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What will we cover today?

 What do we mean by interpretability?
* Motivation

* Interpretable Models

* Model Agnostic Methods

* Explainable Reinforcement Learning



What is interpretability

Interpretability is the degree to which a human can understand the
cause of a decision.



Why interpretability?

Decisions are critical in high-risk environments. Often machine learning
algorithms are opaque.



Why interpretability?

* To verify the model works as expected. Wrong decisions can be costly
and dangerous.

e Learn new insights.
* Ensure fairness
* Enable trust in the system

* Ensure reliability: Small changes in the input should not lead to large
changes in the output/prediction

* To check only causal relationships are picked up.
* To be able to debug mis-classifications by the model.



Need for interpretability
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e The target of XAl is an end user who:
o depends on decisions, recommendations, or actions of the system
o needs to understand the rationale for the system’s decisions to
understand, appropriately trust, and effectively manage the system
e The XAI concept is to:
o provide an explanation of individual decisions
o enable understanding of overall strengths & weaknesses
o convey an understanding of how the system will behave in the future
o convey how to correct the system’s mistakes (perhaps)
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Interpretable Models in Classification Tasks

* Linear/Logistic Regression
* Decision Trees



Linear/Logistic Regression

* Pros:

* Predicts the target as a weighted sum of the feature inputs making the
mechanism somewhat transparent.

* Widely used — high level of collective experience and expertise
* Guaranteed to find optimal weights(provided assumptions are met)

* Cons:
e Can only represent linear relationships (non-linearity must be hand-crafted)
* Often not that good regarding predictive performance
* Interpretation of weights unintuitive



Decision Trees

* Pros:
* |deal for capturing interactions

 Has a natural visualization

 Creates good explanations

* Cons:
* Does not deal with linear relationships
* Slight changes in the input feature can have a big impact on the predicted outcome
e Unstable - few changes in the training dataset can create a completely different tree

» Decision trees are very interpretable -- as long as they are short



Model Agnostic Methods

* Permutation Feature Importance
* Global Surrogate

* Local Surrogate(LIME)

* Shapley Values



Permutation Feature Importance

Measure the importance of a feature by calculating the increase in the
model's prediction error after permuting the feature.

* Introduced for Random Forests by Breiman (2001)
* Model agnostic method proposed by Fisher, Rudin, and Dominici (2018)
* Important Feature: If shuffling the values increases the error

* Unimportant Feature: If shuffling the values leaves the model error
unchanged



Global Surrogate

An interpretable model that is trained to approximate the predictions of
a black box model.
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Local Surrogate

Train local surrogate models to explain individual predictions.

Concrete Implementation: Local interpretable model-agnostic

explanations (LIME) by Ribeiro et al.(2016)
* LIME uses exponential smoothing kernel for calculating proximity

* Good approximation of predictions locally, not globally
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Shapley Values

Explain the prediction of an instance by
computing the contribution of each feature to
the prediction.
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e SHAP (SHapley Additive exPlanations) by
Lundberg and Lee (2017) connects Shapley Values
to LIME



Application of XAl in Multimodal Predictions

* Currently:
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Application of XAl in Multimodal Predictions

e Extension:

(LIME, SHAP)
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Multiple modalities provide complementary explanatory strengths.



Visual Question Answering

* Explanations can be integrated with a question answering system to

provide justifications

* |In case of conflict between different classifiers, explanations become

critical

[Is there congestion at Checkpoint A? ]

[ | cannot be confident either way, sorry.]

/ Live CCTV shows 2 moving objects at 80% of thA
speed limit which indicates it is not congested.
But the live CCTV image is classified as congested.
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Credit: Braines et al.



Explainable Reinforcement Learning

* PIRL
e Hierarchical Policies
e Linear Model U-Trees



PIRL

Programmatically Interpretable Reinforcement Learning framework by
Verma et al. (2018)

* A policy is represented using a high-level, domain-specific, human-readable
programming language.

* Mimics Deep Reinforcement Learning model (DRL)

* Neurally Directed Program Search(NDPS): Uses DRL to compute a policy

which is used as a neural ‘oracle’ to direct the policy search for a policy that
is as close as possible to the neural oracle.



Hierarchical Policies

Hierarchical and Interpretable Skill Acquisition in Multi-task
Reinforcement Learning by Shu et al.(2017)

* Complex task decomposed into several simpler subtasks.
e Each task is described by a human instruction
* Agents can only access learnt skills through these descriptions



Linear Model U-Trees

Toward Interpretable Deep Reinforcement Learning with Linear Model
U-Trees by Liu et al.(2019)

e Approximates the predictions of an accurate, but complex model by
mimicking the model’s Q-function

* Records the state-action pairs and the resulting Q-values as ‘soft
supervision labels
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