Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing", Addison Wesley, 2003.

Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y.
- The serial algorithm requires n^2 multiplications and additions.

$$W = n^2. \tag{1}$$

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

- Since each process starts with only one element of x, an all-toall broadcast is required to distribute all the elements to all the processes.
- Process P_i now computes $y[i] = \sum_{j=0}^{n-1} (A[i, j] \times x[j])$.
- The all-to-all broadcast and the computation of y[i] both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

- \bullet Consider now the case when p < n and we use block 1D partitioning.
- Each process initially stores n/p complete rows of the matrix and a portion of the vector of size n/p.
- The all-to-all broadcast takes place among p processes and involves messages of size n/p.
- This is followed by n/p local dot products.
- Thus, the parallel run time of this procedure is

$$T_P = \frac{n^2}{p} + t_s \log p + t_w n.$$
⁽²⁾

This is cost-optimal.

Scalability Analysis:

• We know that $T_o = pT_P - W$, therefore, we have,

$$T_o = t_s p \log p + t_w n p. \tag{3}$$

- For isoefficiency, we have $W = KT_o$, where K = E/(1 E) for desired efficiency E.
- From this, we have $W = O(p^2)$ (from the t_w term).
- There is also a bound on isoefficiency because of concurrency. In this case, p < n, therefore, $W = n^2 = \Omega(p^2)$.
- Overall isoefficiency is $W = O(p^2)$.

- The $n \times n$ matrix is partitioned among n^2 processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.

(a) Initial data distribution and communication steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of the vector along process columns

(c) All-to-one reduction of partial results

(d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \times n$.

- We must first aling the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using *n* simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-toone reduction along the columns.

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the *n* processes of each column, and all-to-one reduction in each row.
- Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is $\Theta(n^2 \log n)$; hence, the algorithm is not cost-optimal.

- When using fewer than n^2 processors, each process owns an $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n/\sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all $(n/\sqrt{p}).$
- The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length (n/\sqrt{p}) .

- The first alignment step takes time $t_s + t_w n/\sqrt{p}$.
- The broadcast and reductions take time $(t_s + t_w n/\sqrt{p}) \log(\sqrt{p})$.
- Local matrix-vector products take time $t_c n^2/p$.
- Total time is

$$T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$$
 (4)

Scalability Analysis:

- $T_o = pT_p W = t_s p \log p + t_w n \sqrt{p} \log p$.
- Equating T_o with W, term by term, for isoefficiency, we have, $W = K^2 t_w^2 p \log^2 p$ as the dominant term.
- The isoefficiency due to concurrency is O(p).
- The overall isoefficiency is $O(p \log^2 p)$ (due to the network bandwidth).
- For cost optimality, we have, $W = n^2 = p \log^2 p$. For this, we have, $p = O\left(\frac{n^2}{\log^2 n}\right)$.

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C = A \times B$.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i,j}$ ($0 \le i, j < q$) such that each block is an $(n/q) \times (n/q)$ submatrix.
- In this view, we perform q^3 matrix multiplications, each involving $(n/q) \times (n/q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

- The two broadcasts take time $2(t_s \log(\sqrt{p}) + t_w(n^2/p)(\sqrt{p} 1))$.
- The computation requires \sqrt{p} multiplications of $(n/\sqrt{p})\times(n/\sqrt{p})$ sized submatrices.
- The parallel run time is approximately

$$T_P = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}.$$
 (5)

- The algorithm is cost optimal and the isoefficiency is $O(p^{1.5})$ due to bandwidth term t_w and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the *i*th row such that, at any given time, each process is using a different block $A_{i,k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i,k}$ after each rotation.

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
 A _{1,0} ⊲…	A _{1,1} ····· ∢···	A _{1,2}	···≫ A _{1,3}
A _{2,0} ≪…	A _{2,1}	⊳ A _{2,2}	∍ A _{2,3}
A _{3,0} ≪…	∍ A _{3,1}	∍ A _{3,2}	∍ A _{3,3}

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	В _{1,1 л}	В _{1,2}	^у В _{1,3}
B _{2,0}	B _{2,1 Å}	[♥] B _{2,2}	^v B _{2,3}
B _{3,0}	^у В _{3,1}	У В _{3,2}	^у В _{3,3}

(a) Initial alignment of A

(b) Initial alignment of B

(c) A and B after initial alignment

(d) Submatrix locations after first shift

	Ą	Ą	Ą	4
Ŷ		····A _{0,3} <	•••• A _{0,0} <••	••• A _{0,1} ≤ ••
	B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}
Ŷ	A _{1,3} <	• A _{1,0} <	• A _{1,1} <	A _{1,2} ≪
	B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
×۰	A _{2,0} <		• A _{2,2} <	A _{2,3} <
	B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
Ŷ	A _{3,1} <	••• A _{3,2} <	···· A _{3,3} <··	A _{3,0} <
	B _{1,0}	B _{2,1}	^A B _{3,2}	B _{0,3}

A _{0,3}	A _{0,0}	A _{0,1}	A _{0,2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

communication steps in Cannon's algorithm on 16 processes.

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i,j}$ to the left (with wraparound) by i steps and all submatrices $B_{i,j}$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.

- In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p}-1$, the two shift operations require a total of $2(t_s + t_w n^2/p)$ time.
- Each of the \sqrt{p} single-step shifts in the compute-and-shift phase of the algorithm takes $t_s + t_w n^2/p$ time.
- The computation time for multiplying \sqrt{p} matrices of size $(n/\sqrt{p})\times (n/\sqrt{p})$ is $n^3/p.$
- The parallel time is approximately:

$$T_P = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}.$$
 (6)

• The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.

- Assume an $n \times n \times n$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n/\log n$ processors along the direction of accumulation.

The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes.

Using fewer than n^3 processors.

- Assume that the number of processes p is equal to q^3 for some q < n.
- The two matrices are partitioned into blocks of size $(n/q) \times (n/q)$. Each matrix can thus be regarded as a $q \times q$ two-dimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Using fewer than n^3 processors.

- The first one-to-one communication step is performed for both A and B, and takes $t_s + t_w (n/q)^2$ time for each matrix.
- The two one-to-all broadcasts take $2(t_s \log q + t_w (n/q)^2 \log q)$ time for each matrix.
- The reduction takes time $t_s \log q + t_w (n/q)^2 \log q$.
- Multiplication of $(n/q) \times (n/q)$ submatrices takes $(n/q)^3$ time.
- The parallel time is approximated by:

$$T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3}} \log p.$$
 (7)

The isoefficiency function is $\Theta(p(\log p)^3)$.

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

This is written as Ax = b, where A is an $n \times n$ matrix with $A[i, j] = a_{i,j}$, b is an $n \times 1$ vector $[b_0, b_1, \dots, b_{n-1}]^T$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

We write this as: Ux = y.

A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimimation

```
procedure GAUSSIAN_ELIMINATION (A, b, y)
1.
2.
         begin
3.
            for k := 0 to n - 1 do
                                             /* Outer loop */
4.
            begin
5.
               for i := k + 1 to n - 1 do
6.
                   A[k, j] := A[k, j]/A[k, k]; /* Division step */
7.
               y[k] := b[k] / A[k, k];
8.
               A[k,k] := 1;
9.
               for i := k + 1 to n - 1 do
10.
               begin
11.
                  for i := k + 1 to n - 1 do
12.
                     A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
                  b[i] := b[i] - A[i, k] \times y[k];
13.
14.
                  A[i, k] := 0;
15.
               endfor: /* Line 9 */
                     /* Line 3 */
            endfor:
16.
17.
         end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

Gaussian Elimination

• The computation has three nested loops – in the *k*th iteration of the outer loop, the algorithm performs $(n - k)^2$ computations. Summing from k = 1..n, we have roughly $(n^3/3)$ multiplications-subtractions.

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume p = n with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time (n k) in the *k*th iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n k 1)) \log n$.
- Each processor can independently eliminate this row from its own. This requires (n k 1) multiplications and subtractions.
- The total parallel time can be computed by summing from $k=1..n-1~{\rm as}$

$$T_P = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2}t_w n(n-1)\log n.$$
 (8)

• The formulation is not cost optimal because of the t_w term.

Parallel Gaussian Elimination

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P ₁	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P ₂	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P ₃	0	0	0	$1 \begin{array}{c} 1 \\ 1 \end{array} (3,4) (3,5) (3,6) (3,7) \\ 1 \end{array} (3,7) \\ 1 \end{array}$
P ₄	0	0	0	(4,3)\(4,4)\(4,5)\(4,6)\(4,7)
P ₅	0	0	0	(5,3)\(5,4)\(5,5)\(5,6)\(5,7)
P ₆	0	0	0	(6,3)\(6,4)\(6,5)\(6,6)\(6,7)
P ₇	0	0	0	(7,3) \(7,4) \(7,5) \(7,6) \(7,7)

P ₀	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₁	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

- (a) Computation:
 - (i) A[k,j] := A[k,j]/A[k,k] for k < j < n
 (ii) A[k,k] := 1

(b) Communication:

One-to-all brodcast of row A[k,*]

- (c) Computation:
 - (i) $A[i,j] := A[i,j] A[i,k] \times A[k,j]$ for k < i < n and k < j < n
 - (ii) A[i,k] := 0 for k < i < n

Gaussian elimination steps during the iteration corresponding to k = 3 for an 8 \times 8 matrix partitioned rowwise among eight processes.

- In the previous formulation, the (k+1)st iteration starts only after all the computation and communication for the kth iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor P_k waits to receive and eliminate all rows prior to k. Once it has done this, it forwards its own row to processor P_{k+1} .

(0,0) $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4)	$(1,0)_{V}(1,1)_{V}(1,2)_{V}(1,3)_{V}(1,4)$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	$(2,0)_{V}(2,1)_{V}(2,2)_{V}(2,3)_{V}(2,4)$	(2,0) (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	$(3,0)_{V}(3,1)_{V}(3,2)_{V}(3,3)_{V}(3,4)$
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)
(a) Iteration $k = 0$ starts	(b)	(c)	(d)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)
$\overbrace{(4,0)_{\bigvee}(4,1)_{\bigvee}(4,2)_{\bigvee}(4,3)_{\bigvee}(4,4)}^{(4,0)}$	(4,0) (4,1) (4,2) (4,3) (4,4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (4,1) (4,2) (4,3) (4,4)
(e) Iteration $k = 1$ starts	(f)	(g) Iteration $k = 0$ ends	(h)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 (3,1) (3,2) (3,3) (3,4)	$0 0 (3,2) \frac{1}{2} (3,3) \frac{1}{2} (3,4)$	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	$0 0 (4,2) \bigvee_{\forall} (4,3) \bigvee_{\forall} (4,4)$	0 0 (4,2) (4,3) (4,4)
(i) Iteration $k = 2$ starts	(j) Iteration $k = 1$ ends	(k)	(1)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 0 0 (3,3) (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 0 (4,4)
(m) Iteration $k = 3$ starts	(n)	(o) Iteration $k = 3$ ends	(p) Iteration $k = 4$
> Communicatio	on for $k = 0, 3$	Computatio	n for k = 0, 3
> Communicatio	on for $k = 1$	Computatio	n for $k = 1, 4$
> Communicatio	on for $k = 2$	Computatio	n for $k = 2$

Pipelined Gaussian elimination on a 5×5 matrix partitioned with one row per process.

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either O(n) elements are communicated between directly-connected processes, or a division step is performed on O(n) elements of a row, or an elimination step is performed on O(n) elements of a row.
- The parallel time is therefore $O(n^2)$.
- This is cost optimal.

	1	(0,1)	(0,2)	(0,3) $(0,4)$ $(0,5)$ $(0,6)$ $(0,7)$
P ₀	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P ₁	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
	0	0	0	(4,3) $(4,4)$ $(4,5)$ $(4,6)$ $(4,7)$
P ₂	0	0	0	(5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0	(6,3) (6,4) (6,5) (6,6) (6,7)
P ₃	0	0	0	(7,3) (7,4) (7,5) (7,6) (7,7)

The communication in the Gaussian elimination iteration corresponding to k = 3 for an 8×8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with p < n

- The above algorithm can be easily adapted to the case when p < n.
- In the kth iteration, a processor with all rows belonging to the active part of the matrix performs (n k 1)n/p multiplications and subtractions.
- In the pipelined version, for n > p, computation dominates communication.
- The parallel time is given by: $2(n/p)\Sigma_{k=0}^{n-1}(n k 1)$, or approximately, n^3/p .
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.

Parallel Gaussian Elimination: Block 1D with p < n

-	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P ₀	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
_	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₁	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
_	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
_	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₃	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)
		(a)	Blo	ock 1	-D n	napp	ing	

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	п
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	P ₀
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	P
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)	1
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	Р
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)	12
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	D
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)	г ₃

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8×8 matrix on four processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: Cyclic 1D Mapping

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last p rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O(n^2p)$ (instead of $O(n^3)$ in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

- Assume an $n \times n$ matrix A mapped onto an $n \times n$ mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes $\log n$ time.
- This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination: 2-D Mapping

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4) ·.≫····	(3,5)	(3,6) ·⇒···	(3,7) ·.≫
0	0	0	i(4,3)	(4,4) ··≫····	(4,5) ·>··>	(4,6) ··≫····	(4,7) · ≫
0	0	0	(5,3)	(5,4) ··≻	(5,5) ·.≻	(5,6) ·.≫····	(5,7) ·.≫
0	0	0	i(6,3)	(6,4) ··>····	(6,5)	(6,6) ·⇒···	(6,7) ·→
0	0	0	(7,3)	(7,4) ··>····	(7,5) ··>····	(7,6) ··≻	(7,7) ··>

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Rowwise broadcast of A[i,k] for (k - 1) < i < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4) V	(4,5) V	(4,6) V	(4,7) V
0	0	0	(5,3)	(5,4) ¥	(5,5) ¥	(5,6) V	(5,7) V
0	0	0	(6,3)	(6,4)	(6,5)	(6,6) V	(6,7) V
0	0	0	(7,3)	(7,4) ¥	(7,5) ¥	(7,6) V	(7,7) V

(c) Columnwise broadcast of A[k,j] for k < j < n</p> (b) A[k,j] := A[k,j]/A[k,k]for k < j < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(d) $A[i,j] := A[i,j]-A[i,k] \times A[k,j]$ for k < i < n and k < j < n

Various steps in the Gaussian elimination iteration corresponding to k = 3 for an 8×8 matrix on 64 processes arranged in a logical two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.
- Processor $P_{i,j}$ (not on the pivot row) performs the elimination step $A[i,j] := A[i,j] A[i,k] \times A[k,j]$ as soon as A[i,k] and A[k,j] are available.
- The computation and communication for each iteration moves through the mesh from top-left to bottom-right as a "front."
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- Multiple fronts that correspond to different iterations are active simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $P_{n-1,n-1}$.
- Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.
- The parallel time is therefore O(n), which is cost-optimal.

2-D Mapping with Pipelining

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (01) (02) (02) (04)				
	1 (0,1) (0,2) (0,3) (0,4)	$1 (0,1) (0,2) (0,3) (0,4) \\ \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$	1 (0,1) (0,2) (0,3) (0,4)		
(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)		0 (1,1) (1,2) (1,3) (1,4)		
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)		
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)		
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)		
(a) Iteration $k = 0$ starts	(b)	(c)	(d)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 (1,1) (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)		
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)		
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)		
(e)	(f)	(g) Iteration $k = 1$ starts	(h)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
0 (2,1) (2,2) (2,3) (2,4)	0 0 (2,2) (2,3) (2,4)	0 0 (2,2) (2,3) (2,4)	0 0 (2,2) (2,3) (2,4)		
0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)		
(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)		
(i)	(j)	(k)	(1)		
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)		
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)		
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)		
0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 0 (3,3) (3,4)		
0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)		
m) Iteration $k = 2$ starts	(n)	(0) (p) Iteration $k = 0$ end		
····> Communicatio	on for $k = 0$	Computation	for k = 0		
		$\boxed{\qquad} Computation for k = 1$			
> Communicatio	on for $k = 1$	Computation	1101 K = 1		

Pipelined Gaussian elimination for a 5 \times 5 matrix with 25 processors.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n

- In this case, a processor containing a completely active part of the matrix performs n^2/p multiplications and subtractions, and communicates n/\sqrt{p} words along its row and its column.
- The computation dominantes communication for n >> p.
- The total parallel run time of this algorithm is $(2n^2/p) \times n$, since there are n iterations. This is equal to $2n^3/p$.
- This is three times the serial operation count!

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n n/\sqrt{p} -n1 (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) $1 \quad (0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,6) \quad (0,7)$ (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)1 (1,2)(1,3)(1,4)(1,5)(1,6)(1,7)0 1 0 1 (2,3) (2,4) (2,5) (2,6) (2,7) 1 (2,3) (2,4) (2,5) (2,6) (2,7) 0 0 0 0 $0 \left| (3,3) \right| (3,4) (3,5) (3,6) (3,7)$ 1 (3,4) (3,5) (3,6) (3,7 0 0 0 0 0 n $0 \left| (\bar{4}, \bar{3}) \right| (4,4) (4,5) (4,6) (4,7)$ 0 (4,3) (4,4) (4,5) (4,6) (4,7) 0 0 0 0 0 (5,3) (5,4) (5,5) (5,6) (5,7) 0 (5,3) (5,4) (5,5) (5,6) (5,7) 0 0 0 0

0 0

0

0

0 (6,3) (6,4) (6,5) (6,6) (6,7)

0 (7,3)(7,4)(7,5)(7,6)(7,7)

(b) Columnwise broadcast of A[k,j]for j = (k + 1) to (n - 1)

0 (6,3) (6,4) (6,5) (6,6) (6,7)

0 (7,3) (7,4) (7,5) (7,6) (7,7)

(a) Rowwise broadcast of A[i,k]

for i = k to (n - 1)

0 0

0 0

The communication steps in the Gaussian elimination iteration corresponding to k = 3 for an 8×8 matrix on 16 processes of a two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

1	(0,4)	(0,1)	(0,5)	(0,2)	(0,6)	(0,3)	(0,7)
0	(4,4)	0	(4,5)	0	(4,6)	(4,3)	(4,7)
0	(1,4)	1	(1,5)	(1,2)	(1,6)	(1,3)	(1,7)
0	(5,4)	0	(5,5)	0	(5,6)	(5,3)	(5,7)
0	(2,4)	0	(2,5)	1	(2,6)	(2,3)	(2,7)
0	(6,4)	0	(6,5)	0	(6,6)	(6,3)	(6,7)
0	(3,4)	0	(3,5)	0	(3,6)	(3,3)	(3,7)
0	(7,4)	0	(7,5)	0	(7,6)	(7,3)	(7,7)

(a) Block-checkerboard mapping

(b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic 2-D mappings of an 8×8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

- The idling in the block mapping can be alleviated using a cyclic mapping.
- The maximum difference in computational load between any two processes in any iteration is that of one row and one column update.
- This contributes $\Theta(n\sqrt{p})$ to the overhead function. Since there are *n* iterations, the total overhead is $\Theta(n^2\sqrt{p})$.

Gaussian Elimination with Partial Pivoting

- For numerical stability, one generally uses partial pivoting.
- In the kth iteration, we select a column i (called the *pivot* column) such that A[k,i] is the largest in magnitude among all A[k,j] such that $k \le j < n$.
- The kth and the ith columns are interchanged.
- Simple to implement with row-partitioning and does not add overhead since the division step takes the same time as computing the max.
- Column-partitioning, however, requires a global reduction, adding a $\log p$ term to the overhead.
- Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D Partitioning

- Partial pivoting restricts use of pipelining, resulting in performance loss.
- This loss can be alleviated by restricting pivoting to specific columns.
- Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

• The upper triangular matrix U undergoes back-substitution to determine the vector x.

```
1.
         procedure BACK_SUBSTITUTION (U, x, y)
2.
         begin
3.
            for k := n - 1 downto 0 do /* Main loop */
4.
                begin
5.
                   x[k] := y[k];
                  for i := k - 1 downto 0 do
6.
                      y[i] := y[i] - x[k] \times U[i,k];
7.
                endfor:
8.
9.
         end BACK_SUBSTITUTION
```

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

- The algorithm performs approximately $n^2/2$ multiplications and subtractions.
- Since complexity of this part is asymptotically lower, we should optimize the data distribution for the factorization part.
- Consider a rowwise block 1-D mapping of the $n \times n$ matrix U with vector y distributed uniformly.
- The value of the variable solved at a step can be pipelined back.
- Each step of a pipelined implementation requires a constant amount of time for communication and $\Theta(n/p)$ time for computation.
- The parallel run time of the entire algorithm is $\Theta(n^2/p)$.

Solving a Triangular System: Back-Substitution

- If the matrix is partitioned by using 2-D partitioning on a $\sqrt{p} \times \sqrt{p}$ logical mesh of processes, and the elements of the vector are distributed along one of the columns of the process mesh, then only the \sqrt{p} processes containing the vector perform any computation.
- Using pipelining to communicate the appropriate elements of U to the process containing the corresponding elements of y for the substitution step (line 7), the algorithm can be executed in $\Theta(n^2/\sqrt{p})$ time.
- While this is not cost optimal, since this does not dominante the overall computation, the cost optimality is determined by the factorization.