Sorting Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.



Topic Overview

Issues in Sorting on Parallel Computers
Sorting Networks

Bubble Sort and ifs Variants

Quicksort

Bucket and Sample Sort

Other Sorfing Algorithms



Sorting: Overview

One of the most commonly used and well-studied kernels.
Sorting can be comparison-based or noncomyparison-based.

The fundamental operation of comparison-based sorting is
compare-exchange.

The lower bound on any comparison-based sort of n numbers
is O(nlogn).

We focus here on comparison-based sorting algorithmes.



Sorting: Basics

What is a parallel sorted sequence? Where are the input and
output lists stored?

e We assume that the input and output lists are distributed.

e [The sorted list is partitioned with the property that each
partitioned list is sorfed and each element in processor P;’s list
is less than that in P;’s list if ¢ < j.



Sorting: Parallel Compare Exchange Operation

a; a;  a,a; aj, aimin{a;, a;} max{a;, a;}
Step 1 Step 2 Step 3

A parallel compare-exchange operation. Processes P; and P;
send their elements to each other. Process P; keeps min{a;, a;}.
and P, keeps max{a;,a;}.



Sorting: Basics
What is the parallel counterpart to a sequential comparator?

e |If each processor has one element, the compare exchange
operation stores the smaller element at the processor with
smaller id. This can be done in ¢, + t,, fime.

e If we have more than one element per processor, we call this
operation a compare split. Assume each of two processors
have n/p elements.

o After the compare-split operafion, the smaller n/p elements are
at processor P; and the larger n/p elements af P;, where i < j.

e The time for a compare-split operation is (ts + t,,n/p), Assuming
that the two partial lists were initially sorfed.



Sorting: Parallel Compare Split Operation

2|7]9 f10}12 1|6|8[11]13

1681113 =———= |[2]|7]9|i0]12 1{6|8]|11]13 2|7)910]12
Step 1 Step 2

1|2|6|7|8|9fi0]11]12[13 1|2]6|7|8|9[10f11]12[13 1|12]6|7]8 9 l10{11]12/13
Step 3 Step 4

A compare-split operation. Each process sends its block of size
n/p To the other process. Each process merges the received
block with its own block and retains only the appropriate half of
the merged block. In this example, process P; retains the smaller
elements and process P; retains the larger elements.



Sorting Networks

e Networks of comparators designed specifically for sorting.

e A comparator is a device with two inpufs x and y and two
oufputs =/ and 4. For an increasing comparator, ' = min{z, y}
and y’ = max{x, y}; and vice-versa.

e \We denotfe an increasing comparator by & and a decreasing
comparator by ©.

e [he speed of the network is proporfional to its depth.



Sorting Networks: Comparators

= min{z,y} 2’ = min{z,y}

ya'a)
" 5 =

y — y b
y = max{z,y} y = max{z,y}

(a)

= max{z,y} 2’ = max{z,y}

an
L —

Y — , . Y — :
y = min{x, y} y = min{z,y}

(b)

A schematic representation of comparators: (a) an increasing
comparator, and (o) a decreasing comparator.



Sorting Networks

Columns of comparators

e

Input wires
| |
Interconnection network
|
|
|
Output wires

A typical sorfing network. Every sorfing network is made up of a
series of columns, and each column contains a number of
comparators connected in parallel.



Sorting Networks: Bitonic Sort

e A bitonic sorting network sorts n elements in ©(log* n) time.

e A Dbitonic sequence has two tones - Increasing and
decreasing, or vice versa. Any cyclic rotation of such networks
IS adlso considered bitonic.

e (1,2,4,7,6,0) is a bitonic sequence, because it first increases
and then decreases. (8,9,2,1,0,4) is another bitonic sequence,
because it is a cyclic shift of (0,4,8,9,2,1).

e The kernel of the network is the rearrangement of a bitonic
seguence info a sorted sequence.



Sorting Networks: Bitonic Sort

Let s = (ag,a1,...,a,_1) D€ a bitonic sequence such that ag <
a1 < ... < apj1 ANA ay 2 > Apjoq1 > -0 > Apo1.

Consider the following subbsequences of s:

(min{ag, a2}, min{ay, ap 941}, ..., min{a,o_1, an_1})
<ma'X{a07 an/Q}a maX{ala an/2—i—1}7 ceey max{an/Q—la an—1}>

(D

S1
S92

Note that s; and s, are both bitonic and each element of s is
less that every element in ss.

We can apply the procedure recursively on s; and s, 1o get the
sorted sequence.



Sorting Networks:

Original

sequence 3 &5 8 9 10 12
1st Split 3 &5 8 9 10 12
2nd Split 3 &5 8 0] 10 12
3rd Split 3 0|8 5110 Q
4th Split 0|3 ‘5|8 Q | 10

Merging a 16-element bitonic sequence through a series of log 16

14 20
140
149
1412
12 | 14

Bitonic Sori

95
95
35
18
18 |

pitonic spilits.

90
90
23
20
20

60 40
60 40
18 20
35 23
23 | 35

35 23
35 23
95 90
60 40
40 | 60

18 0
18 20
60 40
95 90
90 | 95



Sorting Networks: Bitonic Sort

e We can easily build a sorting network to implement this bitonic
merge algorithm.

e Such a network is called a bitonic merging network.

e The network contains log n columns. Each column contfains n /2
comparators and performs one step of the bitonic merge.

e We denote a bitonic merging network with n inputs by $BM(n).

e Replacing the & comparators by & comparators results in a
decreasing output sequence; such a network is denotfed by
oBM(N).



Sorting Networks: Bitonic Sort

Wires

3 3 3 3 0

0000 S, S, S, S,
5 5 5 0 3

0001 S, S, S, S,
8 8 8 8 5

0010 S, S, S, S,
9 9 0 5 8

0011 S, Y, S, S,
10 10 10 10 9

0100 S, S, S, S,
12 12 12 9 10

0101 ¥ % ¥ %
14 14 14 14 12

0110 Y, S, S, S,
20 M 0 ) 9 Jany 12 Jany 14

0111 N N N N
95 95 35 18 18

1000 S, S, S, S,
90 A 90 /\ 23 T 20 A 20

1001 N N N N
60 60 18 35 23

1010 S, S, S, S,
40 A 40 ,\ 20 A 23 A 35

1011 N N N N
35 35 95 60 40

1100 S, S, S, S,
23 A 23 A 90 /\ 40 A 60

1101 N N N N
18 Yy 18 Yany 60 Yany 95 M 90

1110 N N AN NN
0 A 20 A 40 A 90 A 95

1111 N N N N

A bitonic merging network for n = 16. The input wires are
numbered 0,1...,n — 1, and the binary representation of these
numbers is shown. Each column of comparators is drawn
separately; the entire figure represents a BM(16) bitonic
merging network. The network takes a bitonic sequence and
outputs it in sorted order.



Sorting Networks: Bitonic Sort

How do we sort an unsorted sequence using a bitfonic merge?

e We must first build a single bitonic sequence from the given
sequence.

e A sequence of length 2 is a bitonic sequence.

e A bifonic sequence of length 4 can be built by sorfing the first
two elements using $BM(2) and next two, using &BM(2).

e This process can be repeated to generate larger bitonic
sequences.



Sorting Networks: Bitonic Sort

Wires

0000 —] - | | |
ool —| D BM[2] || - B -
0010 — | O BMI4] | — —
o o EP— —
o @ gz - ~ — -
i ] A = =
o — O BMI2T || — — D BM[16] —
oo — ©BM2] ] | | -
1001 ] B @BM[‘I-] B B B
o — O BMI2] [] n N o
i - | © B [ N
h @By [ - - N
1o — || O BMI4] || — —
i — © BMI2] | . . -

A schematic representation of a network that converts an input
seguence info a bitonic sequence. In this example, ®BM(k) and
&BM(k) denote bitonic merging networks of inpuft size k that use
@ and & comparators, respectively. The last merging network
(eBM(16)) sorts the input. In this example, n = 16.



Bitonic Sort

Sorting Networks

o ) oe] @)} [e] N <t S vy = (= (=} v o 0 )
— — — [\l N (@) \O < on @\l —
& o &P ¢ OO OO OO OO
J4nY N JaR\ N mv Au mv AU
VU U V GV
D D P O——( O—F—
J4nY N mJ \U
J4nY Y N b g mJ \ \u N
A % BN GV mJ L/ \U N
A YV A WV mJ 4 \u (N
VU U L/ N
v @) o (] < N [~’e] o o =] (=] (] v v o [~’e]
— N — — <t O (@) (@) o [@\] —
> & OO OO & o OO OO
J4A\ N D N
IOl o0 L 9P | o0
o T 0T 19 | o190
o =] (@)} v o e} <t (@l o - [« (=] o ') v [>e]
— N — — N O <t (gl o (@) —
o OO & OO o OO o OO
] e v @)} on [>2e] @\l <t ] ] [« (=] o ') v [>2e]
— le\l — — (@) O < [\l on (@) —
E 3 2 Z 8 3 £ Z 8 3 &z 8 3 = =
(=] (=] o o — — — — [e] (=] o o — — — —
(= (= (= (=) =) =) (e} e} — — — — — — — —

Wires

The comparator network that fransforms an input sequence of

16 unordered numbers intfo a bitfonic sequence.



Sorting Networks: Bitonic Sort

e The depth of the network is ©(log* n).

e Each stage of the network contains n/2 comparators. A
serial implementation of the network would have complexity
O(nlogn).



Mapping Bitonic Sort to Hypercubes

e Consider the case of one item per processor. The question
becomes one of how the wires in the bitonic network should
e mapped to the hypercube inferconnect.

e Note from our earlier examples that the compare-exchange
operation is performed between two wires only if their labels
differ in exactly one bit!

e This implies a direct mapping of wires to processors. All
communication is nearest neighbor!



0000 .
1000

0001 .

0100_ .-° o110 .°" oo 1100 Tte. 1110 0100 .-°" o010 .-
0000 0010 7" oL iTelg000 0000
O wo—so L e
L 0101 - o111 ; ._1101 1111 0101
0001 .- 0001

1001 _.-" 1011

: 1011

Communication during the last stage of bitonic sort. Each wire is
mapped to a hypercube process; each connection represents a
compare-exchange between processes.



Mapping Bitonic Sort to Hypercubes

Processors

0000 —
0001 — 1
0010 —
0011 — 1
0100 —
0101 — 1
0110 —
0111 — 1
1000 —
1001 — 1
1010 —
1011 — 1
1100 —
1101 — 1
1110 —
1111 — 1

2,1

3,2,1

2,1
4,3,2,1

2,1
3,2,1

2,1

Stage 1 Stage 2 Stage 3 Stage 4

Communication characteristics of bitonic sort on a hypercube.
During each stfage of the algorithm, processes commmunicate
along the dimensions shown.



VN O h N~

Mapping Bitonic Sort to Hypercubes

procedure BITONIC_SORT(label, d)
begin
fori :=0tod — 1do
for ; := ¢ downto 0 do
if (i + 1)* bit of label # 5" bit of label then
comp_exchange_max{p;
else
comp_exchange_min();
end BITONIC_SORT

Parallel formulation of bitonic sort on a hypercube with n = 2¢ processes.



Mapping Bitonic Sort to Hypercubes

e During each step of the algorithm, every process performs
a compare-exchange operation (single nearest neighbor
communication of one word).

e Since each step takes Theta(1) fime, the parallel time is

Tp = O(log*n) 2

e This algorithm is cost optimal w.r.t. ifs serial counterpart, but not
w.I.t. the best sorfing algorithm.



Mapping Bitonic Sort to Meshes

e The connectivity of a mesh is lower than that of a hypercube,
SO we must expect some overhead in this mapping.

e Consider the row-maqgjor shuffled mapping of wires 1o
Processors.



Mapping Bitonic Sort to Meshes

D@6

96

D@6

@696

@)

@@

@6

&)
()2
&)
(22
&)
2V

=&

O CROSG

COSCSOND

CSCRONT

(©)

(b)

(a)

Different ways of mapping the input wires of the bitonic sorting

network to a mesh of processes: (a) row-major mapping, (b)

row-major snakelike mapping, and (c) row-major shuffled

mapping.



Mapping Bitonic Sort to Meshes

Stage 4

Step 1 Step 2

The last stage of the bitonic sort algorithm for n = 16 on a mesh,
using the row-major shuffled mapping. During each step, process
pairs compare-exchange their elements. Arrows indicate the
pairs of processes that perform compare-exchange operations.



Mapping Bitonic Sort to Meshes

e In the row-major shuffled mapping, wires that differ at the "
least-significant bit are mapped onto mesh processes that are
2L(i=1)/2] communication links away.

e The ftotal amount of communication performed by each
process is Y.25" 20 2lG-D/21 ~ 7./m, or ©(y/n). The fotal
computation performed by each process is ©(log” n).

e The parallel runfime is:

compjcarisons communication

Va

= O(log’n) + O(/n).

e This is not cost optimal.



Block of Elements Per Processor

e Each process is assigned a block of n/p elements.
e The first step is a local sort of the local block.

e Each subsequent compare-exchange operation is replaced
by a compare-split operation.

e We can effectively view the bitonic network as having (1 +
log p)(log p)/2 steps.



Block of Elements Per Processor: Hypercube

e Initially the processes sort their n/p elements (using merge sort)
in time ©((n/p)log(n/p)) and then perform ©(log”p) compare-
split steps.

e The parallel run fime of this formulatfion is

Ioch sort Compjgrisons commgrgico’rion
T n T T

Tp =0 (—log—> + 0 (—log2p> + 0 (—log2p> :
p p p p

e Comparing to an optimal sort, the algorithm can efficiently use
up to p = ©(2Vv°e ™) processes.

e The isoefficiency function due to both communicafion and
extra work is ©(p'°eP log” p).



Block of Elements Per Processor: Mesh

e The parallel runfime in this case is given by:

local sort comparisons communication
A A A

Tp— 0 (2 log ﬁ) 1o (ﬁ 10g2p) e (_)
p p p VD
e This formulation can efficiently use up to p = O(log* n) processes.

e The isoefficiency function is ©(2v?,/p).



Performance of Parallel Bitonic Sort

The performance of parallel formulations of bitonic sort for n
elements on p processes.

Maximmum Number of Corresponding Isoefficiency
Architecture  Processes for E = ©(1) Parallel Run Time Function
Hypercube  ©(2vos™n) O(n/(2V" ) logn) O(p'°%P log? p)
Mesh ©(log® n) ©(n/logn) ©(2v?,/D)

Ring O(logn) O(n) ©(2"p)




Bubble Sort and its Variants

The sequential bubble sort algorithm compares and exchanges
adjacent elements in the sequence to be sorted:

procedure BUBBLE_SORT(n)
begin
for: .= n — 1 downto 1 do
forj :=1to:do
compare-exchange(a;, a;+1).
end BUBBLE_SORT

OSCOoh W~

Sequential bubble sort algorithm.



Bubble Sort and its Variants

o The complexity of bubble sort is ©(n?).

e Bubble sort is difficult to parallelize since the algorithm has no
concurrency.

e A simple variant, though, uncovers the concurrency.



Vo NO s~

N — O

Odd-Even Transposition

procedure ODD-EVEN(n)

begin
fori := 1ton do
begin
if 7 is odd then
forj:=0ton/2 —1do
compare-exchange(asj+i, azj+2);
if 7 is even then
forj:=1ton/2 — 1do
compare-exchange(az;, azj+1).
end for

end ODD-EVEN

Sequential odd-even transposition sort algorithm.



Odd-Even Transposition

Unsorted
302 3 8 5 6 4 1
| L L L] phaset (odd)
> 3 3 8 5 6 1 4

| (I O Phase 2 (even)
> 3 3 5 8 1 6 4
L L L1 L]  Phase3 (oda)
> 3 3 5 1 8 4 6

| (I O Phase 4 (even)
> 3 3 1 5 4 8 6
| L L [ Pphases (odd)
> 3 1 3 4 5 6 8

| I R Phase 6 (even)
> 1 3 3 4 5 6 8
| L L [ Phase7 (odd)
I 2 3 3 4 5 6 8

| (I O Phase 8 (even)
I 2 3 3 4 5 6 8

Sorted

Sorting n = 8 elements, using the odd-even transposition sort
algorithm. During each phase, n = 8 elements are compared.



Odd-Even Transposition

e After n phases of odd-even exchanges, the sequence is sorted.

e Each phase of the algorithm (either odd or even) requires ©(n)
comparisons.

e Serial complexity is ©(n?).



Parallel Odd-Even Transposition

e Consider the one item per processor case.

e [here are n iterations, in each iterafion, each processor does
one compare-exchange.

e The parallel run time of this formulation is ©(n).

e This is cost optimal with respect o the base serial algorithm but
not the optimal one.



Vo NO A~

NOoOoOhON—O

Parallel Odd-Even Transposition

procedure ODD-EVEN_PAR(n)
begin
1d := process’s label
for: .= 1ton do
begin
if 2 is odd then
if id is odd then
compare-exchange_min(id + 1);
else
compare-exchange_max(id — 1);
if 2 is even then
if 2d is even then
compare-exchange_min(id + 1);
else
compare-exchange_max(id — 1);
end for
end ODD-EVEN_PAR

Parallel formulation of odd-even transposition.



Parallel Odd-Even Transposition

e Consider a block of n/p elements per processor.
e The first step is a local sorf.

e In each subsequent step, the compare exchange operation is
replaced by the compare split operation.

e The parallel run time of the formulafion is

local sort
_ A

Va

~ comparisons communication
n

sz@(glog5>+ o) + O



Parallel Odd-Even Transposition

e The parallel formulation is cost-optimal for p = O(logn).

e The isoefficiency function of this parallel formulation is ©(p 27).



Shellsort

e Let n be the number of elements to be sorted and p be the
numMber of processes.

e During the first phase, processes that are far away from each
ofther in the array compare-split their elements.

e During the second phase, the algorithm switches fo an odad-
even transposition sort.



Parallel Shellsort

e Inifially, each process sorts its block of n/p elements infernally.

e Each process is now paired with its corresponding process in
the reverse order of the array. That is, process P;, where i < p/2,
Is paired with process P,_;_1.

e A compare-split operation is performed,

e The processes are split info two groups of size p/2 each and the
process repeated in each group.



Parallel Shellsort

00068089 ¢

1

S50 00D ¢
538508508

An example of the first phase of parallel shellsort on an
eight-process array.



Parallel Shellsort

e Each process performs d = log p compare-split operations.

e With O(p) bisection width, the each communicafion can be
performed in fime ©(n/p) for a toftal time of ©((nlogp)/p).

e In the second phase, | odd and even phases are performed,
each requiring time O(n/p).

e The parallel run fime of the algorithm is:

local sort first phase second phase

N\ N\ N\

Tp = 0O (E logﬁ> + 0O (E logp> + O (lﬁ> . (3)
p p p p




Quicksort

e Quicksort is one of the most common sorting algorithms for
sequential computers because of its simplicity, low overhead,
and optimal average complexity.

e Quicksort selects one of the entries in the sequence to be the
pivot and divides the sequence into two — one with all elements
less Than the pivot and other greater.

e The process is recursively applied to each of the sublists.



VO NO s~

NOoO O LN—O

Quicksort

procedure QUICKSORT (A, g, r)
begin

if g < r then
begin
x = Alg];
s :=q;

fori:=qg+ 1tordo
if A[:] < xthen

begin
s:=s+ 1;
swap(A[s], Ali]):
end if

swap(Alq], A[s];
QUICKSORT (A, q, s);
QUICKSORT (A, s + 1,7);
end if
end QUICKSORT

The sequential quicksort algorithm.



Quicksort

(@ |3 |2 |1 |5 |8 (4|3 |7

Pivot
(b) 1 |2 |3 (5|8 |4 |3 |7

(c) 11213131415 1|817 Final position

@ |1 {23 |3 |4|5|7]38

e |1 |23 |3 |4|5|7]38

Example of the quicksort algorithm sorfing a sequence of size
n = 8.



Quicksort

e The performance of quicksort depends critically on the quality
of the pivot.

e INn the best case, the pivot divides the list in such a way that the
larger of the two lists does not have more than an elements (for
some constant «).

e In this case, the complexity of quicksort is O(nlogn).



Parallelizing Quicksort

e Lets start with recursive desomposition — the list is partitioned
serially and each of the subproblems is handled by a different
Processor.

e The time for this algorithm is lower-bounded by Q(n)!

e Can we parallelize the partitioning step —in particular, if we can
use n processors to partition a list of length n around a pivot in
O(1) time, we have a winner.

e This is difficult to do on real machines, though.



Parallelizing Quicksort: PRAM Formulation

e We assume a CRCW (concurrent read, concurrent write)
PRAM with concurrent writes resultfing in an arbifrary write
succeeding.

e The formulation works by creating pools of processors. Every
processor is assigned to the same pool inifially and has one
element.

e Fach processor attempts to write its element to a common
location (for the pool).

e Each processor tries to read back the location. If the value
read back is greater than the processor’s value, it assigns itself
to the ‘left” poal, else, it assigns itself fo the ‘right” pool.

e Each pool performs this operation recursively.
e Note that the algorithm generates a free of pivots. The depth

of the tree is the expected parallel runtfime. The average value
is O(logn).



Parallelizing Quicksort: PRAM Formulation

A binary tree generated by the execution of the quicksort
algorithm. Each level of the tree represents a different
array-partitioning iteration. If pivot selection is optimal, then the
height of the tree is ©(logn), which is also the number of
iterations.



Parallelizing Quicksort: PRAM Formulation

123456 78
@ 13321 ]13]54]82]33]40| 72|

1 2 3 4 5 6 7 8

leftchild
rightchild 5 (c)
(b) root=4
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
leftchild | 2 1|8 leftchild | 2 | 3 1|8
(d) rightchild | 6 5 rightchild | 6 5 7 (e)
[4] {54}

®

(1] {33} (5] {82}

)

23

(2] {21} [6] {33} (81 {72}

7 _

(3] {13} [7] {40}

_ B

The execufion of the PRAM algorithm on the array shown in (a).

3




Parallelizing Quicksort: Shared Address Space
Formulation

e Consider a list of size n equally divided across p processors.

e A pivot is selected by one of the processors and made known
tfo all processors.

e Each processor partitions its list info two, say L, and U;, based
on the selected pivort.

e All of the L, lists are merged and all of the U; lists are merged
separately.

e [he set of processors is partitioned info two (in proportion of the
size of lists L and U). The process is recursively applied to each
of the lists.



Shared Address Space Formulation

First Step

Second Step

Third Step

Fourth Step

Py

Py

Py

: P3

Py

‘7‘13‘18‘2‘17‘ 1 ‘14‘20‘6‘10‘15‘9‘3‘16‘19‘4‘11‘12‘5‘8‘

Py

Py

pivot=7

Py

Ps

Py

‘7‘2‘18‘15[1‘17‘14‘20l6‘10‘15‘9l3‘4‘19‘16[5‘12‘11‘8‘

[7]2]1]6]3]4]s5]18]13]17][14]20]10]15] 0 [10]16]12]11] 8 |

pivot selection

after local
rearrangement

after global
rearrangement

Py Py Py Ps Py
‘7‘2‘1‘6‘3‘4‘5 18‘13‘17‘14‘20‘10‘15‘9‘19‘16‘12‘11‘8‘ pivot selection
pivot=5 pivot=17
Py Py Py Ps Py
(112 76345 [1a[1a]1]1s]20[10]15] o [19[16[12[11] 8] ierameoment
(123 4 5] 76 [1alua[u[10]s5] [16]12[11[ 8 [18[20[19] " faarremecument
Py Py Py . P3 Py
(1203 45|76 1a]3]i7[10]1s][ o [16]12[11] 8 [18]20[19] pivot selection
pivot=11
0] Py Py Pj Py
‘1‘2‘3‘4‘5 6‘7 10‘13‘17‘14‘15]9‘8‘12‘11‘16 18‘19‘20‘ ?;t;i;g;zlmem
after global
]0‘9‘8‘12‘“‘]3‘]7‘14‘15‘16 rearrangemem
Py Ps
10] 9 s [12]11[13]17]14]15] 16 after local
- rearrangement
Py Py Py P3 Py
\1\2\3\4\5 6\7 8\9\10\11\12 13\14\15\16\17 18\19\20\ Solution




Parallelizing Quicksort: Shared Address Space
Formulation

e The only thing we have not described is the globadl
reorganization (merging) of local lists fo form L and U.

e The problem is one of determining the right location for each
element in the merged list.

e Each processor computes the number of elements locally less
than and greater than pivot.

e [T computes two sum-scans to determine the starting locatfion
for its elements in the merged L and U lists.

e Once it knows the starting locations, it can write its elements
safely.



Parallelizing Quicksort: Shared Address Space
Formulation

T U R R - T R T
|7 [13]18] 2 [17] 1 [1a]20[ 6 [10]15] 9 [ 3 [16]19] 4 [11]12] 5[ 8] pivot selection
pivot=7
rHh A P P3Py

i7|2|18|13| 1 [17]1a]20] 6 [10]15[ 0 [ 3[4 [19]16] 5 |12|11|gi after local

rearrangement

Ffrefix Suw Ffrefix Sur¢1

Lof2]s]4]6]7] Lo]2]5[8]r]1s]

[I2TiTe T« s TisTs[ur w0 0] o [io[ e[ 211 ] emramgomen

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19

Efficient global rearrangement of the array.



Parallelizing Quicksort: Shared Address Space
Formulation

e The pardllel time depends on the split and merge time, and the
quality of the pivot.

e The latter is an issue independent of parallelism, so we focus on
the first aspect, assuming ideal pivot selection.

e The dalgorithm executes in four steps: () defermine and
broadcast the pivot; (i) locally rearrange the array assigned
to each process; (iii) defermine the locations in the globally
rearranged array that the local elements will go fo; and (iv)
perform the globbal rearrangement.

e The first step takes time ©(logp). the second, B(n/p), the third,
O©(logp), and the fourth, ©(n/p).

e The overall complexity of splitting an n-element array is ©(n/p)+
O(logp).



Parallelizing Quicksort: Shared Address Space
Formulation

e [he process recurses until there are p lists, at which point, the
lists are sorted locally.

e Therefore, the fotal parallel time is;

Ioch sort orroxfpliTs
Tp =06 (g log g) + 0O (g logp) + @(log2 D). 4

e The corresponding isoefficiency is ©(plog® p) due to broadcast
and scan operations.



Parallelizing Quicksort: Message Passing Formulation

e Asimple message passing formulation is based on the recursive
halving of the machine.

e Assume that each processor in the lower half of a p processor
ensemble is paired with a corresponding processor in the upper
half.

e A designated processor selects and broadcasts the pivot.

e Each processor splifs its local list into two lists, one less (L;), and
other greater (U;) than the pivot.

e A processor in the low half of the machine sends ifs list U, fo the
paired processor in the other half. The paired processor sends
its list L.

e |T is easy to see that after this step, all elements less than the
pivot are in the low half of the machine and all elements
greater than the pivot are in the high half.



Parallelizing Quicksort: Message Passing Formulation

e The above process is recursed until each processor has its own
local list, which is sorted locally.

e The fime for a single reorganization is O(log p) for broadcasting
the pivot element, ©(n/p) for splitting the locally assigned
porfion of the aray, ©(n/p) for exchange and local
reorganization.

e We note that this fime is identical fo that of the corresponding
shared address space formulation.,

e [Tis important fo remember that the reorganization of elements
IS a bandwidth sensifive operation.



Bucket and Sample Sort

In Bucket sort, the range |a, b] of input numbers is divided into m
equal sized infervals, called buckefs.

Each element is placed in its appropriate bucket.

If the numbers are uniformly divided in the range, the buckets
can be expected fto have roughly identical number of
elements.

Elements in the buckets are locally sorted.

The run time of this algorithm is ©(nlog(n/m)).



Parallel Bucket Sort
Parallelizing bucket sort is relatively simple. We can select m =
P

In this case, each processor has a range of values it is
responsible for.

Each processor runs through its local list and assigns each of its
elements to the appropriate processor.

The elements are sent fo the destination processors using a
single all-to-all personalized communication.

Each processor sorts all the elements it receives.



Parallel Bucket and Sample Sort

e The crifical aspect of the above algorithm is one of assigning
ranges to processors. This is done by suitable splitter selection.

e [he splitter selection method divides the n elements info m
blocks of size n/m each, and sorts each block by using
quicksort.

e From each sorted block it chooses m — 1 evenly spaced
elements.

e The m(m — 1) elements selected from all the blocks represent
the sample used to determine the buckets.

e This scheme guarantees that the number of elements ending
up in each bucket is less than 2n /m.



Parallel Bucket and Sample Sort
Py 3 P 3 Py 3

G2l Ta[is] 2 [ 1 [1a20] s [10]2 1] s [21] 3 [1e] o]z ] & [ [12] 5 | 5|

Initial element
distribution

Il|213|1418|22 3|6|z|10|1521|24 4|511|1219|23] ]S_:rfl;llesc;gl:étlon

71719 (20| 8 |16 Sample combining

Global spli
T8l L[]

Py i Py ‘ P

i1|2|3|4|5|6|7|8|9 |1o|11|12|13|14|15|16|17|18|19|20|21|22|23|24]

Final element
assignment

An example of the execution of sample sort on an array with 24
elements on three processes.



Parallel Bucket and Sample Sort

e The splifter selection scheme can itself be parallelized.
e Each processor generates the p — 1 local splitters in parallel.

e All processors share their spliffers using a single all-to-all
lbroadcast operation.

e Each processor sorfs the p(p—1) elements it receives and selecfts
p — 1 uniformly spaces splitters from them.



Parallel Bucket and Sample Sort: Analysis

e The internal sort of n/p elements requires time ©((n/p) log(n/p)).
and the selection of p — 1 sample elements requires time ©(p).

e The time for an all-to-all broadcast is ©(p?), the fime to internally
sort the p(p—1) sample elements is ©(p? log p)., and selecting p—1
evenly spaced splitters takes time ©(p).

e Fach process can insert these p — 1 splitters in ifs local sorted
block of size n/p by performing p — 1 binary searches in fime

O(plog(n/p)).

e The fime for reorganization of the elements is O(n/p).



Parallel Bucket and Sample Sort: Analysis

e The total time is given by:

local sort block partition
- % ~  sorfsample - S ~ communication
n n - N n r—
Tpr =06 (; log E> +06 (p2 logp) +06 (plog E) + O(n/p). 5)

e The isoefficiency of the formulation is ©(p?log p).



