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THE LAST DECADE has seen a vast increase both in the 
diversity of applications to which machine learning 
is applied, and to the import of those applications. 
Machine learning is no longer just the engine behind 
ad placements and spam filters; it is now used to filter 
loan applicants, deploy police officers, and inform 
bail and parole decisions, among other things. The 
result has been a major concern for the potential for 
data-driven methods to introduce and perpetuate 
discriminatory practices, and to otherwise be unfair. 
And this concern has not been without reason: a 
steady stream of empirical findings has shown that 
data-driven methods can unintentionally both encode 
existing human biases and introduce new ones.7,9,11,60

At the same time, the last two years 
have seen an unprecedented explo-
sion in interest from the academic 
community in studying fairness and 
machine learning. “Fairness and 
transparency” transformed from a 
niche topic with a trickle of papers 
produced every year (at least since the 
work of Pedresh56 to a major subfield 
of machine learning, complete with a 
dedicated archival conference—ACM 
FAT*). But despite the volume and 
velocity of published work, our un-
derstanding of the fundamental ques-
tions related to fairness and machine 
learning remain in its infancy. What 
should fairness mean? What are the 
causes that introduce unfairness in 
machine learning? How best should 
we modify our algorithms to avoid 
unfairness? And what are the corre-
sponding trade offs with which we 
must grapple?

In March 2018, we convened a 
group of about 50 experts in Philadel-
phia, drawn from academia, industry, 
and government, to assess the state of 
our understanding of the fundamen-
tals of the nascent science of fairness 
in machine learning, and to identify 
the unanswered questions that seem 
the most pressing. By necessity, the 
aim of the workshop was not to com-
prehensively cover the vast growing 
field, much of which is empirical. In-
stead, the focus was on theoretical 
work aimed at providing a scientific 
foundation for understanding algo-
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the minority population. This leads to 
a different (and higher) distribution 
of errors in the minority population. 
This effect can be quantified and can 
be partially alleviated via concerted 
data gathering effort.14

3.	 The need to explore. In many im-
portant problems, including recidi-
vism prediction and drug trials, the 
data fed into the prediction algorithm 
depends on the actions that algorithm 
has taken in the past. We only observe 
whether an inmate will recidivate if we 
release him. We only observe the effi-
cacy of a drug on patients to whom it is 
assigned. Learning theory tells us that 
in order to effectively learn in such 
scenarios, we need to explore—that 
is, sometimes take actions we believe 
to be sub-optimal in order to gather 
more data. This leads to at least two 
distinct ethical questions. First, when 
are the individual costs of exploration 
borne disproportionately by a certain 
sub-population? Second, if in certain 
(for example, medical) scenarios, we 
view it as immoral to take actions we 
believe to be sub-optimal for any par-
ticular patient, how much does this 
slow learning, and does this lead to 
other sorts of unfairness?

Definitions of fairness. With a few 
exceptions, the vast majority of work 
to date on fairness in machine learn-
ing has focused on the task of batch 
classification. At a high level, this lit-
erature has focused on two main fami-
lies of definitions:a statistical notions 
of fairness and individual notions 
of fairness. We briefly review what 
is known about these approaches to 
fairness, their advantages, and their 
shortcomings.

Statistical definitions of fairness. 
Most of the literature on fair classifica-
tion focuses on statistical definitions 
of fairness. This family of definitions 
fixes a small number of protected 
demographic groups G (such as ra-
cial groups), and then ask for (ap-
proximate) parity of some statistical 
measure across all of these groups. 
Popular measures include raw posi-
tive classification rate, considered in 

a	 There is also an emerging line of work that 
considers causal notions of fairness (for exam-
ple, see Kilbertus,43 Kusner,48 Nabi55). We in-
tentionally avoided discussions of this poten-
tially important direction because it will be the 
subject of its own CCC visioning workshop.

rithmic bias. This document captures 
several of the key ideas and directions 
discussed. It is not an exhaustive ac-
count of work in the area.

What We Know
Even before we precisely specify what 
we mean by “fairness,” we can iden-
tify common distortions that can lead 
off-the-shelf machine learning tech-
niques to produce behavior that is in-
tuitively unfair. These include:

1.	 Bias encoded in data. Often, the 
training data we have on hand already 
includes human biases. For example, 
in the problem of recidivism predic-
tion used to inform bail and parole de-
cisions, the goal is to predict whether 
an inmate, if released, will go on to 
commit another crime within a fixed 
period of time. But we do not have 
data on who commits crimes—we 
have data on who is arrested. There is 
reason to believe that arrest data—es-
pecially for drug crimes—is skewed 
toward minority populations that are 
policed at a higher rate.59 Of course, 
machine learning techniques are de-
signed to fit the data, and so will natu-
rally replicate any bias already present 
in the data. There is no reason to ex-
pect them to remove existing bias.

2.	 Minimizing average error fits ma-
jority populations. Different popula-
tions of people have different distribu-
tions over features, and those features 
have different relationships to the 
label that we are trying to predict. As 
an example, consider the task of pre-
dicting college performance based 
on high school data. Suppose there 
is a majority population and a minor-
ity population. The majority popula-
tion employs SAT tutors and takes the 
exam multiple times, reporting only 
the highest score. The minority popu-
lation does not. We should naturally 
expect both that SAT scores are high-
er among the majority population, 
and that their relationship to college 
performance is differently calibrated 
compared to the minority population. 
But if we train a group-blind classi-
fier to minimize overall error, if it can-
not simultaneously fit both popula-
tions optimally, it will fit the majority 
population. This is because—simply 
by virtue of their numbers—the fit to 
the majority population is more im-
portant to overall error than the fit to 

Given the limitations 
of extant notions  
of fairness,  
is there a way  
to get some  
of the “best of  
both worlds?”
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work such as Calders,10 Dwork,19 Feld-
man,25 Kamishima,36 (also sometimes 
known as statistical parity,19 false pos-
itive and false negative rates15,29,46,63 
(also sometimes known as equal-
ized odds29), and positive predictive 
value15,46 (closely related to equalized 
calibration when working with real 
valued risk scores). There are others—
see, for example, Berk4 for a more ex-
haustive enumeration. 

This family of fairness definitions 
is attractive because it is simple, and 
definitions from this family can be 
achieved without making any assump-
tions on the data and can be easily ver-
ified. However, statistical definitions 
of fairness do not on their own give 
meaningful guarantees to individuals 
or structured subgroups of the pro-
tected demographic groups. Instead 
they give guarantees to “average” 
members of the protected groups. 
(See Dwork19 for a litany of ways in 
which statistical parity and similar 
notions can fail to provide meaning-
ful guarantees, and Kearns40 for exam-
ples of how some of these weaknesses 
carry over to definitions that equalize 
false positive and negative rates.) Dif-
ferent statistical measures of fairness 
can be at odds with one another. For 
example, Chouldechova15 and Klein-
berg46 prove a fundamental impossi-
bility result: except in trivial settings, 
it is impossible to simultaneously 
equalize false positive rates, false 
negative rates, and positive predictive 
value across protected groups. Learn-
ing subject to statistical fairness con-
straints can also be computationally 
hard,61 although practical algorithms 
of various sorts are known.1,29,63

Individual definitions of fairness. 
Individual notions of fairness, on the 
other hand, ask for constraints that 
bind on specific pairs of individu-
als, rather than on a quantity that is 
averaged over groups. For example, 
Dwork19 gives a definition which 
roughly corresponds to the constraint 
that “similar individuals should be 
treated similarly,” where similarity is 
defined with respect to a task-specific 
metric that must be determined on a 
case by case basis. Joseph35 suggests a 
definition that corresponds approxi-
mately to “less qualified individuals 
should not be favored over more qual-
ified individuals,” where quality is de-

fined with respect to the true underly-
ing label (unknown to the algorithm). 
However, although the semantics of 
these kinds of definitions can be more 
meaningful than statistical approach-
es to fairness, the major stumbling 
block is that they seem to require 
making significant assumptions. For 
example, the approach of Dwork19 pre-
supposes the existence of an agreed 
upon similarity metric, whose defini-
tion would itself seemingly require 
solving a non-trivial problem in fair-
ness, and the approach of Joseph35 
seems to require strong assumptions 
on the functional form of the relation-
ship between features and labels in 
order to be usefully put into practice. 
These obstacles are serious enough 
that it remains unclear whether in-
dividual notions of fairness can be 
made practical—although attempting 
to bridge this gap is an important and 
ongoing research agenda.

Questions at the Research Frontier
Given the limitations of extant no-
tions of fairness, is there a way to get 
some of the “best of both worlds?” 
In other words, constraints that are 
practically implementable without 
the need for making strong assump-
tions on the data or the knowledge 
of the algorithm designer, but which 
nevertheless provide more meaning-
ful guarantees to individuals? Two 
recent papers, Kearns40 and Hèbert-
Johnson30 (see also Kearns42 and 
Kim44 for empirical evaluations of 
the algorithms proposed in these pa-
pers), attempt to do this by asking for 
statistical fairness definitions to hold 
not just on a small number of pro-
tected groups, but on an exponential 
or infinite class of groups defined by 
some class of functions of bounded 
complexity. This approach seems 
promising—because, ultimately, they 
are asking for statistical notions of 
fairness—the approaches proposed 
by these papers enjoy the benefits of 
statistical fairness: that no assump-
tions need be made about the data, 
nor is any external knowledge (like a 
fairness metric) needed. It also bet-
ter addresses concerns about “inter-
sectionality,” a term used to describe 
how different kinds of discrimination 
can compound and interact for indi-
viduals who fall at the intersection of 

several protected classes. 
At the same time, the approach 

raises a number of additional ques-
tions: What function classes are rea-
sonable, and once one is decided 
upon (for example, conjunctions of 
protected attributes), what features 
should be “protected?” Should these 
only be attributes that are sensitive 
on their own, like race and gender, or 
might attributes that are innocuous 
on their own correspond to groups we 
wish to protect once we consider their 
intersection with protected attributes 
(for example clothing styles inter-
sected with race or gender)? Finally, 
this family of approaches significantly 
mitigates some of the weaknesses of 
statistical notions of fairness by ask-
ing for the constraints to hold on av-
erage not just over a small number 
of coarsely defined groups, but over 
very finely defined groups as well. Ulti-
mately, however, it inherits the weak-
nesses of statistical fairness as well, 
just on a more limited scale.

Another recent line of work aims 
to weaken the strongest assumption 
needed for the notion of individual 
fairness from Dwork:19 namely the al-
gorithm designer has perfect knowl-
edge of a “fairness metric.” Kim45 as-
sumes the algorithm has access to an 
oracle which can return an unbiased 
estimator for the distance between 
two randomly drawn individuals ac-
cording to an unknown fairness met-
ric, and show how to use this to ensure 
a statistical notion of fairness related 
to Hèbert-Johnson30 and Kearns,40 
which informally state that “on aver-
age, individuals in two groups should 
be treated similarly if on average the 
individuals in the two groups are simi-
lar” and this can be achieved with re-
spect to an exponentially or infinitely 
large set of groups. Similarly, Gillen28 
assumes the existence of an oracle, 
which can identify fairness violations 
when they are made in an online set-
ting but cannot quantify the extent of 
the violation (with respect to the un-
known metric). It is shown that when 
the metric is from a specific learn-
able family, this kind of feedback is 
sufficient to obtain an optimal regret 
bound to the best fair classifier while 
having only a bounded number of vio-
lations of the fairness metric. Roth-
blum58 considers the case in which 
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and do not necessarily coordinate. In 
settings like this, in which we do not 
have direct control over the decision-
making process, it is important to 
think about how to incentivize ratio-
nal agents to behave in a way that we 
view as fair. Kannan37 takes a prelimi-
nary stab at this task, showing how to 
incentivize a particular notion of in-
dividual fairness in a simple, stylized 
setting, using small monetary pay-
ments. But how should this work for 
other notions of fairness, and in more 
complex settings? Can this be done by 
controlling the flow of information, 
rather than by making monetary pay-
ments (monetary payments might be 
distasteful in various fairness-rele-
vant settings)? More work is needed 
here as well. Finally, Corbett-Davies17 
take a welfare maximization view of 
fairness in classification and charac-
terize the cost of imposing additional 
statistical fairness constraints as well. 
But this is done in a static environ-
ment. How would the conclusions 
change under a dynamic model?

Modeling and correcting bias in 
the data. Fairness concerns typically 
surface precisely in settings where 
the available training data is already 
contaminated by bias. The data itself 
is often a product of social and his-
torical process that operated to the 
disadvantage of certain groups. When 
trained in such data, off-the-shelf ma-
chine learning techniques may repro-
duce, reinforce, and potentially exac-
erbate existing biases. Understanding 
how bias arises in the data, and how 
to correct for it, are fundamental chal-
lenges in the study of fairness in ma-
chine learning.

Bolukbasi7 demonstrate how ma-
chine learning can reproduce biases 
in their analysis of the popular word-
2vec embedding trained on a corpus 
of Google News texts (parallel effects 
were independently discovered by Ca-
liskan11). The authors show that the 
trained embedding exhibit female/
male gender stereotypes, learning 
that “doctor” is more similar to man 
than to woman, along with analogies 
such as “man is to computer program-
mer as woman is to homemaker.” 
Even if such learned associations ac-
curately reflect patterns in the source 
text corpus, their use in automated 
systems may exacerbate existing bi-

the metric is known and show that 
a PAC-inspired approximate variant 
of metric fairness generalizes to new 
data drawn from the same underly-
ing distribution. Ultimately, however, 
these approaches all assume fairness 
is perfectly defined with respect to 
some metric, and that there is some 
sort of direct access to it. Can these 
approaches be generalized to a more 
“agnostic” setting, in which fairness 
feedback is given by human beings 
who may not be responding in a way 
that is consistent with any metric?

Data evolution and dynamics of 
fairness. The vast majority of work 
in computer science on algorithmic 
fairness has focused on one-shot clas-
sification tasks. But real algorithmic 
systems consist of many different 
components combined together, and 
operate in complex environments 
that are dynamically changing, some-
times because of the actions of the 
learning algorithm itself. For the field 
to progress, we need to understand 
the dynamics of fairness in more com-
plex systems.

Perhaps the simplest aspect of dy-
namics that remains poorly under-
stood is how and when components 
that may individually satisfy notions 
of fairness compose into larger con-
structs that still satisfy fairness guar-
antees. For example, if the bidders in 
an advertising auction individually 
are fair with respect to their bidding 
decisions, when will the allocation of 
advertisements be fair, and when will 
it not? Bower8 and Dwork20 have made 
a preliminary foray in this direction. 
These papers embark on a systematic 
study of fairness under composition 
and find that often the composition 
of multiple fair components will not 
satisfy any fairness constraint at all. 
Similarly, the individual components 
of a fair system may appear to be un-
fair in isolation. There are certain 
special settings, for example, the “fil-
tering pipeline” scenario of Bower8—
modeling a scenario in which a job 
applicant is selected only if she is se-
lected at every stage of the pipeline—
in which (multiplicative approxima-
tions of) statistical fairness notions 
compose in a well behaved way. But 
the high-level message from these 
works is that our current notions of 
fairness compose poorly. Experience 

from differential privacy21,22 suggests 
that graceful degradation under com-
position is key to designing compli-
cated algorithms satisfying desirabl  
e statistical properties, because it al-
lows algorithm design and analysis to 
be modular. Thus, it seems important 
to find satisfying fairness definitions 
and richer frameworks that behave 
well under composition.

In dealing with socio-technical 
systems, it is also important to under-
stand how algorithms dynamically ef-
fect their environment, and the incen-
tives of human actors. For example, if 
the bar (for example, college admis-
sion) is lowered for a group of indi-
viduals, this might increase the aver-
age qualifications for this group over 
time because of at least two effects: 
a larger proportion of children in the 
next generation grow up in house-
holds with college educated parents 
(and the opportunities this provides), 
and the fact that a college education 
is achievable can incentivize effort to 
prepare academically. These kinds 
of effects are not considered when 
considering either statistical or indi-
vidual notions of fairness in one-shot 
learning settings. 

The economics literature on af-
firmative action has long considered 
such effects—although not with the 
specifics of machine learning in mind: 
see, for example, Becker,3 Coat,16 Fos-
ter.26 More recently, there have been 
some preliminary attempts to model 
these kinds of effects in machine 
learning settings—for example, by 
modeling the environment as a Mar-
kov decision process,32 considering 
the equilibrium effects of imposing 
statistical definitions of fairness in a 
model of a labor market,31 specifying 
the functional relationship between 
classification outcomes and quality,49 
or by considering the effect of a clas-
sifier on a downstream Bayesian de-
cision maker.39 However, the specific 
predictions of most of the models 
of this sort are brittle to the specific 
modeling assumptions made—they 
point to the need to consider long 
term dynamics, but do not provide 
robust guidance for how to navigate 
them. More work is needed here.

Finally, decision making is often 
distributed between a large number 
of actors who share different goals 
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ases. For instance, it might result in 
male applicants being ranked more 
highly than equally qualified female 
applicants in queries related to jobs 
that the embedding identifies as 
male-associated.

Similar risks arise whenever there 
is potential for feedback loops. These 
are situations where the trained ma-
chine learning model informs deci-
sions that then affect the data collect-
ed for future iterations of the training 
process. Lum51 demonstrate how feed-
back loops might arise in predictive 
policing if arrest data were used to 
train the model.b In a nutshell, since 
police are likely to make more arrests 
in more heavily policed areas, using 
arrest data to predict crime hotspots 
will disproportionately concentrate 
policing efforts on already over-po-
liced communities. Expanding on this 
analysis, Ensign24 finds that incorpo-
rating community-driven data, such 
as crime reporting, helps to attenu-
ate the biasing feedback effects. The 
authors also propose a strategy for 
accounting for feedback by adjusting 
arrest counts for policing intensity. 
The success of the mitigation strat-
egy, of course, depends on how well 
the simple theoretical model reflects 
the true relationships between crime 
intensity, policing, and arrests. Prob-
lematically, such relationships are of-
ten unknown, and are very difficult to 
infer from data. This situation is by no 
means specific to predictive policing.

Correcting for data bias generally 
seems to require knowledge of how 
the measurement process is biased, 
or judgments about properties the 
data would satisfy in an “unbiased” 
world. Friedler27 formalize this as 
a disconnect between the observed 
space—features that are observed in 
the data, such as SAT scores—and 
the unobservable construct space—
features that form the desired basis 
for decision making, such as intel-
ligence. Within this framework, data 
correction efforts attempt to undo the 
effects of biasing mechanisms that 
drive discrepancies between these 
spaces. To the extent that the biasing 

b	 Predictive policing models are generally pro-
prietary, and so it is not clear whether arrest 
data is used to train the model in any de-
ployed system.

mechanism cannot be inferred em-
pirically, any correction effort must 
make explicit its underlying assump-
tions about this mechanism. What 
precisely is being assumed about the 
construct space? When can the map-
ping between the construct space and 
the observed space be learned and 
inverted? What form of fairness does 
the correction promote, and at what 
cost? The costs are often immediately 
realized, whereas the benefits are less 
tangible. We will directly observe re-
ductions in prediction accuracy, but 
any gains hinge on a belief that the 
observed world is not one we should 
seek to replicate accurately in the 
first place. This is an area where tools 
from causality may offer a principled 
approach for drawing valid inference 
with respect to unobserved counter-
factually ‘fair’ worlds.

Fair representations. Fair repre-
sentation learning is a data debiasing 
process that produces transforma-
tions (intermediate representations) 
of the original data that retain as 
much of the task-relevant informa-
tion as possible while removing infor-
mation about sensitive or protected 
attributes. This is one approach to 
transforming biased observational 
data in which group membership may 
be inferred from other features, to a 
construct space where protected attri-
butes are statistically independent of 
other features.

First introduced in the work of 
Zemel64 fair representation learning 
produces a debiased data set that 
may in principle be used by other par-
ties without any risk of disparate out-
comes. Feldman25 and McNamara54 
formalize this idea by showing how 
the disparate impact of a decision rule 
is bounded in terms of its balanced er-
ror rate as a predictor of the sensitive 
attribute.

Several recent papers have intro-
duced new approaches for construct-
ing fair representations. Feldman25 
propose rank-preserving procedures 
for repairing features to reduce or re-
move pairwise dependence with the 
protected attribute. Johndrow33 build 
upon this work, introducing a likeli-
hood-based approach that can addi-
tionally handle continuous protected 
attributes, discrete features, and 
which promotes joint independence 

Fairness  
concerns typically 
surface precisely  
in settings where  
the available 
training data 
is already 
contaminated  
by bias. 
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tions that appear to be sub-optimal so 
as to gather more data. But in settings 
in which decisions correspond to in-
dividuals, this means sacrificing the 
well-being of a particular person for 
the potential benefit of future individ-
uals. This can sometimes be unethi-
cal, and a source of unfairness.6 Sever-
al recent papers explore this issue. For 
example, Bastani2 and Kannan38 give 
conditions under which linear learn-
ers need not explore at all in bandit 
settings, thereby allowing for best-ef-
fort service to each arriving individual, 
obviating the tension between ethical 
treatment of individuals and learn-
ing. Raghavan57 show the costs associ-
ated with exploration can be unfairly 
bourn by a structured sub-population, 
and that counter-intuitively, those 
costs can actually increase when they 
are included with a majority popula-
tion, even though more data increases 
the rate of learning overall. However, 
these results are all preliminary: they 
are restricted to settings in which the 
learner is learning a linear policy, and 
the data really is governed by a linear 
model. While illustrative, more work 
is needed to understand real-world 
learning in online settings, and the 
ethics of exploration.

There is also some work on fair-
ness in machine learning in other 
settings—for example, ranking,12 se-
lection,42,47 personalization,13 bandit 
learning,34,50 human-classifier hybrid 
decision systems,53 and reinforce-
ment learning.18,32 But outside of clas-
sification, the literature is relatively 
sparse. This should be rectified, be-
cause there are interesting and im-
portant fairness issues that arise in 
other settings—especially when there 
are combinatorial constraints on the 
set of individuals that can be selected 
for a task, or when there is a temporal 
aspect to learning.
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between the transformed features 
and the protected attributes. There 
is also a growing literature on using 
adversarial learning to achieve group 
fairness in the form of statistical par-
ity or false positive/false negative rate 
balance.5,23,52,65

Existing theory shows the fairness-
promoting benefits of fair-represen-
tation learning rely critically on the 
extent to which existing associations 
between the transformed features 
and the protected characteristics are 
removed. Adversarial downstream us-
ers may be able to recover protected 
attribute information if their models 
are more powerful than those used 
initially to obfuscate the data. This 
presents a challenge both to the gen-
erators of fair representations as well 
as to auditors and regulators tasked 
with certifying that the resulting data 
is fair for use. More work is needed to 
understand the implications of fair 
representation learning for promot-
ing fairness in the real world.

Beyond classification. Although 
the majority of the work on fairness 
in machine learning focuses on batch 
classification, it is but one aspect of 
how machine learning is used. Much 
of machine learning—for example, 
online learning, bandit learning, and 
reinforcement learning—focuses 
on dynamic settings in which the ac-
tions of the algorithm feed back into 
the data it observes. These dynamic 
settings capture many problems for 
which fairness is a concern. For ex-
ample, lending, criminal recidivism 
prediction, and sequential drug trials 
are so-called bandit learning prob-
lems, in which the algorithm cannot 
observe data corresponding to coun-
terfactuals. We cannot see whether 
someone not granted a loan would 
have paid it back. We cannot see 
whether an inmate not released on 
parole would have gone on to commit 
another crime. We cannot see how a 
patient would have responded to a dif-
ferent drug.

The theory of learning in bandit 
settings is well understood, and it is 
characterized by a need to trade-off 
exploration with exploitation. Rather 
than always making a myopically op-
timal decision, when counterfactuals 
cannot be observed, it is necessary 
for algorithms to sometimes take ac-
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