0 do
8: fbs ← [ ]
9: for i : 1→ len(L) do

10: fbs ← Fi(bs)
11: end for
12: losss ←

∑len(L)
i=1 MSE(G(fb[i]), G(fbs [i]))

13: ∆← ∂losss/∂bs
14: bs ← bs − lr ·∆
15: N ← N − 1
16: end while
17: return bs

in the content; and N the maximum number of iterations run
by the selected optimizer (we chose LGBFS [52]).

Line 1 generates a random image xc of the same size as
the provided input x. Line 2 represents the feature extraction
function, which can be thought as slicing the model until the
indicated layer l. Line 3 gets the features or output of layer l of
model M using the function created in line 2 with sample x as
argument. From line 4 to 10 gradient descent is used to refine
the values of the random image xc created in line 1. Line 5
follows a procedure similar to the one described in line 3. In
this case, it extracts the features at layer l using the random
image xc as argument of the function F . Line 6 estimates the
loss value, which is the Mean Square Error (MSE) between
the features obtained at layer l for input x (line 3) and input xc
(line 5). Line 7 estimates the gradients of the loss with respect
to the random input xc. These gradients are used to update the
the random image as indicated at line 8.

C. Style image generation

Although the styles of base images are not used in
ConFoc, the procedure to generate them is an essential part
in the generation of styled images. Therefore, a step-by-step
description is included in this section. The style of a given
image can be obtained following a similar procedure to the one
used to generate content images. The main difference lies on
the loss function used to estimate the gradients, which is based
on Gramian matrices [53]. For a set of vectors T the Gramian
matrix G(T ) is a square matrix containing the inner products
among the vectors. In the context of the VGG16 model or any
DNN, for a particular layer of the model with p channels in
its output (features), a p × p Gramian matrix can be obtained
by first flattening each channel and then estimating the inner
product among the resulting vectors.

Algorithm 2 shows the procedure to generate style images.
The paramenter b represents the image from which the style
is extracted; M denotes the model used for the extraction;
L the set of candidate layers for feature extraction; and N
the maximum number of iterations the optimizer runs. It was

Algorithm 3: Styled Image Generation

Input: x, b,M,L, j, λc, N
1: xbs ← rand init(t)
2: fb ← [ ]
3: for i : 1→ len(L) do
4: Fi ←M [ : L[i] ]
5: fb ← Fi(b)
6: if i = j then
7: fx ← Fi(x)
8: end if
9: end for

10: while N 6= 0 do
11: fxbs

← [ ]
12: for i : 1→ len(L) do
13: fxbs

← Fi(xbs)
14: end for
15: lossc ←MSE(fx, fxbs

[j]) · λc
16: losss ←

∑len(L)
i=1 MSE(G(fb[i]), G(fxbs

[i]))
17: losst ← lossc + losss
18: ∆← ∂losst/∂xs
19: xbs ← xbs − lr ·∆
20: N ← N − 1
21: end while
22: return xbs

a design choice to use all the candidate layers in L in the
definition of the loss function.

In the algorithm, line 1 generates a random image bs of
the same size as input image b. From lines 2 to 6 a function to
extract the features of each layer in L is created. The features
of each layer are extracted (line 5) with the corresponding
function (line 4) using image b as argument. The extracted
features are stored in the empty vector created in line 2. From
lines 7 to 16 gradient descent is applied to refine the random
image bs after estimating the value of the loss function. From
line 8 to line 11 the functions created in line 4 extract the
features of each layer in L using the random image bs as
input. The features are stored in the empty vector created in
line 8. Line 12 estimates the style-related loss. This loss sums
up the MSE of the Gramian matrices of the features extracted
in each layer when the random image bs and the given image
b are passed as inputs to the model. From line 13 to 14 the
gradients are estimated and bs is updated accordingly.

D. Styled Image Generation

This procedure combines the steps followed in Algorithm
1 and Algorithm 2 for content and style images respectively. It
includes a new parameter j, which is the index of the layer lj ∈
L from which to extract the features used for the generation of
the content. Lines 2 to 9 extract the features from each layer
li ∈ L using image b as input to the model. Features from the
jth layer are extracted using image x as input (line 7). From
lines 10 to 21 the loss for content and the loss for style are
combined in one loss that is later used for the estimation of
gradients. From line 11 to line 14 features from each layer
li ∈ L are extracted using the random image xbs (created in
line 1) as input to the model. Line 15 estimates the content-
related loss using the features extracted from the jth layer with
input x (line 7) and xbs (line 13) as inputs. Line 16 computes

7



TABLE II: Summary of Evaluated Trojan Attacks

Properties BadNets Trojaning (SQ) Trojaning (WM)

Example of
Adv. Input

Strategy Poisoning Retraining Retraining
Architecture Resnet34 VGG-Face VGG-Face
Dataset GTSRSB VGG-FAce VGG-Face
No. Classes 43 40 40

the style-related loss using the Gramian matrices of the features
extracted when the random image xbs and the style base image
b are passed as inputs to the model. Line 17 combines the two
loss functions in one, which is used to estimate the gradients
(line 18) used to update the random image xbs (line 19). For
both Algorithm 3 and Algorithm 1, a fixed rule was created
to assign values to λc based on the size of the input.

V. EVALUATION SETUP

We designed a number of experiments to evaluate ConFoc
under the assumption that a non-trojaned model MO is com-
promised by an adversary, who inserts a trojan into it to
produce a trojaned model MT . ConFoc can be thought as
a function that takes as input a model (either MO or MT ) and
produces a healed model MH . When the input is MT , MH is
expected to be a model without the trojaned misbehavior. In the
case of having MO as input, MH is expected to at least keep
its accuracy. During the experiments, all the models are fine-
tuned with hyper-parameters (e.g., number of epochs, learning
rates, etc.) chosen to get the best possible performance. This
allows evaluating ConFoc using different datasets and attacks.

ConFoc is tested against BadNets [9] and Trojaning
Attack [11]. The latter is executed with two triggers: square
(SQ) and watermark (WM). Table II summarizes these three
attacks. In addition, this section presents a comparison between
ConFoc and the state-of-the-art [7] and includes results of our
method when the attacks are conducted with complex triggers.

A. Evaluation Metrics and Testing Sets

Metrics. The success of a trojan attack can be measured
based on two aspects. First, the efficiency to keep compromised
models having a high accuracy (rate of classification to the
true class) when processing benign data. Second, the attack
success rate or ASR, which measures how well triggers in
adversarial samples activate the misbehavior [11]. As the latter
is expected to be high, trojaned models are also characterized
by having low accuracy when processing adversarial data. As
a compromised model goes through the healing process our
method aims to: (1) reduce the ASR to avoid targeted exploits
(misclassification to the target class), (2) keep or improve the
accuracy when processing benign inputs, and (3) improve the
accuracy with adversarial samples to avoid untargeted exploits
(misclassification to random classes). These three factors are
the metrics used to measure the performance of ConFoc.

Testing Sets. Experiments are run with two versions of
a given testing set: (1) the given benign version to measure
accuracy with benign data and (2) its adversarial version to

Fig. 4: Split of the base set (90% of the GTSRB dataset).
adversarial trj comprises samples in trj with triggers inserted.

measure accuracy with adversarial data and ASR. The adver-
sarial versions result from adding the trigger to the samples of
the given set. The size of the sets are given as a percentage of
the original training set used to create the models.

B. BadNets Attack

Implementation. We conducted the attack against a traffic
sign recognition model following the steps described in [9].
The model was built on Resnet34 [16] pre-trained with the
Imagenet dataset [49]. The pre-trained model was fine-tuned
using the German Traffic Recognition System Benchmarks
(GTRSB) dataset [17].

Dataset. GTRSB is a multi-class single-image dataset that
contains 39209 colored training images classified in 43 classes
(0 to 42), and 12630 labeled testing images. The classes are
of traffic sign objects such as stop sign, bicycles crossing,
and speed limit 30 km/h. For each physical traffic sign object
in the GTRSB training dataset there are actually 30 images.
To avoid leakage of information between the data used for
training and validation, the GTRSB training dataset was split
by objects in two sets: the validation set and the base set. The
validation set was formed by taking 10% of the objects (30
images per each) of every class. The other 90% of objects of
each class formed the base set. The base set was further split
to form the final training, trojaning and healing sets as shown
in Figure 4. The split in this case was done based on images.
For each particular object in the base set 3 out 30 images
were taken for the healing set. Other exclusive 3 images were
taken for the trojaning set (trj), leaving 24 images per object in
the remaining set (rem). The trojaning set is called adversarial
when the chosen trigger is added to its samples and the samples
are mislabeled to the chosen target class. The training set (trn)
comprises both the remaining and trojaning sets (trn = rem
+ trj) and is used in the experiments to create the original
non-trojaned model MO. The adversarial training set, on the
other hand, comprises the remaining, trojaning, and adversarial
trojaning sets (adversarial trn = rem + trj + adversarial trj)
and is used to train the trojaned version of MO referred to as
trojaned model MT . Notice that both the healing and trojaning
sets are the same size. This is an experimental design choice
made to validate that ConFoc operates having access to a
set of benign samples not greater than the set used by the
adversary to conduct the attack.

Testing set. Ten images per class were randomly chosen
out of the 12630 available testing samples.
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Attack strategy. The adversarial samples were generated
by inserting a white square as trigger in the botton right corner
of the benign inputs. The size of the square was chosen to be
10% the size of the smallest between the height and width
dimensions, and located 5% of this value from the borders.
Table II, in row and column 2, shows an adversarial sample
with the trigger. Each adversarial sample was labeled with the
target class 19, regardless the true class of the samples.

C. Trojaning Attacks: Square (SQ) and Watermark (WM)

Implementation. For these attacks, ConFoc was tested
against two compromised models provided in [11]. The two
models correspond to the same pre-trained face recognition
application VGG-Face, infected using two different fine-tuned
triggers: square and watermark. As the accuracy of the pro-
vided models was relatively low (< 90%) when tested with the
original data in [11], we only consider those classes with low
rate of misclassification for our experiments. The idea was to
have an initial trojaned model MT with high accuracy when
processing benign data. To this end, we randomly selected
40 classes including the taget class (0 or A.J. Buckley). This
experimental design choice does not affect the high ASR and
low accuracy with adversarial samples of the models.

Dataset. The original VGG-Face dataset includes 2622000
images of 2622 classes (1000 images per class). Currently,
no all the images are available and among them there are
a significant amount of mislabeled cases. Namely, cases in
which random images or images of a person A are labeled as
person B. For our healing set, we chose 50 out of the available
images for each of the selected 40 classes. This represents
5% of the size of the original dataset. To reduce the noise
caused by the mislabeled cases, only images with frontal pose
faces were selected. We then manually cleaned the resulting
dataset by removing obvious mislabeled samples. The authors
of the attack [11] used two sets for testing, being one of them
extracted from the VGG-Face dataset. This testing set (referred
to by the authors as original dataset) is compound of one image
per class, and was used to measure the accuracy and ASR of
the model. The other testing set was called external dataset
and was extracted from the LFW dataset [54]. The images in
this set do not necessarily belog to any of the 2622 classes,
and were used to measure the ASR only. As one of our main
goals is to measure the performance of models with the three
metrics listed in Section V-A, we conducted the experiments
with a variation of the original dataset only. This ensured a
fair comparison with results obtained in previous work.

Testing set. It is formed by 20 random images per class.
Two adversarial versions of it are used, one for each trigger.

Attack strategy. The two provided models were compro-
mised through the retraining process covered in Section III-C.
Row 2 of Table II shows examples of two adversarial samples
with the square and watermark triggers in columns 3 and 4
respectively. The provided models classify any image with
either trigger to the target class (0 or A.J. Buckley).

D. Acronyms Used in Experiments

Table III lists the acronyms used to refer to the models and
data used in the experiments. It also indicates how to identify
the testing set used in the evaluation of each model.

TABLE III: Explanation of Acronyms Used in Experiments

Acronym Description

B Set of style base images {bj |j = 1, ..., 8} used in the
ConFoc healing process.

A Set of style base images {aj |j = 1, ..., 2} not used in the
ConFoc healing process such that A ∩ B = ∅.

Orig Indicates that the model was evaluated with the original testing
set (i.e., without transforming the inputs).

∗ Indicates that the model was evaluated with styled versions of
the testing set (i.e., inputs are transformed).

MO Original non-trojaned model.
MT Trojaned model.
MH(X) Healed model retrained with the retraining set XR. XR is

compound of the healing set XH only.
MH(X−0) Healed model retrained with the retraining set XR. XR com-

prises the healing set XH , and its corresponding content images
(via Algorithm 1).

MH(X−k) Healed model retrained with the retraining set XR. XR is
formed by the healing setXH , its content images (via Algorithm
1), and the styled images generated with the first k style base
images in B (via Algorithm 3). E.g., MH(X−3) means the
model is retrained with XH , the content images and the styled
images generated with the style bases b1, b2, and b3 in B.

VI. EXPERIMENTS

This section describes the experiments conducted to eval-
uate ConFoc against trojan attacks. The experiments were
designed to answer a series of research questions, included
in each of the following subsections along with our findings.

A. Robustness When Processing Original Inputs

RQ1. How do the evaluation metrics change as ConFoc is
progressively applied using an incremental number of styles?

We investigate whether the performance of trojaned models
(based on the three metrics described in Section V-A) improve
as we increase the number of styles used in the healing process.
We conduct our evaluation against BadNets, Trojaning (SQ),
and Trojaning (WM) using the corresponding original testing
sets. Figure 5 shows the results. For each of the attacks, we
start with the corresponding trojaned model MT and proceed
as follows. First, MT is evaluated with the original testing sam-
ples to measure the performance of the model before applying
ConFoc (MOrig

T in x-axis). The corresponding points in the
plots are marked with a black square to highlight that these are
the initial values of the metrics. Then, MT is taken through
the ConFoc healing process multiple times using incremental
retraining sets to measure how the metrics vary as more styles
are used (points MOrig

H(X) to MOrig
H(X−8) in x-axis).

Figures 5a, 5b, and 5c show that the performance improves
as ConFoc is progressively applied. The three metrics tend to
converge to the aimed values with just a few styles (considering
the graphs of all the metrics, two styles suffice for all the
cases). For the three attacks, the ASR drops to or close to 0.0%.
Simultaneously, the accuracy with benign data converges to
high values that outperform the initial accuracy of the trojaned
model. This metric has percentage increases of 0.24%, 7.28%,
and 3.63% in the best obtained healed models MH(X−6),
MH(X−4), and MH(X−4) for the attacks BadNets, Trojaning
(SQ), and Trojaning (WM) respectively. For the accuracy with
adversarial data, we also obtain a significant increase in these
models. This accuracy increases 88.14%, 94.02%, and 72.66%
in the models for the same order of attacks. An interesting
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(a) BadNets
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(b) Trojaning (SQ)
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(c) Trojaning (WM)

Fig. 5: Metric variations as ConFoc is progressively applied to MT by increasing the number styles used in the healing process.
Resulting healed models (in x-axis) are evaluated with the original (non-transformed) testing datasets (refer to Table III).

behavior is observed in the case of Trojaning (WM). The
accuracy with adversarial data significantly improves to values
above 90% in all the cases, but always remains lower than the
accuracy achieved with benign data. This phenomenon can be
explained by the fact that the watermark overrides the object of
interest (i.e., faces), covering certain key attributes of the faces
(e.g., eyes, lips, etc.) used by models during the classification
(a violation to the condition C3 listed in Section III-B). As
a consequence, some adversarial inputs with the watermark
covering key attributes of the faces cannot be recognized to
their true classes after applying ConFoc because the resulting
contents (face shapes plus watermark) are not part of the
content of images present in the healing set XH . Note that
a violation to condition C3 means that attackers assume weak
defenders who cannot perceive triggers even when they cover
a significant portion of the input images (a less real-world
feasible scenario from the standpoint of the attacker).

Findings. With a few styles (two in our case), ConFoc
reduces the ASR to or close to 0.00%, while ensures that
both accuracies converge to close values equal or above the
original accuracy when conditions C1-C4 are satisfied.

B. Robustness When Processing Transformed Inputs

RQ2. How well do models learn to focus on content and
how effective ConFoc is when processing styled inputs?

Following the methodology of the previous section, we now
evaluate how well healed models learn to focus on the content
of images, disregarding their styles. To this end, models are
evaluated using three different styled or transformed versions
of the testing set. One version is generated with the style base
image b1 ∈ B, which is used in the healing process. The other
two versions are obtained using the style base images a1 and
a2 in A, which are not used during the healing of the models.
For each attack, we start again with the corresponding trojaned
model MT evaluated with original samples to get the initial
values of the metrics before applying ConFoc (MOrig

T in x-
axis). Following, MT is tested using transformed samples to
measure the impact that the input transformation itself has on
the performance (M∗T in x-axis). Finally, transformed samples
are used to test the models healed through an incremental
application of ConFoc (points M∗H(X) to M∗H(X−8) in x-axis).

Figure 6 shows the results. Each subfigure in it corresponds
to one of the metrics and an attack. For all the metrics, the
final performance of the healed models are nearly the same,

regardless the styled version of the testing set used in the
evaluation. The metrics tend to converge to sought values as
more styles are used. This is a consequence of the increasing
data augmentation achieved through the addition of new styles
to the ConFoc process. Both accuracies improve because the
larger the retraining set is, the more samples with common
content information the model receives. With the increasing
sets, models are fine-tuned with enough samples for them to
extract the contents of the training sample features, which are
also present in the testing samples. Simultaneously, the attack
success rate also drops because of this data augmentation. As
the retraining set increases, models tend to forget the trigger
because more parameter updates are executed in one epoch
of training with samples not including the trigger. This is an
expected behavior based on the findings of Liu et al. [12], who
shows that this metric decreases as more benign data samples
(original version only) are used to fine-tune DNN models.

Notice that the transformed testing datasets used in this
evaluation are generated with both styles used and not used
in the healing process. Hence, this experiment shows the
effectiveness of ConFoc on making models focus on content
and not on styles during the classification. One interesting
observation is that using styled images without healing the
models does not prevent the attacks. The attacks become inef-
fective after applying ConFoc with a few styles. Considering
all the plots and metrics in Figure 6, four styles suffice.

After ConFoc, the ASR is reduced to or close to 0.0%. In
all the attacks, the accuracies with benign data (regardless the
style) achieve high values that outperform the initial accuracies
of the trojaned model. Using the best resulting healed models
MH(X−6), MH(X−4) and MH(X−4) for the attacks BadNets,
Trojaning (SQ), and Trojaning (WM) respectively, this metric
grows 0.47%, 6.71%, and 3.2% when evaluated with the
transformed testing set generated with b1 ∈ B. With respect
to the accuracy with adversarial data, the metric increases
89.30%, 94.41%, and 75.65% with the same healed models.

Findings. With a few styles (four in our case), ConFoc
reduces the ASR to or close to 0.00%, while ensures both
accuracies get values equal or above the original accuracy
regardless the input style when conditions C1-C4 hold.

C. Effect on Non-Trojaned Models

RQ3. What is the impact of ConFoc on the accuracy (only
benign data applies) of non-trojaned models?
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(b) BadNets: Accuracy (Adversarial Data)
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(c) BadNets: ASR (Adversarial Data)
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(d) Trojaning (SQ): Accuracy (Benign Data)
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Fig. 6: Efficiency of ConFoc on making models focus on content at testing. MT is healed with an incremental number of styles.
Resulting healed models are evaluated with test sets generated with different style bases: b1 ∈ B, a1 ∈ A, and a2 ∈ A.

One of the main challenges defending against trojan attacks
is the lack of tools to determine whether a given model has a
trojan. Due to this restriction, this section evaluates the impact
ConFoc has on the accuracy of an original non-trojaned model
MO. Our goal is determining whether ConFoc can be applied
to any model (whether infected or not) without impairing its
current performance (accuracy with benign data).

We take the non-trojaned version of the models created
with the datasets GTSRB and VGG-Face through the ConFoc
healing process. Figure 7 shows the metric variation of the
GTSRB model as styles are added to the healing process.
Taking model MH(X−4) tested with the transformed samples
generated with b1 ∈ B as example, the accuracy improves from
97.91% to 98.37%. We get a similar graph (not included) with
the VGG-Face model. In this case, the best performance is
obtained with the model MH(X−6), with a percentage increase
of 0.17%. These results prove that ConFoc does not affect the
accuracy of non-trojaned models. In contrast, the trends of the
graphs shows that it at least remains the same if enough styles
are used in the healing process.

Findings. ConFoc can be equally applied to any model
(either trojaned or not) as it does not impair its performance.

D. Healing Set Size and Number of Styles

RQ4. Does the number of styles required in the ConFoc
healing process depend on the size of the healing set XH?

We investigate the relationship between the number of
styles required to successfully apply ConFoc and the size of
the healing set. This is a key question because having access
to extra training sets is challenging in real-world scenarios.
As specified in Section V, previous experiments are run with
healing sets of size 10% and 5% for the models infected with
BandNets and Trojaning Attack respectively. We now replicate
the same experiments progressively decreasing the size of these
sets and selecting the model with the best performance in each
case. Table IV shows that there is no relationship between size
of the healing set and the number of styles needed to apply
ConFoc. This can be explained because the combination of
some contents and styles add noise to the resulting retraining
set, which make models to not monotonically improve as more
styles are added. Whereby, defenders need to apply the best
training practices to fine-tune the models with the generated
data so as to obtain the best possible results.

Findings. There is no relationship between the XH size and
the number of styles needed to successfully apply ConFoc.
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Fig. 7: Accuracy (benign data) variation of the GTSRB-based
non-trojaned model when ConFoc is progressively applied.

E. Performance and Comparison With the State-of-the-Art

RQ5. How well does ConFoc perform compared to the
state-of-the-art and what overhead it imposes at testing?

Table V shows the performance of ConFoc and its compar-
ison with the state-of-art Neural Cleanse [7]. To be complete
in our comparison with fine-tuning-based methods, we also
include a comparison with Retraining [12]. The table contains
the accuracies (with both begin and adversarial data) and the
ASR after applying the defensive methods. The first column
specifies the attack used for the evaluation. DS refers to the
size of the healing set. The initial values of the trojaned models
(before applying any method) are included in Table VI.

In Table V, columns below ConFoc (Original Inputs) and
ConFoc (Transformed Inputs) summarize the performance of
our method using the best healed models (specified in Table
IV) for different sizes of the healing set. As the names indicate,
we tested ConFoc with both original and transformed inputs.
The other two techniques (Retraining and Neural Cleanse)
were evaluated with original inputs as the methods require.
With Retraining, we fine-tuned the model using the original
healing set for multiple epochs and selected the best resulting
model. In the case of Neural Cleanse, we proceeded exactly
as indicated by the authors in [7]. We added the reversed-
engineered triggers to 20% of the samples in the healing
set and retrained the model for one epoch. The reversed-
engineered triggers are provided by the authors in [55]. During
the execution of this method, only the trigger related to
Trojaning (WM) worked as expected. Whereby, we ran the
Neural Cleanse method against BadNets and Trojaning (SQ)
with the actual triggers used to conduct the attacks. This action
does affect the performance of Neural Cleanse. In contrast, it
represents the ideal scenario in which triggers are perfectly
reverse-engineered and the produced corrected models provide
the best possible results.

As shown in the Table V, all the defensive methods produce
high accuracy with benign data regardless the size of the
healing set. In most cases, this metric is superior to the
initial value of the trojaned model (see to Table VI). The
main differences between the methods are observed in the
accuracy with adversarial data (highlighted in light grey for
all the methods) and the ASR. ConFoc (with both original
and transformed inputs) constantly gets high values in these
two metrics, while the other methods produce values below

TABLE IV: Best Healed Models After Applying ConFoc

Experimental Setup Best Healed Model

Attack DS Model ID No. Styles (Including Content)

BadNets 10% MH(X−6) 7
Trojaning (SQ) 5% MH(X−2) 3
Trojaning (WM) 5% MH(X−4) 5

BadNets 6.6% MH(X−4) 5
Trojaning (SQ) 3.3% MH(X−2) 3
Trojaning (WM) 3.3% MH(X−1) 2

BadNets 3.3% MH(X−4) 5
Trojaning (SQ) 1.67% MH(X−1) 2
Trojaning (WM) 1.67% MH(X−2) 3

90% for the former and above 1% for the latter as the healing
set decreases. These cases are marked in red in the table.

With respect to the accuracy with adversarial data, Retrain-
ing, as expected, tends to produce models with lower values
in this metric as the healing sets become smaller in all the at-
tacks [12]. Neural Cleanse produces models that perform well
against both Trojaning Attacks and unwell against BadNets
regardless the size of the healing set. This is because Neural
Cleanse relies on updating the model parameters for one epoch
only, which does not suffice to remove the learned trigger-
related features. BadNets is conducted via poisoning, which
means that the parameters of all model layers are adjusted
during training. Whereby, to remove the effect of triggers,
larger datasets or more epochs are required [12]. Trojaning
Attack, in contrast, is a retraining technique that fine-tunes the
last layers of the models (i.e., it changes less parameters) while
inserting the trojan (see Section III-C). Hence, one epoch is
enough to remove the trigger effect.

At this point, it is important to highlight that due to the
violation of the condition C3 as explained Section VI-A,
ConFoc produces models with lower values in the accuracy
with adversarial data than those obtained with benign data in
the case of Trojaning Attack (WM) (see dark grey cells in the
table). These values, however are constantly above 90% and
do not tend to decrease with the sizes of the healing set.

ConFoc Overhead. There is no clear advantage (with
respect to the metrics) on using either original or transformed
inputs with ConFoc. However, there is a difference in the
overhead caused at testing time. Transforming the inputs with
Algoritm 3 directly imposes an 10-run average overhead of
3.14 s with 10 iterations of the optimizer LGBFS [52] over
a Titan XP GPU. We reduce this runtime overhead to values
around 0.015 s by applying the principles of Algorithm 1 and
Algorithm 3 to train image transformation neural networks
offline for each chosen style as proposed in [56]. This im-
plementation is included in our prototype [15]. ConFoc does
not impose any overhead at testing if original inputs are used.

Findings. ConFoc outperforms the state-of-the-art method
regardless the size of the healing set, without imposing any
overhead when original inputs are used in the evaluation.

F. Robustness Against Adaptive and Complex Triggers

RQ6. How effective is ConFoc protecting DNN models
when adaptive and complex triggers are used?
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TABLE V: Metrics of Corrected Models After Applying ConFoc and Other State-of-the-Art Model Hardening Techniques

Experimental Setup ConFoc (Original Inputs) ConFoc (Transformed Inputs) Retraining (Healing Set Only) Neural Cleanse

Attack DS Acc (Ben) Acc (Adv) ASR Acc (Ben) Acc (Adv) ASR Acc (Ben) Acc (Adv) ASR Acc (Ben) Acc (Adv) ASR

BadNets 10.0% 97.21% 96.51% 0.00% 97.44% 97.67% 0.00% 96.98% 96.51% 0.00% 97.21% 65.35% 0.00%
Trojaning (SQ) 5.0% 97.79% 96.75% 0.53% 97.27% 97.14% 0.27% 97.40% 92.45% 0.94% 97.53% 97.27% 0.27%
Trojaning (WM) 5.0% 96.75% 91.28% 0.80% 96.35% 94.27% 0.53% 97.79% 90.10% 0.40% 96.88% 93.36% 0.27%

BadNets 6.66% 97.21% 96.98% 0.00% 97.21% 97.21% 0.00% 96.28% 94.42% 0.00% 97.21% 54.42% 0.00%
Trojaning (SQ) 3.33% 97.40% 97.27% 0.53% 96.75% 97.14% 0.66% 98.31% 82.68% 0.16% 97.53% 97.79% 0.13%
Trojaning (WM) 3.33% 96.8750 92.3177 0.13% 96.09% 91.67 0.27% 98.05% 92.19% 1.73% 97.01% 92.45% 0.00%

BadNets 3.33% 96.05% 96.05% 0.00% 97.21% 97.21% 0.00% 95.12% 96.05% 0.00% 97.21%, 58.84% 3.33%
Trojaning (SQ) 1.67% 98.05% 96.09% 0.67% 96.35% 96.88% 0.27% 98.05% 82.94% 0.16% 96.61% 96.09% 0.00%
Trojaning (WM) 1.67% 97.27% 91.15% 0.13% 95.96% 92.84% 0.27% 97.66% 83.72% 9.08% 96.48% 89.58% 1.34%

TABLE VI: Initial Metrics of Trojaned Models

Attack Acc (Ben) Acc (Adv) ASR

BadNets 96.98% 8.37% 93.81%
Trojaning (SQ) 91.15% 2.73% 99.73%
Trojaning (WM) 93.36% 18.62% 81.18%

This section evaluates ConFoc against trojan attacks con-
ducted with complex triggers. We conduct the attacks with
BadNets because this approach extracts trigger-related features
in all the layers of the model, making it more difficult to
eliminate. The idea is to test of ConFoc in the most complex
scenarios. We make sure that the attacks comply with the
conditions C1-C4 specified in Section III-B. The complex
triggers are described below using as reference the trigger
(referred here to as original) and data split presented in Section
V-B (see Figure 4). In the description, the sizes of the triggers
correspond to a percentage of the larger side of the inputs.

• Adaptive. We assume an adaptive attacker knowl-
edgeable about ConFoc who seek to mitigate the
healing procedure by infecting the model with styled
adversarial samples. The original trigger is added to
the samples in the trojan set (trj). These samples are
then transformed via ConFoc using the base b1 ∈ B,
which is used in the healing process enacting so the
best scenario for the attacker. The target class is 19.

• Larger. A white square of size is 15% (rather than
the 10% size of original) located in the botton-right
corner of the image. The target class is 19.

• Random Pixel. A square of size 10% located in
botton-right corner of the image, whose pixel values
are randomly chosen. The target class is 19.

• Multiple Marks. A trigger consisting of four marks:
(1) the original white square in the botton-right corner,
(2) the random pixel square described above located in
the botton-left corner, (3) a white circle (circumscribed
by a square of size 15%) located in top-left corner,
and (4) the same circle but filled with random pixels
located in the top-right corner. The target class is 19.

• Many-to-One. Each of the multiple marks described
above are added individually to the samples in the
torjan set (trj). Namely, we create four trojan sets, each
with one of the marks. The target class assigned to all
the resulting adversarial samples in these sets is 19.

TABLE VII: Performance With Adaptive/Complex Triggers

Before ConFoc After ConFoc

Trigger Acc (Ben) Acc (Adv) ASR Acc (Ben) Acc (Adv) ASR

Adaptive 98.14% 2.33% 100.0% 98.14% 97.91% 0.00%
Larger 97.67% 2.56% 99.76% 97.67% 97.91% 0.00%
Random Pixel 97.91% 2.33% 100.0% 98.14% 97.44% 0.00%
Multiple Marks 97.44% 2.33% 100.0% 97.67% 97.91% 0.00%
Many-to-One 96.51% 20.93% 80.48% 97.44% 97.21% 0.00%
Many-to-Many 97.91% 21.63% 80.00% 97.91% 98.14% 0.00%

• Many-to-Many. In this case we assign a different
target class to each of trojan sets described above.
The assignment is as follows: (1) botton-right mark
targets class 19, (2) botton-left mark targets class 20,
(3) top-right mark targets class 21, and (4) top-left
mark targets class 22.

Table VII shows the metric of the trojaned models before
and after applying ConFoc. Results show that ConFoc ef-
fectively reduces the ASR to the minimum while ensures both
accuracies remain close or better than the initial values.

Findings. ConFoc effectively eliminate trojans on DNNs
compromised with complex triggers, while ensures accuracy
values that in average either equal or outperform the initial
values of the model when conditions C1-C4 are satisfied.

VII. CONCLUSIONS AND FUTURE WORK

We present a generic model hardening technique called
ConFoc to protect DNNs against trojan attacks. ConFoc
takes as input an infected model and produces a healed version
of it. These models are healed by fine-tuning them with a
small dataset of benign inputs augmented with styles extracted
from a few random images. We run experiments on different
models and datasets, infected with a variety of triggers by
two different trojan attacks: BadNets and Trojaning Attack.
Results show that ConFoc increasingly reduces the sensitivity
of trojaned models to triggers as more styles are used in the
healing process. We proved that our method can be equally
applied to any model (trojaned or not) since it does not impact
the initial accuracy of the model. In comparison with the
state-of-the-art, we validate that ConFoc consistently correct
infected models, regardless the dataset, architecture or attack
variation. Our results leads us to new research questions related
to the internal behavior of models. Future work will aim to
investigate which neurons relate to the content of inputs. This
information will be used to devise a novel white-box approach
to detect misbehaviors based on the activation of these neurons.
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