Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

e Malftrix-Vector Multiplication
e Matrix-Matrix Mulfiplication

e Solving a System of Linear Equations

Matix Algorithms: Intfroduction

e Due to their regular structure, parallel computations involving
matrices and vectors readily lend fthemselves fto data-
decomposition.

e Typical algorithms rely on inpuf, output, or infermediate dafa
decomposition.

e Most algorithms use one- and two-dimensional block, cyclic,
and block-cyclic partitionings.

Matrix-Vector Multiplication

e We aim to multiply a dense n x n matrix A with an n x 1 vector
x To yield the n x 1 result vector y.

e The serial algorithm requires n? multiplications and additions.

W = n? (D

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e The n x n matrix is partitioned among n processors, with each
processor storing complete row of the maitrix.

e The n x 1 vector x is distributed such that each process owns
one of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Matrix A Vector x Processes

P bl Po| v v v v

(a) Initial partitioning of the matrix (b) Distribution of the full vector among all
and the starting vector x the processes by all-to-all broadcast
Matrix A Vector y
n (W1 R b B
vl [T [] [vl] [\
oo«]
DD e B
o] O O ORI | 1
(c¢) Entire vector distributed to each (d) Final distribution of the matrix
process after the broadcast and the result vector y

Multiplication of an n x n matrix with an n x 1 vector using
rowwise block 1-D parfitioning. For the one-row-per-process
case, p = n.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e Since each process starts with only one element of x, an all-to-
all broadcast is required to distribute all the elements to all the

Processes.

e Process P; now computes yi] = X725 (Afi, j] % z[j]).

e The all-to-all broadcast and the computation of y[:] both take
time O(n). Therefore, the parallel fime is O(n).

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e Consider now the case when p < n and we use block 1D
parfitfioning.

e Each processinitially stores n/p complete rows of the matrix and
a portion of the vector of size n/p.

e The all-fo-all broadcast takes place among p processes and
involves messages of size n/p.

e This is followed by n/p local dot products.

e Thus, the parallel run time of this procedure is

2
Tp = n +tslogp + tyn. (2)
p

This is cost-optimal.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

e We know that T, = pTp — W, therefore, we have,

T, = tsplogp + ty,np. (3)

e For isoefficiency, we have W = KT,, where K = E/(1 — E) for
desired efficiency FE.

e From this, we have W = O(p?) (from the t,, term).

e There is also a bound on isoefficiency because of concurrency.
In this case, p < n, therefore, W = n? = Q(p?).

e Overallisoefficiency is W = O(p?).

Matrix-Vector Multiplication: 2-D Partitioning

e The n x n matrix is partitioned among n? processors such that
each processor owns a single element.

e The n x 1 vector z Is distributed only in the last column of n
Processors.

Matrix-Vector Multiplication: 2-D Partitioning

n
Matrix A Vector x &
e L o
I < I I] n I I I I
— A A A
P2\/Z—)o | | | VoV |:| Ao A n

o P L VVVVD

(a) Initial data distribution and communication (b) One-to-all broadcast of portions of

steps to align the vector along the diagonal the vector along process columns
Matrix A Vector y

] \>_ \>_ \>_ \>_ P :P | | Ib]

L R e ey - I B S N B VP L
= = = = | |

B g g i g] e |
= = = = ‘ | | |

_ — i . — |- _ P,2 ,\/2_,): ,,,,,,,,,,,,,,,,,,,,,, p—
AERERE o

EEEGEGEEE o P L

(c) All-to-one reduction of partial results (d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix size is n x n.

Matrix-Vector Multiplication: 2-D Partitioning

We must first aling the vector with the matrix appropriately.

The first communication step for the 2-D partitioning aligns the
vector z along the principal diagonal of the matrix.

The second step copies the vector elements from each
diagonal process o all the processes in the corresponding
column using n simultaneous broadcasts among all processors
in the column.,

Finally, tThe result vector is computed by performing an all-to-
one reduction along the columns.

Matrix-Vector Multiplication: 2-D Partitioning

e Three basic communicatfion operations are used in this
algorithm: one-to-one communication to align the vector
along the main diagonal, one-fo-all broadcast of each vector
element among the n processes of each column, and all-fo-
one reduction in each row.

e Each of these operafions takes O(logn) time and the parallel
time is ©(logn).

e The cost (process-time product) is ©(n?*logn); hence, the
algorithm is not cost-optimal.

Matrix-Vector Multiplication: 2-D Partitioning

e When using fewer than n? processors, each process owns an
(n/\/p) x (n/,/p) ODlock of the matrix.

e The vector is distriouted in portions of n/,/p elements in the last
process-column only.

e In this case, the message sizes for the alignment, broadcast,
and reduction are all (n/,/p).

e The computation is a product of an (n/,/p) x (n//p) submatrix
with a vector of length (n/,/p).

Matrix-Vector Multiplication: 2-D Partitioning

e The first alignment step takes time t, + t,n/\/p.
e The broadcast and reductions take time (ts + t.,n//p) log(y/D).
e Local matrix-vector products take time t.n?/p.

e JOtTal fime is

n? n
Tp ~ — +tslogp+t,—logp 4
p VP

Matrix-Vector Multiplication: 2-D Partitioning

Scalability Analysis:

o I, =pI,— W =ts,plogp+ t,n,/plogp.

e EQuating T, with W, term by term, for isoefficiency, we have,
W = K?t2 plog® p as the dominant term.

e The isoefficiency due to concurrency is O(p).

e The overall isoefficiency is O(plog®p) (due to the network
bandwidth).

e For cost optimality, we have, W = n2 = plog®p. For this, we
have,p:()(”j)

log

Matrix-Matrix Multiplication

e Consider the problem of multiplying two n x n dense, square
matrices A and B 1o yield the product matrix C = A x B.

e The serial complexity is O(n?).

e We do not consider better serial algorithms (Strassen’s
method), although, these can be used as serial kernels in the
parallel algorithms.

e A useful concept in this case is called block operations. In this
view, dn n x n MAfrix A can be regarded as a ¢ x ¢ aArray of
blocks A4, ; (0 < 1,5 < ¢ such that each block is an (n/q) x (n/q)
submatrix.

e In this view, we perform ¢® matrix multiplications, each involving
(n/q) x (n/q) Mmatrices.

Matrix-Matrix Multiplication

e Consider two n x n matrices A and B parfitioned intfo p blocks
A;;and B; ; (0 <4,5 < /p) of size (n//p) x (n//p) €aCh.

e Process P; ; initially stores A; ; and B; ; and computes block C; ;
of the result matrix.

e Compufing submafrix C; ; requires all submaftrices A; , and By, ;
foro <k <./p.

e All-fo-all broadcast blocks of A along rows and B along
columns.

e Perform local submatrix multiplication.

Matrix-Matrix Multiplication

e The two broadcasts take time 2(t,1og(/p) + tw(n?/p)(/p — 1)).

e The computation requires ,/p multiplications of (n/,/p) x (n/\/p)
sized submaftrices.

e The parallel run fime is approximately

n3 n2
Tp = — + tslog p + 2ty—. (5)
p VP

e The algorithm is cost optimal and the isoefficiency is O(p'-°) due
tfo bandwidth term ¢,, and concurrency.

e Mqgjor drawback of the algorithm is that it is not memory
optimal.

Matrix-Matrix Multiplication: Cannon’s Algorithm

e In this algorithm, we schedule the computatfions of the ,/p
processes of the ith row such that, at any given time, each
process is using a different block A; .

e These blocks can be systematfically rotated among the
processes affer every submaftrix mulfiplication so that every
process gefts a fresh A, , after each rotation.

Matrix-Matrix Multiplication: Cannon’s Algorithm

(a) Initial alignment of A

4 4 4 4

=T Ao =T Aot =T Ao =T Ags =T~

‘B ‘B ‘B ‘B
p 3,0 p 0,1 1,2 2,3

(c) A and B after initial alignment

4 4 4 4

=1 Ay, = Agz= Agp~ Ao =1

BO,O) BO,l) B0,2 B0,3

By iBl,l iBl,2§ ‘B1,3§

(b) Initial alignment of B

4 4 4 4
= Mg = Mgy = Ags= Ago=["

= Asp= As; = As,= Asy=[
‘B ‘B ‘B ‘B
,Boo | Bu 22 33

B,y | Bsy By, | Bis

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

communication steps in Cannon’s algorithm on 16 processes.

Matrix-Matrix Multiplication: Cannon’s Algorithm

Align the blocks of A and B in such a way that each process
multiplies its local submatrices. This is done by shifting Aall
submatrices A; ; to the left (with wraparound) by i steps and
all submatrices B; ; up (with wraparound) by j steps.

Perform local block mulfiplication.

Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

Perform next block multiplication, add to parfial result, repeat
until all ,/p blocks have been multiplied.

Matrix-Matrix Multiplication: Cannon’s Algorithm

e INn the alignment step, since the maximum distance over which
a block shiffs is ,/p — 1, the two shiff operations require a fotal of
2(ts + t,n?/p) time.

e Each of the ,/p single-step shifts in the compute-and-shift phase
of the algorithm ftakes ¢, + t,,n*/p time.

e The computation fime for mulfiplying /p matrices of size

(n//p) x (n/\/p) is n°/p.

e The parallel fime is approximately:

n3 n2
Tp = — + 2/pts + 2t,,——. (6)
p VP VP

e The cost-efficiency and isoefficiency of the algorithm are
identical o the first algorithm, except, this is memory opfimal.

Matrix-Matrix Multiplication: DNS Algorithm

Uses a 3-D partitioning.

Visudlize the maftrix multiplication algorithm as a cube -
matrices A and B come in two orthogonal faces and result C
comes out the other ortfhogonal face.

Each internal node in the cube represents a single add-multiply
operation (and thus the complexity).

DNS algorithm partitions this cubbe using a 3-D block scheme.

Matrix-Matrix Multiplication: DNS Algorithm

e Assume an n x n x n Mesh of processors.

e Move the columns of A and rows of B and perform lbbroadcast.
e Each processor computes a single add-mulfiply.

e This is followed by an accumulation along the C' dimension.

e Since each add-multiply tfakes constant fime and accumulation
and broadcast takes logn time, the total runtfime is log n.

e This is not cost optimal. It can be made cost optimal by using
n/logn processors along the direction of accumulation.

Matrix-Matrix Multiplication: DNS Algorithm
OQgQgQng k=3 OQngQf 6%
O "0 00 00 o0 0o~7"
A’BQAOSOSOSQO k=2 Qg@g@g 07
0 ~0 00 O 0 ooz A
O_ 0O _0_ O O_ 0O _0_ 0O
k OO@O@O@Q k=1 O®O@O@O7 7
0"™"0 00 O 0 0O O~
; W O @ 6 O_ 0O _0_ QO
®@@@@@ 0005007
7
(a) Initial distribution of A and B (b) After movingA/i,j] fromP,;, to P,
£6_ B 8 Tlwn LB B 6 0
\®@®@@@ 77777 f} (03] Bff{/ @ @ @)
©2
A Q;®§@§@@ ’ @@§@§@§@®
o ® 8° /? [70,2]><B‘A[2,?{/ B
@@@@@@@@ + @®@®@®@@
60 g %2 My g0 Y% Y2
69 ©
50,09, @ * SN
.0 ® o "I @ @ @
(c) After broadcastingA[i,j] along j axis (d) Corresponding distribution of B

The communication steps in the DNS algorithm while multiplying 4 x 4
matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n? processors.

e Assume that the number of processes p is equal to ¢? for some
q <n.

e The two matrices are parfitioned into blocks of size (n/q) x (n/q).
Each matrix can thus be regarded as a ¢ x ¢ Two-dimensiondl
square array of blocks.

e The algorithm follows from the previous one, except, in this
case, we operate on blocks rather than on individual elements.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n? processors.

e The first one-to-one communication step is performed for both
A and B, and takes t, + t,,(n/q)? time for each matrix.

e The two one-to-all broadcasts take 2(t, log g+t.,(n/q)? log q) time
for each matrix.

e The reduction takes time t,log g + t.,(n/q)*logq.
e Multiplication of (n/q) x (n/q) submatrices takes (n/q)° tfime.

e The parallel fime is approximated by:

n’ n?
Tp=— +t, 10gp+tw2—/310gp. (/)
p p

The isoefficiency function is ©(p(log p)?).

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

aporo t+ apiri + -+ agn—1Tp—1 = bo.
1,070 + a1171 + -+ a1 p_1Tp-1 = b1,
Ap—1,0C0 + Qp-11T1 + - + Qp_1n-1Tp—1= bp_1.

This is written as Ax = b, where A is an n x n matrix with
Ali, j] = a; 5, bis an n x 1 vector [bg, b1, ...,b,_1]7. and z is the
solution.

Solving a System of Linear Equations

Two steps in solufion are: reduction to friangular form, and
back-substitution. The friangular form is as:

To + up1T1+ up2xr2t+ - + Uon-1Tn-1 = Yo.
r1 + uUrxrot+ .- T Ul p-1Tn-1 = Y1,
Ln—1 = Yn—1-

We write this as: Uz = y.

A commonly used method for fransforming a given matrix into
an upper-triangular matrix is Gaussian Elimination.

Vo NO A~

NOoOoOhON—O

Gaussian Elimimation

procedure GAUSSIAN_ELIMINATION (A, b, y)
begin
fork:=0ton — 1do /* Outer loop */
begin
forj:=k+1ton —1do
Alk, j] := Alk, j]/A[k, k]; /™ Division step */
ylk] := blk]/Alk, k],

Alk, k] := 1,
for: .= k+1ton —1do
begin

forj:=k+1ton —1do
Ali, j] := Ali, j] — Ali, k] x Alk, 7]; /* Elimination step */
b[i] := b[i] — A[s, k] X y[k]:

Ali, k] := 0;
endfor; /¥ Line 9 */
endfor; /¥ Line 3 */

end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination

Gaussian Elimination

e The computation has three nested loops - in the kth iteration of
the outer loop, the algorithm performs (n — k)? computations.
Summing from k& = 1..n, we have roughly (n?/3) multiplications-

subtractions.

o =
El 1§1
Inactive part =t el
O o4
T Row kTR) | = ALk,j] := ALk, /A[KK]
Active part -+ >
CRow il |G [Alif] = Alij] - AlLK] X Alkj]

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

e Assume p = n with each row assigned to a processor.

e The first step of the algorithm normalizes the row. This is a serial
operation and takes fime (n — k) in the kth iteration.

e In the second step, the normalized row is broadcast to all the
processors. This takes time (t; + t,(n — k — 1)) logn.

e Fach processor can independently eliminate this row from ifs
own. This requires (n — k — 1) mulfiplications and subtractions.

e The total parallel time can be computed by summing from k£ =
l.n—1as

3 1
Tp = in(n — 1)+ tsnlogn + itwn(n — 1) logn. (8)

e The formulafion is not cost optimal because of the t,, term.

Parallel Gaussian Elimination

B, |1 ©D©)©3 0 03 06 07
P[0 1 (DA ad A a6 D)
P, |0 0 1 eyeseyesen
P, |0 0 0 636HBEY G
P, |0 0 0 @3 @d @5 @6 @
P, [0 0 0 53 EHEHEHED
P, 0 0 0 (63 (64 (6.5 (66) (6,7
P, |0 0 0 a3 asHasae an
B, |! ©D©)©3 0 03 ©6 07
P[0 1 (203 s a5 a6 47
P, |0 0 1 eyeseyesen
B[00 o nIeGIca
P, [0 0 0 @3VEHVES VoV
P, [0 0 0 GIHGHUSHVEOVED
B, [0 0 0 GIHVEHVEHVEHVED
P, [0 0 0 O3INOHVITSHVTOVTD
B, |1 ©D©) 03 0 03 06 07
P[0 1 (203 a4 a5 a6 47
P, |0 0 1 eyeseyesen
P, [0 0 0 1 GHGHGOED
P, |0 0 0 @3 @ @5 @o @)
P, [0 0 0 53 GH 66 G
B, |0 0 0 63 64 65 66 6]
Pblo 0o o 13 a4 35 76 70

(a) Computation:
(i) Alk,jl := Alkjl/AlkK] for k<j<n
(1) Alkk]:=1

(b) Communication:

One-to-all brodcast of row A[k,*]

(¢) Computation:

) AlLj] = AlL,j] - Alik] x Afk,j]
for k<i<n and k<j<n

(ii) Ali,k]:=0 for k<i<n

Gaussian elimination steps during the iteration corresponding to
k =3 for an 8 x 8 matrix partitioned rowwise among eight
processes.

Parallel Gaussian Elimination: Pipelined Execution

e In the previous formulation, the (k+ 1)st iteratfion starts only after
all the computation and communication for the kth iteration is

complete.

e In the pipelined version, there are three steps — normalization
of a row, communication, and elimination. These steps are
performed in an asynchronous fashion.

e A processor P, waits fo receive and eliminate all rows prior to k.
Once it has done this, it forwards its own row to processor Py 1.

Parallel Gaussian

(0,0) (0,1) (0,2) (0,3) (0.4

Elimin

1 (0,1) (0,2) (0,3) (0,4)

1 (0,1) (0,2) (0,3) (0,

elined Execution

I (0,1 (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1.4)

1,0) (1,h) (1,2) (1,3) (1.4
()\/()V()V()\/()

(1,0) (1,1) (1,2) (1,3) (1.4)

(1,0) (1,1) (1,2) (1,3) (1.4)

2,00 2.1) (2,2) (2.3) (24)

(2,00 2.) (2.2) (2.3) (24)

2,0) (2,1) (2,2) (2,3) (24
()\/()v()V()\/()

(2,00 2.1) (22) (2.3) (24)

(3,00 3.1) (3,2) (3,3) 3.4

(3,00 3.1) (3,2) (3,3) 34

(3,00 3.1) (3,2) (3.3) 34

3,00 3.1 (3.2) (3.3) (3.4
()V()V()V()V()

(4,0) 4.1) 42) 43) 44

(4,00 4.1) (42) 43) 44

4,00 4.1) (42) 43) 44

4,00 4.1) (42) 43) 44

(a) Iteration k = O starts

(b)

©

(d)

1 (0,1) (0,2) (0,3) (0.4)

1 (0,1) (0,2) (0,3) (0,4)

1 (0,1) (0,2) (0,3) (0,4)

I (0,1 (0,2) (0,3) (0,4)

0 1@ 1,2) 1,3) 1,4

0 1 (12 (13) (14
| |

0 (LD (1,2) (1,3) (1,4

0 I (1,2) (1,3) (1.4)

2,00 2.1) 2,2) (2.3) (24)

0 (2,1)\L(2,2)\L(2,3)\L(2,4)

0 (2.1 (22) (2.3) (24)
| | |

0 |(2,1) 22) 23) 24

(3,00 3.1) (3,2) (3,3) 3.4

(3,00 3.1) (3.2) (3.3) 34

0 (3,1)¢(3,2)J/(3,3)¢(3,4)

0 (3, (32 (33 (34
| | |

4,0) (4.1) (42) (4.3) (44
()\/()V()\/()V()

(40) 4.1) (42) 43) 44

4,00 4.1) (42) 43) 44

0 (4,1)¢(4,2)¢(4,3)¢(4,4)

(e) Iteration k = 1 starts) (g) Iteration k = 0 ends (h)
11 (0.2) (03) 04) 1 (01) (0.2) (03) (04) 101 (02) 03) (04 101 (02) 03) (04
0 1 (1,2) (13) (14 0 1 (1,2) (13) (14 0 1 (1,2) (13) (14) 0 1 (1.2) (1,3) (14
0 0 ‘(2,2) 23) 24 00 1 @3 @eH 0 0 1 (23 24 0 0 1 (23) 24
0 |(3,1) (G2) 33) B4 0 0 (3,2)@(3,3) i/<3,4) 00 (263 GH 0 0 |32 B3 G
0 41) (42) 43) (49) 0 [@D) @42 43) 44 0 0 (4,2)\;(4,3);(4,4) 0 0 (42 43) (44
(i) Iteration k = 2 starts (j) Iteration k = 1 ends k))
1O (0.2) (03) 04) 1 (01) (0.2) (03) (04) 101 (02) 03) (04 101 (02) 03) (04
0 1 (1,2) (13) (1,4) 0 1 (1,2) (13) (14) 0 1 (1,2) (13) (14) 0 1 (1,2) (1,3) (14
0 0 1 (23) 24 0 0 1 (23) 24 0 0 1 (23 24 0 0 1 (23) 24
0 0 0 ‘(3,3) (34 0 0 0 1 (39 0 0 0 1 (34 0 0 0 1 (4
0 0 ‘(4,2) 4,3) @449 00 0 @M 0 0 0 ‘(4,3) (44) 0 0 0 0 |@4
(m) Iteration k = 3 starts (n) (o) Iteration k = 3 ends (p) Iteration k = 4

> Communication for k =0, 3

—

Communication fork = 1

--= Communication for k = 2

D Computation for k =0, 3

I:l Computation fork =1, 4

D Computation for k =2

Pipelined Gaussian elimination on a 5 x & matrix partitioned with

one row per process.

Parallel Gaussian Elimination: Pipelined Execution

e The toftal number of steps in the entire pipelined procedure is
O(n).

e In any step, either O(n) elements are communicated between
directly-connected processes, or a division step is performed
on O(n) elements of a row, or an elimination step is performed
on O(n) elements of a row.

e The parallel time is therefore O(n?).

e This is cost optimal.

Parallel Gaussian Elimination: Pipelined Execution

101 02) (0.3) 04 05) (0.6) (0.7
K
0 1 (12 (1.3) (14 (1.5 (1.6 1.7
0 0 1 (23 24 25 26 27T
1
00 0 1,34 (S5 G6) G
0 0 0 43 GH @45 @6 @)
P v v
2 Jo 0 0 (53) G4 (55 (56 6
0 0 0 (63 (6465 (66) (67
P, v v
3 0o 0 0 @3 s 15 3.6 0

The communication in the Gaussian elimination iteratfion
corresponding to k = 3 for an 8 x 8 matrix distributed among four
processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with p < n

e The above algorithm can be easily adapted to the case when
p < n.

e In the kth iteration, a processor with all rows belonging to the
active part of the matrix performs (n — k — 1)n/p mulfiplicatfions
and subfractions.

e In the pipelined version, for n > p, computation dominates
communication.

e The parallel fime is given by: 2(n/p)Xi_;(n — k — 1), or
approximately, n3/p.

e While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run fime by a factor of
3/2.

Parallel Gaussian Elimination: Block 1D with p < n

10,1 02 (0.3) 04 (0.5 0.6 (0,7 10,1 02 (0.3) 04 (0.5 06) (0,7

B B
01 (12 (1,3) 44 (1S) (1,6) (1,7) 0 0 0 @43) 4d) @5) 46) @7
00 1 @3 @ @5 @6 @) 0 1 (1.2) (1.3) (14) (15) (1,6) (1,7)

P, P,
1 00 0 (33 GH (35 G B 0 0 0 63 G G G Gl
0 0 0 (43 (G4 45 (46) @47 00 1 @3 2 25 @6 @)

P, P,
0 0 0 (53 GA (55 (.6 5.7 0 0 0 (63) 64) 65 66 ©67)

00 0 63 ©6h (65 (6,6) (6.7) 0 0 0 (33) G4 35 B6 BT
P. P,
3 0 0 0 (73) (74 (1.5 (7.6) (1.7) 0 0 0 (I3 TH 75 76 T 3
(a) Block 1-D mapping (b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D
partitioning of an 8 x 8 matrix on four processes during the
Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: Cyclic 1D Mapping

e The load imbalance problem can be dlleviated by using a
cyclic mapping.

e In this case, other than processing of the last p rows, there is no
load imbalance.

e This corresponds to a cumulafive load imbalance overhead of
O(n?p) (instead of O(n?) in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

e Assume an n x n matrix A mapped onfo an n x n mesh of
Processors.

e Each update of the partial matrix can be thought of as a
scaled rank-one update (scaling by the pivot element).

e INn the first step, the pivot is broadcast to the row of processors.

e In the second step, each processor locally updates its value.
For this it needs the corresponding value from the pivot row,
and the scaling value from its own row.

e This requires two broadcasts, each of which takes log n time.

e This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination: 2-D Mapping

1 0.0 02)]0.3)] 04)] 0.5 0.6)] ©.7) 1 0.0 02)]0.3)] 04)] 0.5 0.6)] ©.7)
o | 1 [aa[ayas 4 ae|an o | 1 [aa[ayas 0 ae|an
0|0 |1 [@3y e es e en 0|0 |1 [@3y e es e en
010 |0 [[BG3]eH 65 G 6N 0] 0 |0 [33c4a6 36 cn
0100 5(43)(14)(25)(16)(27) 0 10 | 0 [(43))@D|45) 406) 4T
0100 :(53);4);5);6);7) 0 | 0 | 0 |(53)]GH G5 G667
0100 5(63)(:,4)(25)(:,6)(27) 0 10 | 0 1(63)(64)](65)(6,6) (6,7
0100 :(73);4);5);6);7) 0 | 0 | 0 |(73)](7H](75|(76) (717

(a) Rowwise broadcast of A[i,k] (b) Alk,j] := Alk,jI/A[kK]

for(k-1)<i<n fork<j<n
1 0.0)] 02)]0.3)] 04)] 0.5 06)] ©.7) 1 0.0 02)]0.3)] 04)] 0.5 0.6)] ©.7)
0 | 1 a2y aaas|we an 0 | 1 a2y asas|we an
00 |1 |@3» e e e en 00 |1 [@3» e e e en
00 0|1 [GHGHGEO G 00 |o |1 |GGG GEH
010 |0 [@3 v&’:” v(;s; v§(4,:s) v(;7; 010 |0 |@3 @@ @6 @7
0100 |63 v§(5’4) iv(S,S) v%(s,s) iv(s,7) 010 |0 |53 646366 67
0100 [©3 v3(6,4) ;(6,5) vﬁ(ﬁ,é) ;(6,7) 010 |0 |63 64656667
oo o |13 v§(7’4) §V(7,5) v§(7,6) §V(7,7) 0|0 |0 [@3 a4 a5 a6 an

(c) Columnwise broadcast of A[k.j] (d) Ali,j] ==Alijl-Ali.k] X Alk,j]

fork<j<n fork<i<nandk<j<n

Various steps in the Gaussian elimination iteration corresponding
to k =3 for an 8 x 8 matrix on 64 processes arranged in a logical
two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

e We pipeline along two dimensions. First, the pivot value is
pipelined along the row. Then the scaled pivot row is pipelined
down.

e Processor P, ; (nof on the pivot row) performs the elimination
step Ali, j] := Ali, j| — Ali, k] x Alk, j] assoon as Ali, k] and Alk, j]
are available.

e The computation and communication for each iteration moves
through the mesh from fop-left to bottom-right as a “front.”

e After the front corresponding to a certain iteration passes
through a process, the process is free to perform subsequent
iterations.

e Multiple fronts that correspond o different iterations are active
simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

e If each step (division, elimination, or communication) s
assumed to take constant time, the front moves a single step in
this fime. The front takes ©(n) fime to reach P,,_1 ,,—1.

e Once the front has progressed past a diagonal processor, the
next front can be initiated. In this way, the last front passes the
bottom-right corner of the matrix ©(n) steps after the first one.

e The parallel fime is therefore O(n), which is cost-optimal.

2-D Mapping with Pipelining

(0,0)] (0,1)] (0,2)] (0,3)] (0,4) 1 1(0,1)] (0,2)| (0,3)] (0.4) 1 1(0,1)] (0,2)] (0,3)| (0.4) 1](0,D] (0,2)| (0,3)] (0.4)

> >

(LO)| (1,1)] (1,2)] (1,3)| (1,4) (1,0)| (1,D)] (1,2)| (1,3)] (1.4) (I,O)vi(],l) (1,2)| (1,3)] (1.4) 0 | (LLD](1,2)| (1,3)] (1.4)

(2,0)| (2,1)] (2,2)] (2,3)| (2,4) 2,00 (2,D)] (2,2)| (2,3)] 2.4) 2,0 (2,D] (2,2) (2,3)] (2.4) 2,0 2,D)] (2,2) (2,3)] 2.4)

(3,0)] 3,1)| (3,2)| (3.3)| (3.4) (3,0)] 3.1)| (3,2)] (3.3)| (3.4) (3,0)] 3,1)| (3,2)] (3.3)| (3.4) (3,0)] 3.1)| (3,2)] (3.3)| (3.4)

(4,0)| (4,1)| (4,2)] (4,3)| (4.4) 4,0)| 4,1)| (42)| (4.3)] 4.4) (4,0)| (4,.1D)| 4,2)| 4.3)| (4.4) 4,0)| 4,1)| (42)| 4.3)| 4.4)

(a) Iteration k = O starts (b) (c) @

1 1(0,1)] (0,2)| (0,3)] (0.4) 1 1(0,D)](0,2)| (0,3)] (0.4) 1 1(0,1)] (0,2)| (0,3)] (0.4) 1 (0,1} (0,2)| (0,3)] (0.4)

> >

0 (1,1)@(1,2) (1,3) (1.4) 0 | (LD](1L2)|(1,3)] (1.4 0 | (LD (1,2)§v(1,3) (1.4) 0 11 @1,2)|(1.3) (1,4

(2,0) v%(2,1) (2.2)[(2.3)| (2.4) 0 |(2.D](2.2)(23)] 24 0 (@1 v:(2,2) (2.3)| (2.4) 0 (2.D](2.2)(23)] 24

(3.0)| (3.1)| (3.2)| (3.3)| (3.4) (3.0)[3.1| (3,2)| (3.3)| B.4) (3,0)@(3,1) (3.2)[(3.3)| B.4) 0 |(3.D](3.2)(3.3)] (34

(4.0)| (4.1)| (4.2)] (4.3)| (4.4) (4.0)| 4.1)| (4,2)| (4.3)| 4.4 (4.0)| (4.1)| 4.2)| (4.3)| (4.4) (4.0)| 4.1)| (4.2)| (4.3)] 4.4

(e) €9) (g) Iteration k = 1 starts (h)

I | (0,1)] (0,2) (0,3)] (0,4) 1 (0,1)[(0,2)] (0,3)] (0,4) 1 | (0,1)] (0,2)| (0,3)| (0,4) 1 (0,1)[(0,2)] (0,3)] (0,4)

0 | 1 [(L)) @3)] 14 0 | 1 [(L2)]@3) 14 0 | 1 (L] @3)| 14 0 |1 (1Y 13)] 14

0 | @2.DI22) §v(2,3) 24 0 10 [@22]@23)]24 0 | 0 |@2|23)|24 0 10 1222324

0 (3,l)§v(3,2) (3,3)[(3.4) 0 |(3.1D](32)3.3)]34 0 |G (3,2)§v(3,3) 3.4) 0 0 [3,2)](3.3) (3.4

P

(4,0) V§(4’l) (4.2)| (4.3)| 4.4) 0 | (4.D)]42)|4.3)] 44 0 (4,l)v§(4,2) (4.3)| (4.4) 0 | (4.D]42)4.3)] 44

®) x) M

1 1(0,1)] (0,2)| (0,3)] (0,4) 1 1(0,1)](0,2)| (0,3)] (0.4) 1 1(0,1)] (0,2)| (0,3)] (0,4) 1 1(0,1)](0,2)| (0,3)] (0.4)

0 1 | (1,2)(1,3)] (1.4) 0 1 [(1,2)] (1,3)| (1.4) 0 1 1(1,2)(1,3)] (1.4) 0 1 [(1,2)] (1,3)| (1.4)

0 0 1(22)]23)]24 0 0 112324 0 0 1 123)] 24 0 0 1](2.3)] 24
0 0 132 (3,3)3 0 0 |(3.2)]@33)34 0 0 (3,2):(3,3) (3.4) 0 0 0 13334
| = -- - =P —=

0 0 |42)]4.3)| 44 0 0 |(42)]43) §V(4’4) 0 0 |(42)]43)] 44

0 (4,1)¢(4,2) §v(4,3)

(m) Iteration k = 2 starts (n) (0) (p) Iteration k = 0 ends
""" > Communication for k=0 D Computation fork =0
— Communication for k = 1 I:l Computation for k = 1
---> Communication for k =2 D Computation for k =2

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

e In this case, a processor containing a completely active part of
the matrix performs n?/p multiplications and subtractions, and
communicates n/,/p words along its row and its column.

e The computation dominantes communication for n >> p.

e The total parallel run time of this algorithm is (2n?/p) x n, since
there are n iterations. This is equal to 2n3 /p.

e This is three times the serial operation count!

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

n n/vp
1 (0,1) |(0,2) (0,3)(0,4) (0,5)[(0,6) (0,7) 1 (0,1)((0,2) (0,3)(0,4) (0,5)[(0,6) (0,7)
0 1 |(1,2) (1,3)(1.4) (1,5)((1,6) (1,7) 0 1 |(1,2) (1,3)|(1,4) (1,5)|(1,6) (1,7)
0 0 1 (2,3) |(2,4) (2,9)((2,6) (2,7) 0 0 1 (2,324 (2,9)(2,6) (2,7)
0 0 | 0,334 (3.5]3.6) (3.7) 0 0|0 1 34353637

% 0 0 0 E(Z_,_;’_): (424) (45) (AEG) 4,7) 0 0 |0 43 E4,_4;v;(4_1,5_) E4,_6;v5(4_1,7_) n

0 0 0 |(5,3): (5,4) (5,9)(5,6) (5.7), 0 0 |0 (53 (5,4)3 (5,5) (5,6)3 (5,7)
0 0 0 5(6,3): 7(2,4) (65) 7(2,6) (6,7) 0 0 |0 (63) (6,4)@(6,5) (6,6)@(6,7)
0 0 0 l(z,’:’_): (7,4) (7,5)|(7,6) (7,7), 0 0 |0 (7,3))74)(75)7.6) (7
(a) Rowwise broadcast of A[i,k] (b) Columnwise broadcast of A[k,j]

fori=kto(n-1) forj=(kk+1)to(n-1)

The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a
two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

10,002 03|04 0506 ©.7) 104 0. 0502 0603 ©7)
0112 43| 0H 1,9 1.6 1.7 0 @a| 0 @ 0 @) @3 @
0 0|1 23eH 296 2N 0 s 1 1512 1.6 03) 1,7
0 0|0 (33 GH GBI G G 0 Gl 0 63 0 58|63 67
0 0|0 @43 @H 43 @46 @) 0o sl o esl 1 eeleyn an
0 0|0 (53 GH (53 G6 G 0 6 0 ©3 0 66|63 ©7)
0010 6364 (6566 67) 0 G4 0 (B3 0 (G G G
0 0|0 (73 0H 75 T6 A7) 0 T4 0 35 0 (7.6 73 A7)

(a) Block-checkerboard mapping (b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic
2-D mappings of an 8 x 8 matrix onfto 16 processes during the
Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

e The idling in the block mapping can be dlleviated using a
cyclic mapping.

e The maximum difference in computational load between any
two processes in any iteration is that of one row and one
column update.

¢ This confriobutes ©(n,/p) o the overhead function. Since there
are n iterations, the total overhead is ©(n?,/p).

Gaussian Elimination with Partial Pivoting

e For numerical stability, one generally uses parfial pivoting.

e INn the kth iteration, we select a column ¢ (called the pivof
column) such that Alk, i] is The largest in magnitude among all
Alk, jl such that £ < j < n.

e The kth and the ¢th columns are interchanged.

e Simple to implement with row-partitioning and does not add
overnead since the division step takes the same fime as
computing the makx.

e Column-parfitioning, however, requires a global reduction,
adding a log p ferm fo the overhead.

e Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D
Partitioning

e Partial pivoting restricts use of pipelining, resulting in performance
loss.

e This loss can be dlleviated by restricting pivoting to specific
columns.

e Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

e The upper triangular matrix U undergoes back-substitution fo
determine the vector .

procedure BACK_SUBSTITUTION (U, =, v)
begin
fork := n — 1 downto 0 do /* Main loop */
begin
rlk] := y[k].
for: := £k — 1 downto 0 do
yli] := yli] — z[k] x Uli, kJ;
endfor;

Voo NO A~

end BACK_SUBSTITUTION

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

e The algorithm performs approximately n?/2 multiplications and
subtractions.

e Since complexity of this part is asymptotically lower, we should
optimize the data distribution for the factorization part.

e Consider a rowwise block 1-D mapping of the n x n matrix U
with vector y distributed uniformly.

e [he value of the variable solved at a step can be pipelined
back.

e Each step of a pipelined implementation requires a constant
amount of fime for communication and O(n/p) time for
computation.

e The parallel run time of the entire algorithm is ©(n?/p).

Solving a Triangular System: Back-Substitution

o If the matrix is parfitioned by using 2-D partifioning on a /p x
/D logical mesh of processes, and the elements of the vector
are distributed along one of the columns of the process mesh,
then only the ,/p processes containing the vector perform any
computation.

e Using pipelining to communicate the appropriate elements of
U to the process containing the corresponding elements of y
for the substitution step (line 7), the algorithm can be executed

in ©(n?/,/p) time.

e While this is not cost optimal, since this does not dominante the
overall computation, the cost optimality is determined by the
factorization.

