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What will we cover today?

• What do we mean by interpretability?

• Motivation 

• Interpretable Models

• Model Agnostic Methods

• Explainable Reinforcement Learning



What is interpretability

Interpretability is the degree to which a human can understand the 
cause of a decision. 



Why interpretability?

Decisions are critical in high-risk environments. Often machine learning 
algorithms are opaque.



Why interpretability?

• To verify the model works as expected. Wrong decisions can be costly 
and dangerous.

• Learn new insights. 

• Ensure fairness

• Enable trust in the system

• Ensure reliability: Small changes in the input should not lead to large 
changes in the output/prediction

• To check only causal relationships are picked up. 

• To be able to debug mis-classifications by the model. 



Need for interpretability



Problem Areas



Interpretable Models in Classification Tasks

• Linear/Logistic Regression

• Decision Trees



Linear/Logistic Regression

• Pros:
• Predicts the target as a weighted sum of the feature inputs making the 

mechanism somewhat transparent.

• Widely used – high level of collective experience and expertise

• Guaranteed to find optimal weights(provided assumptions are met)

• Cons:
• Can only represent linear relationships (non-linearity must be hand-crafted)

• Often not that good regarding predictive performance

• Interpretation of weights unintuitive



Decision Trees

• Pros:
• Ideal for capturing interactions

• Has a natural visualization

• Creates good explanations

• Cons:

• Does not deal with linear relationships

• Slight changes in the input feature can have a big impact on the predicted outcome

• Unstable - few changes in the training dataset can create a completely different tree

• Decision trees are very interpretable -- as long as they are short



Model Agnostic Methods

• Permutation Feature Importance

• Global Surrogate

• Local Surrogate(LIME)

• Shapley Values



Permutation Feature Importance

Measure the importance of a feature by calculating the increase in the 
model's prediction error after permuting the feature.

• Introduced for Random Forests by Breiman (2001)

• Model agnostic method proposed by Fisher, Rudin, and Dominici (2018)

• Important Feature: If shuffling the values increases the error

• Unimportant Feature: If shuffling the values leaves the model error 
unchanged



Global Surrogate

An interpretable model that is trained to approximate the predictions of 
a black box model.
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Local Surrogate

Train local surrogate models to explain individual predictions.

Concrete Implementation: Local interpretable model-agnostic 
explanations (LIME) by Ribeiro et al.(2016)

• LIME uses exponential smoothing kernel for calculating proximity

• Good approximation of predictions locally, not globally
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Shapley Values

Explain the prediction of an instance by 
computing the contribution of each feature to 
the prediction.

• The Shapley value is the average marginal 
contribution of a feature value across all possible 
combinations. 

• Assign values to features depending on their 
contribution to the prediction – e.g. buying an 
apartment with pets allowed adds 10k to the cost

• SHAP (SHapley Additive exPlanations) by 
Lundberg and Lee (2017) connects Shapley Values 
to LIME



Application of XAI in Multimodal Predictions

• Currently:
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Application of XAI in Multimodal Predictions

• Extension:

Multimodal Data
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Multiple modalities provide complementary explanatory strengths. 



Visual Question Answering

• Explanations can be integrated with a question answering system to 
provide justifications 

• In case of conflict between different classifiers, explanations become 
critical

Credit: Braines et al.



Explainable Reinforcement Learning

• PIRL

• Hierarchical Policies

• Linear Model U-Trees



PIRL

Programmatically Interpretable Reinforcement Learning framework by 
Verma et al. (2018) 

• A policy is represented using a high-level, domain-specific, human-readable 
programming language. 

• Mimics Deep Reinforcement Learning model (DRL)

• Neurally Directed Program Search(NDPS): Uses DRL to compute a policy 
which is used as a neural ‘oracle’ to direct the policy search for a policy that 
is as close as possible to the neural oracle. 



Hierarchical Policies 

Hierarchical and Interpretable Skill Acquisition in Multi-task 
Reinforcement Learning by Shu et al.(2017) 

• Complex task decomposed into several simpler subtasks. 

• Each task is described by a human instruction

• Agents can only access learnt skills through these descriptions 



Linear Model U-Trees

Toward Interpretable Deep Reinforcement Learning with Linear Model 
U-Trees by Liu et al.(2019)

• Approximates the predictions of an accurate, but complex model by 
mimicking the model’s Q-function 

• Records the state-action pairs and the resulting Q-values as ‘soft 
supervision labels
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