Explainable AI (Overview)

Trevor Bonjour

What will we cover today?

- What do we mean by interpretability?
- Motivation
- Interpretable Models
- Model Agnostic Methods
- Explainable Reinforcement Learning

What is interpretability

Interpretability is the degree to which a human can understand the cause of a decision.

Why interpretability?

Decisions are critical in high-risk environments. Often machine learning algorithms are opaque.

Why interpretability?

- To verify the model works as expected. Wrong decisions can be costly and dangerous.
- Learn new insights.
- Ensure fairness
- Enable trust in the system
- Ensure reliability: Small changes in the input should not lead to large changes in the output/prediction
- To check only causal relationships are picked up.
- To be able to debug mis-classifications by the model.

Need for interpretability

- o depends on decisions, recommendations, or actions of the system
- needs to understand the rationale for the system's decisions to understand, appropriately trust, and effectively manage the system
- The XAI concept is to:
 - o provide an explanation of individual decisions
 - o enable understanding of overall strengths & weaknesses
 - \circ convey an understanding of how the system will behave in the future
 - convey how to correct the system's mistakes (perhaps)

Problem Areas

Interpretable Models in Classification Tasks

- Linear/Logistic Regression
- Decision Trees

Linear/Logistic Regression

- Pros:
 - Predicts the target as a **weighted sum** of the feature inputs making the mechanism somewhat transparent.
 - Widely used high level of collective experience and expertise
 - Guaranteed to find optimal weights(provided assumptions are met)
- Cons:
 - Can only represent linear relationships (non-linearity must be hand-crafted)
 - Often not that good regarding predictive performance
 - Interpretation of weights unintuitive

Decision Trees

- Pros:
 - Ideal for capturing interactions
 - Has a natural visualization
 - Creates good explanations
- Cons:
 - Does not deal with linear relationships
 - Slight changes in the input feature can have a big impact on the predicted outcome
 - Unstable few changes in the training dataset can create a completely different tree
 - Decision trees are very interpretable -- as long as they are short

Model Agnostic Methods

- Permutation Feature Importance
- Global Surrogate
- Local Surrogate(LIME)
- Shapley Values

Permutation Feature Importance

Measure the importance of a feature by calculating the increase in the model's prediction error after permuting the feature.

- Introduced for Random Forests by Breiman (2001)
- Model agnostic method proposed by Fisher, Rudin, and Dominici (2018)
- Important Feature: If shuffling the values increases the error
- Unimportant Feature: If shuffling the values leaves the model error unchanged

Global Surrogate

An interpretable model that is trained to approximate the predictions of a black box model.

Local Surrogate

Train local surrogate models to explain individual predictions.

Concrete Implementation: Local interpretable model-agnostic explanations (LIME) by Ribeiro et al.(2016)

- LIME uses exponential smoothing kernel for calculating proximity
- Good approximation of predictions locally, not globally

Shapley Values

Explain the prediction of an instance by computing the contribution of each feature to the prediction.

- The Shapley value is the average marginal contribution of a feature value across all possible combinations.
- Assign values to features depending on their contribution to the prediction – e.g. buying an apartment with *pets allowed* adds 10k to the cost
- SHAP (SHapley Additive exPlanations) by Lundberg and Lee (2017) connects Shapley Values to LIME

Application of XAI in Multimodal Predictions

Results with Ranking

Application of XAI in Multimodal Predictions

Multiple modalities provide complementary explanatory strengths.

Visual Question Answering

- Explanations can be integrated with a question answering system to provide justifications
- In case of conflict between different classifiers, explanations become critical

Explainable Reinforcement Learning

- PIRL
- Hierarchical Policies
- Linear Model U-Trees

Programmatically Interpretable Reinforcement Learning framework by Verma et al. (2018)

- A policy is represented using a high-level, domain-specific, human-readable programming language.
- Mimics Deep Reinforcement Learning model (DRL)
- Neurally Directed Program Search(NDPS): Uses DRL to compute a policy which is used as a neural 'oracle' to direct the policy search for a policy that is as close as possible to the neural oracle.

Hierarchical Policies

Hierarchical and Interpretable Skill Acquisition in Multi-task Reinforcement Learning by Shu et al.(2017)

- Complex task decomposed into several simpler subtasks.
- Each task is described by a human instruction
- Agents can only access learnt skills through these descriptions

Linear Model U-Trees

Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees by Liu et al.(2019)

- Approximates the predictions of an accurate, but complex model by mimicking the model's Q-function
- Records the state-action pairs and the resulting Q-values as 'soft supervision labels

References

- Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)
- Breiman, Leo."Random Forests." Machine Learning 45 (1). Springer: 5-32 (2001)
- Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. "Model Class Reliance: Variable importance measures for any machine learning model class, from the 'Rashomon' perspective." http://arxiv.org/abs/1801.01489 (2018)
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should I trust you?: Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM (2016)
- Shapley, Lloyd S. "A value for n-person games." Contributions to the Theory of Games 2.28 (1953): 307-317
- Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Advances in Neural Information Processing Systems. (2017)
- Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically interpretable reinforcement learning. PMLR 80:5045-5054 (2018)
- Shu, T., Xiong, C., and Socher, R. Hierarchical and interpretable skill acquisition in multi-task reinforcement learning. (2017)
- Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model u-trees. In: Machine Learning and Knowledge Discovery in Databases, pp. 414–429. Springer International Publishing (2019)
- Explainable Artificial Intelligence (XAI) DARPA-BAA-16-53 (<u>https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf</u>)
- Braines, Dave, Alun Preece, and Dan Harborne. "Multimodal explanations for ai-based multisensor fusion." NATO SET-262 RSM on artificial intelligence for military multisensor fusion engines. NATO (2018).

Thank you