Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text "Introduction to Parallel Computing", Addison Wesley, 2003.

Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to datadecomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y.
- The serial algorithm requires n^{2} multiplications and additions.

$$
\begin{equation*}
W=n^{2} \tag{1}
\end{equation*}
$$

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process
case, $p=n$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Since each process starts with only one element of x, an all-toall broadcast is required to distribute all the elements to all the processes.
- Process P_{i} now computes $y[i]=\sum_{j=0}^{n-1}(A[i, j] \times x[j])$.
- The all-to-all broadcast and the computation of $y[i]$ both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider now the case when $p<n$ and we use block 1D partitioning.
- Each process initially stores n / p complete rows of the matrix and a portion of the vector of size n / p.
- The all-to-all broadcast takes place among p processes and involves messages of size n / p.
- This is followed by n / p local dot products.
- Thus, the parallel run time of this procedure is

$$
\begin{equation*}
T_{P}=\frac{n^{2}}{p}+t_{s} \log p+t_{w} n \tag{2}
\end{equation*}
$$

This is cost-optimal.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

- We know that $T_{o}=p T_{P}-W$, therefore, we have,

$$
\begin{equation*}
T_{o}=t_{s} p \log p+t_{w} n p . \tag{3}
\end{equation*}
$$

- For isoefficiency, we have $W=K T_{o}$, where $K=E /(1-E)$ for desired efficiency E.
- From this, we have $W=O\left(p^{2}\right)$ (from the t_{w} term).
- There is also a bound on isoefficiency because of concurrency. In this case, $p<n$, therefore, $W=n^{2}=\Omega\left(p^{2}\right)$.
- Overall isoefficiency is $W=O\left(p^{2}\right)$.

Matrix-Vector Multiplication: 2-D Partitioning

- The $n \times n$ matrix is partitioned among n^{2} processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.

Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p=n^{2}$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning

- We must first aling the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-toone reduction along the columns.

Matrix-Vector Multiplication: 2-D Partitioning

- Three basic communication operations are used in this algorithm: one-to-one communication to align the vector along the main diagonal, one-to-all broadcast of each vector element among the n processes of each column, and all-toone reduction in each row.
- Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is $\Theta\left(n^{2} \log n\right)$; hence, the algorithm is not cost-optimal.

Matrix-Vector Multiplication: 2-D Partitioning

- When using fewer than n^{2} processors, each process owns an $(n / \sqrt{p}) \times(n / \sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n / \sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all (n / \sqrt{p}).
- The computation is a product of an $(n / \sqrt{p}) \times(n / \sqrt{p})$ submatrix with a vector of length (n / \sqrt{p}).

Matrix-Vector Multiplication: 2-D Partitioning

- The first alignment step takes time $t_{s}+t_{w} n / \sqrt{p}$.
- The broadcast and reductions take time $\left(t_{s}+t_{w} n / \sqrt{p}\right) \log (\sqrt{p})$.
- Local matrix-vector products take time $t_{c} n^{2} / p$.
- Total time is

$$
\begin{equation*}
T_{P} \approx \frac{n^{2}}{p}+t_{s} \log p+t_{w} \frac{n}{\sqrt{p}} \log p \tag{4}
\end{equation*}
$$

Matrix-Vector Multiplication: 2-D Partitioning

Scalability Analysis:

- $T_{o}=p T_{p}-W=t_{s} p \log p+t_{w} n \sqrt{p} \log p$.
- Equating T_{o} with W, term by term, for isoefficiency, we have, $W=K^{2} t_{w}^{2} p \log ^{2} p$ as the dominant term.
- The isoefficiency due to concurrency is $O(p)$.
- The overall isoefficiency is $O\left(p \log ^{2} p\right)$ (due to the network bandwidth).
- For cost optimality, we have, $W=n^{2}=p \log ^{2} p$. For this, we have, $p=O\left(\frac{n^{2}}{\log ^{2} n}\right)$.

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C=A \times B$.
- The serial complexity is $O\left(n^{3}\right)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i, j}(0 \leq i, j<q)$ such that each block is an $(n / q) \times(n / q)$ submatrix.
- In this view, we perform q^{3} matrix multiplications, each involving $(n / q) \times(n / q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i, j}$ and $B_{i, j}(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Process $\mathrm{P}_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $B_{k, j}$ for $0 \leq k<\sqrt{p}$.
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

- The two broadcasts take time $2\left(t_{s} \log (\sqrt{p})+t_{w}\left(n^{2} / p\right)(\sqrt{p}-1)\right)$.
- The computation requires \sqrt{p} multiplications of $(n / \sqrt{p}) \times(n / \sqrt{p})$ sized submatrices.
- The parallel run time is approximately

$$
\begin{equation*}
T_{P}=\frac{n^{3}}{p}+t_{s} \log p+2 t_{w} \frac{n^{2}}{\sqrt{p}} . \tag{5}
\end{equation*}
$$

- The algorithm is cost optimal and the isoefficiency is $O\left(p^{1.5}\right)$ due to bandwidth term t_{w} and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the i th row such that, at any given time, each process is using a different block $A_{i, k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i, k}$ after each rotation.

Matrix-Matrix Multiplication: Cannon's Algorithm

(a) Initial alignment of A

A			1
$<\begin{aligned} & \mathrm{A}_{0,0} \\ & \mathrm{~B}_{0,0} \end{aligned}$		${ }^{\mathrm{A}_{0,2}}{ }^{\text {a }}$	$\mathrm{A}_{0,3}$ $\mathrm{~B}_{3,3}$
$<{ }^{+} \mathrm{A}_{1,1}{ }^{<}$	$A12 B21$	${ }_{\text {a }} \mathrm{A}_{1,3}{ }^{<}$	$\underbrace{}_{\text {A }} \mathrm{A}_{1,0}{ }^{<}$
$<\begin{aligned} & \mathrm{A}_{2,2}= \\ & \mathrm{B}_{2,0}\end{aligned}$		${ }^{\mathrm{A}_{2,0}} \mathrm{~B}_{0,2}$	$\underbrace{\mathrm{A}_{2,1}<}{ }^{\text {B }}$
$<\cdot \begin{aligned} & \mathrm{A}_{3,3} \\ & \mathrm{~B}_{3,0}\end{aligned}$	${ }^{\mathrm{A}_{3,0}}{ }^{<} \mathrm{B}_{0,1}$	${ }^{\mathrm{A}_{3,1}} \mathrm{~B}_{1} \mathrm{~B}_{1,2}$	$\mathrm{A}_{3,2}<$ $\mathrm{B}_{2,3}$

(c) A and B after initial alignment

4	1	1	A
$\ll \left\lvert\, \begin{aligned} & \mathrm{A}_{0,2} \\ & \mathrm{~B}_{2,0}\end{aligned}\right.$	${ }_{\substack{\text { a }}}^{\mathrm{A}_{0,3}} \mathrm{~B}_{3,1}$	${ }_{\substack{\text { a }}}^{\mathrm{A}_{0,0}} \mathrm{~B}_{0,2}$	$\underbrace{}_{\text {A }} \begin{aligned} & \mathrm{A}_{0,1} \\ & \mathrm{~B}_{1,3}\end{aligned}$
$=\left[\begin{array}{l}\mathrm{A}_{1,3}= \\ \mathrm{B}_{3,0}\end{array}\right.$	${ }^{\mathrm{A}_{1,0}} \mathrm{~B}_{0,1}$	${ }^{\mathrm{A}_{1,1}} \mathrm{~B}_{1,2}$	$\mathrm{A}_{1,2}=$
$<{ }^{2} \begin{aligned} & \mathrm{A}_{2,0} \\ & \mathrm{~B}_{0,0}\end{aligned}$	${ }_{\text {A }} \mathrm{A}_{2,1}=$	${ }_{\substack{\text { a }}}^{\mathrm{A}_{2,2}} \mathrm{~B}_{2,2}$	$\underbrace{}_{1} \mathrm{~A}_{2,3}<$
$\ll \left\lvert\, \begin{aligned} & \mathrm{A}_{3,1} \\ & \mathrm{~B}_{1,0}\end{aligned}\right.$	$\mathrm{A}_{3,2}$ $\mathrm{~B}_{2,1}$		$\underbrace{}_{\mathrm{A}_{3,0}} \mathrm{~B}_{0,3}$

$\mathrm{B}_{0,0}$	$\mathrm{~B}_{0,1}$	$\mathrm{~B}_{0,2}$	$\mathrm{~B}_{0,3}$
$\mathrm{~B}_{1,0}$	$\mathrm{~B}_{1,1}$	$\mathrm{~B}_{1,2}$	$\mathrm{~B}_{1,3}$
$\mathrm{~B}_{2,0}$	$\mathrm{~B}_{2,1}$	$\mathrm{~B}_{2,2}$	$\mathrm{~B}_{2,3}$
$\mathrm{~B}_{3,0}$	$\mathrm{~B}_{3,1}$	$\mathrm{~B}_{3,2}$	$\mathrm{~B}_{3,3}$

(b) Initial alignment of B

(d) Submatrix locations after first shift

$\mathrm{A}_{0,3}$	$\mathrm{~A}_{0,0}$	$\mathrm{~A}_{0,1}$	$\mathrm{~A}_{0,2}$
$\mathrm{~B}_{3,0}$	$\mathrm{~B}_{0,1}$	$\mathrm{~B}_{1,2}$	$\mathrm{~B}_{2,3}$
$\mathrm{~A}_{1,0}$	$\mathrm{~A}_{1,1}$	$\mathrm{~A}_{1,2}$	$\mathrm{~A}_{1,3}$
$\mathrm{~B}_{0,0}$	$\mathrm{~B}_{1,1}$	$\mathrm{~B}_{2,2}$	$\mathrm{~B}_{3,3}$
$\mathrm{~A}_{2,1}$	$\mathrm{~A}_{2,2}$	$\mathrm{~A}_{2,3}$	$\mathrm{~A}_{2,0}$
$\mathrm{~B}_{1,0}$	$\mathrm{~B}_{2,1}$	$\mathrm{~B}_{3,2}$	$\mathrm{~B}_{0,3}$
$\mathrm{~A}_{3,2}$	$\mathrm{~A}_{3,3}$	$\mathrm{~A}_{3,0}$	$\mathrm{~A}_{3,1}$
$\mathrm{~B}_{2,0}$	$\mathrm{~B}_{3,1}$	$\mathrm{~B}_{0,2}$	$\mathrm{~B}_{1,3}$

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i, j}$ to the left (with wraparound) by i steps and all submatrices $B_{i, j}$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p}-1$, the two shift operations require a total of $2\left(t_{s}+t_{w} n^{2} / p\right)$ time.
- Each of the \sqrt{p} single-step shifts in the compute-and-shift phase of the algorithm takes $t_{s}+t_{w} n^{2} / p$ time.
- The computation time for multiplying \sqrt{p} matrices of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ is n^{3} / p.
- The parallel time is approximately:

$$
\begin{equation*}
T_{P}=\frac{n^{3}}{p}+2 \sqrt{p} t_{s}+2 t_{w} \frac{n^{2}}{\sqrt{p}} . \tag{6}
\end{equation*}
$$

- The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.

Matrix-Matrix Multiplication: DNS Algorithm

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.

Matrix-Matrix Multiplication: DNS Algorithm

- Assume an $n \times n \times n$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.

Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

- Assume that the number of processes p is equal to q^{3} for some $q<n$.
- The two matrices are partitioned into blocks of size $(n / q) \times(n / q)$. Each matrix can thus be regarded as a $q \times q$ two-dimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

- The first one-to-one communication step is performed for both A and B, and takes $t_{s}+t_{w}(n / q)^{2}$ time for each matrix.
- The two one-to-all broadcasts take $2\left(t_{s} \log q+t_{w}(n / q)^{2} \log q\right)$ time for each matrix.
- The reduction takes time $t_{s} \log q+t_{w}(n / q)^{2} \log q$.
- Multiplication of $(n / q) \times(n / q)$ submatrices takes $(n / q)^{3}$ time.
- The parallel time is approximated by:

$$
\begin{equation*}
T_{P}=\frac{n^{3}}{p}+t_{s} \log p+t_{w} \frac{n^{2}}{p^{2 / 3}} \log p \tag{7}
\end{equation*}
$$

The isoefficiency function is $\Theta\left(p(\log p)^{3}\right)$.

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

This is written as $A x=b$, where A is an $n \times n$ matrix with $A[i, j]=a_{i, j}, b$ is an $n \times 1$ vector $\left[b_{0}, b_{1}, \ldots, b_{n-1}\right]^{T}$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

$$
\begin{array}{rlrl}
x_{0}+u_{0,1} x_{1}+u_{0,2} x_{2}+\cdots & +u_{0, n-1} x_{n-1} & =y_{0} \\
x_{1}+u_{1,2} x_{2}+\cdots & +u_{1, n-1} x_{n-1} & =y_{1} \\
\vdots & & \\
& & x_{n-1} & =y_{n-1}
\end{array}
$$

We write this as: $U x=y$.
A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimimation

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
```
procedure GAUSSIAN_ELIMINATION \((A, b, y)\)
begin
    for \(k:=0\) to \(n-1\) do \(\quad\) * Outer loop */
    begin
            for \(j:=k+1\) to \(n-1\) do
            \(A[k, j]:=A[k, j] / A[k, k] ; \quad{ }^{*}\) Division step */
            \(y[k]:=b[k] / A[k, k]\);
            \(A[k, k]:=1\);
            for \(i:=k+1\) to \(n-1\) do
            begin
                for \(j:=k+1\) to \(n-1\) do
                    \(A[i, j]:=A[i, j]-A[i, k] \times A[k, j] ; /^{*}\) Elimination step */
            \(b[i]:=b[i]-A[i, k] \times y[k] ;\)
            \(A[i, k]:=0\);
            endfor; \({ }^{*}\) Line 9 */
    endfor; /* Line 3 */
end GAUSSIAN_ELIMINATION
```


Gaussian Elimination

- The computation has three nested loops - in the k th iteration of the outer loop, the algorithm performs $(n-k)^{2}$ computations. Summing from $k=1$..n, we have roughly ($n^{3} / 3$) multiplicationssubtractions.

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume $p=n$ with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the k th iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $\left(t_{s}+t_{w}(n-k-1)\right) \log n$.
- Each processor can independently eliminate this row from its own. This requires ($n-k-1$) multiplications and subtractions.
- The total parallel time can be computed by summing from $k=$ $1 . . n-1$ as

$$
\begin{equation*}
T_{P}=\frac{3}{2} n(n-1)+t_{s} n \log n+\frac{1}{2} t_{w} n(n-1) \log n . \tag{8}
\end{equation*}
$$

- The formulation is not cost optimal because of the t_{w} term.

Parallel Gaussian Elimination

P_{0}			(0,2)	(0,3)	(0,4)		(0,6)	(0,7)
P_{1}	0	1	$(1,2)$	$(1,3)$				
P_{2}	0	0	1	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	
P_{3}	0	0	0	$(3,3)$	$(3,4)$	$(3,5)$	(3,6)	
P_{4}	0	0	0	(4,3)	$(4,4)$		$(4,6)$	$(4,7)$
P_{5}	0	0	0	$(5,3)$	$(5,4)$		(5,6)	$(5,7)$
P_{6}	0	0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
P_{7}	0	0	0	(7,3)	$(7,4)$			(7,7)

(a) Computation:
(i) $\mathrm{A}[\mathrm{k}, \mathrm{j}]:=\mathrm{A}[\mathrm{k}, \mathrm{j}] / \mathrm{A}[\mathrm{k}, \mathrm{k}]$ for $\mathrm{k}<\mathrm{j}<\mathrm{n}$
(ii) $\mathrm{A}[\mathrm{k}, \mathrm{k}]:=1$

(b) Communication:

One-to-all brodcast of row A[k,*]

P_{0}	1	(0,)	0,2)	(0,3)	(0,4)	(0,5)	$(0,6)$	$(0,7)$
P_{1}	0	1		1,2)	$(1,3)$	$(1,4)$	$(1,5)$		
P_{2}	0	0		1	(2,3)	$(2,4)$	$(2,5)$	$(2,6)$	(2,7)
P_{3}	0	0		0	1		$(3,5)$	(3,6)	
P_{4}	0	0		0	$(4,3)$				$(4,7)$
P_{5}	0	0		0	$(5,3)$	(5,4)	$(5,5)$		(5,7)
P_{6}	0	0		0	$(6,3)$	(6,4)	$(6,5)$	(6,6)	$(6,7)$
P_{7}	0	0		0					

(c) Computation:
(i) $\mathrm{A}[\mathrm{i}, \mathrm{j}]:=\mathrm{A}[\mathrm{i}, \mathrm{j}]-\mathrm{A}[\mathrm{i}, \mathrm{k}] \times \mathrm{A}[\mathrm{k}, \mathrm{j}]$ for $\mathrm{k}<\mathrm{i}<\mathrm{n}$ and $\mathrm{k}<\mathrm{j}<\mathrm{n}$
(ii) $\mathrm{A}[\mathrm{i}, \mathrm{k}]:=0$ for $\mathrm{k}<\mathrm{i}<\mathrm{n}$

Gaussian elimination steps during the iteration corresponding to $k=3$ for an 8×8 matrix partitioned rowwise among eight processes.

Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the $(k+1)$ st iteration starts only after all the computation and communication for the k th iteration is complete.
- In the pipelined version, there are three steps - normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor P_{k} waits to receive and eliminate all rows prior to k. Once it has done this, it forwards its own row to processor P_{k+1}.

Parallel Gaussian Elimination: Pipelined Execution
 $(0,0)(0,1)(0,2)(0,3)(0,4)$
 $1 \quad(0,1) \quad(0,2) \quad(0,3)(0,4)$

$(1,0)(1,1)(1,2)(1,3)(1,4)$
$(2,0)(2,1)(2,2)(2,3)(2,4)$
$(3,0)(3,1)(3,2)(3,3)(3,4)$
$(4,0)(4,1)(4,2)(4,3)(4,4)$
(a) Iteration $\mathrm{k}=0$ starts

1	$(0,1)(0,2)$	$(0,3)(0,4)$
0	$(1,1)(1,2)$	$(1,3)(1,4)$
$(2,0)$	$(2,1)(2,2)$	$(2,3)(2,4)$
$(3,0)$	$(3,1)(3,2)$	$(3,3)(3,4)$
	$V^{(4,1)}(4,2)$	${ }^{4,3)} v^{(4,4)}$

(e) Iteration $\mathrm{k}=1$ starts

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$					
0	1						$(1,2)$	$(1,3)$	$(1,4)$
0	0	$(\mathbf{2 , 2})$	$(\mathbf{2 , 3})$	$(\mathbf{2}, 4)$					
0	$(\mathbf{3 , 1})$	$(\mathbf{3 , 2})$	$(\mathbf{3 , 3})$	$(\mathbf{3}, 4)$					
0	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$					

(i) Iteration $\mathrm{k}=2$ starts
(m) Iteration $\mathrm{k}=3$ starts

(f)
(j) Iteration $\mathrm{k}=1$ ends

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	1	$(2,3)$	$(2,4)$
0	0	0	1	$(3,4)$
0	0	0	$(4,3)$	$(4,4)$

(n)

| $(1,0) V^{(1,1)} V^{(1,2)} V^{(1,3)} V^{(1,4)}$ |
| :--- | :--- |
| $(2,0)(2,1)(2,2)(2,3)(2,4)$ |
| $(3,0)(3,1)(3,2)(3,3)(3,4)$ |

$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$
$(3,4)$			
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$
	$(4,4)$		

(b)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	1	$(2,3)$	$(2,4)$
0	0	$(3,2)$	\vdots	$(3,3)$
$(3,4)$				
0	$(\mathbf{4 , 1})$	$(\mathbf{4 , 2})$	$(\mathbf{4}, \mathbf{3})$	$(\mathbf{4}, \mathbf{4})$

(c)

(g) Iteration $\mathrm{k}=0$ ends

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	1	$(2,3)$	$(2,4)$
0	0	$(3,2)$	$(3,3)$	$(3,4)$
0	0	$(4,2)$	\vdots	\vdots

(k)

(o) Iteration $\mathrm{k}=3$ ends

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$		$(3,1)$	$(3,2)$	
$(4,3)$	$(3,4)$			
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	

(d)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0		$(1,2)$	$(1,3)$	$(1,4)$
0	(2,1)	$(2,2)$	$(2,3)$	$(2,4)$
0	$(3,1)$			$(3,4)$
0		(4,2)		4,4)

(h)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	1	$(2,3)$	$(2,4)$
0	0	$(\mathbf{3 , 2})$	$(\mathbf{3 , 3})$	$(\mathbf{3 , 4})$
0	0	$(4,2)$	$(4,3)$	$(4,4)$

(l)

(p) Iteration $\mathrm{k}=4$
> Communication for $\mathrm{k}=0,3$
\longrightarrow Communication for $\mathrm{k}=1$
$-->$ Communication for $\mathrm{k}=2$

Pipelined Gaussian elimination on a 5×5 matrix partitioned with one row per process.

Parallel Gaussian Elimination: Pipelined Execution

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either $O(n)$ elements are communicated between directly-connected processes, or a division step is performed on $O(n)$ elements of a row, or an elimination step is performed on $O(n)$ elements of a row.
- The parallel time is therefore $O\left(n^{2}\right)$.
- This is cost optimal.

Parallel Gaussian Elimination: Pipelined Execution

The communication in the Gaussian elimination iteration corresponding to $k=3$ for an 8×8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with $p<n$

- The above algorithm can be easily adapted to the case when $p<n$.
- In the k th iteration, a processor with all rows belonging to the active part of the matrix performs $(n-k-1) n / p$ multiplications and subtractions.
- In the pipelined version, for $n>p$, computation dominates communication.
- The parallel time is given by: $2(n / p) \Sigma_{k=0}^{n-1}(n-k-1)$, or approximately, n^{3} / p.
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.

Parallel Gaussian Elimination: Block 1D with $p<n$

(a) Block 1-D mapping

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8×8 matrix on four processes during the Gaussian elimination iteration corresponding to $k=3$.

Parallel Gaussian Elimination: Cyclic ID Mapping

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last p rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O\left(n^{2} p\right)$ (instead of $O\left(n^{3}\right)$ in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

- Assume an $n \times n$ matrix A mapped onto an $n \times n$ mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes $\log n$ time.
- This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination: 2-D Mapping

1	(0,1)	$(0,2)$	(0,3)	$(0,4)$	5)	$(0,6)$	(0,7)
0	1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	(1,7)
0	0	1	(2)	$(2,4)$	(2,5)	$(2,6)$	(2,7)
0	0	0		$(3,4)$		(3,6)	(3,7)
0	0	0		$(4,4)$	$(4,5)$	(4,)	$(4,7)$
0	0	0		$(5,4)$	5)	$(5,6)$	(5,7)
0	0	0		(6,4)	5)	(6,6)	(6,7)
0	0	0					$\stackrel{(7,7)}{>}$

(a) Rowwise broadcast of $\mathrm{A}[\mathrm{i}, \mathrm{k}]$ for $(\mathrm{k}-1$) $<\mathrm{i}<\mathrm{n}$

1	(0,1)	(0,2)	(0,3)	(0,	(0,5)	$(0,6)$	(0,7)
0	1	(1,2)	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	(1,7)
0	0	1	(2,3)	(2,4	(2,5	(2,6)	(2,7)
0	0	0	1				,
0	0	0	(4,3)		(4,5)		
0	0	0			$\left.\right\|_{y}(5,5)$	(5,6)	(5,7)
0	0	0		4)	$(6,5)$	$(6,6)$	(,7)
0	0	0		(7,4)		$\left.\right\|_{y}(7,6)$, 7)

(c) Columnwise broadcast of $\mathrm{A}[\mathrm{k}, \mathrm{j}]$

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$	$(0,7)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	$(1,7)$
0	0	1	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
0	0	0	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$
0	0	0	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$	$(4,7)$
0	0	0	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$	$(5,7)$
0	0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
0	0	0	$(7,3)$	$(7,4)$	$(7,5)$	$(7,6)$	$(7,7)$

(b) $\mathrm{A}[\mathrm{k}, \mathrm{j}]:=\mathrm{A}[\mathrm{k}, \mathrm{j}] / \mathrm{A}[\mathrm{k}, \mathrm{k}]$ for $\mathrm{k}<\mathrm{j}<\mathrm{n}$

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$	$(0,7)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	$(1,7)$
0	0	1	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
0	0	0	1	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$
0	0	0	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$	$(4,7)$
0	0	0	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$	$(5,7)$
0	0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
0	0	0	$(7,3)$	$(7,4)$	$(7,5)$	$(7,6)$	$(7,7)$

(d) $A[i, j]:=A[i, j]-A[i, k] \times A[k, j]$ for $\mathrm{k}<\mathrm{i}<\mathrm{n}$ and $\mathrm{k}<\mathrm{j}<\mathrm{n}$

Various steps in the Gaussian elimination iteration corresponding to $k=3$ for an 8×8 matrix on 64 processes arranged in a logical two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.
- Processor $\mathrm{P}_{i, j}$ (not on the pivot row) performs the elimination step $A[i, j]:=A[i, j]-A[i, k] \times A[k, j]$ as soon as $A[i, k]$ and $A[k, j]$ are available.
- The computation and communication for each iteration moves through the mesh from top-left to bottom-right as a "front."
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- Multiple fronts that correspond to different iterations are active simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $\mathrm{P}_{n-1, n-1}$.
- Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.
- The parallel time is therefore $O(n)$, which is cost-optimal.

2-D Mapping with Pipelining

$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(a) Iteration $\mathrm{k}=0$ starts

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
	$\ldots, 0)$	$(2,1)$	$(2,2)$	$(2,3)$
$(2,4)$				
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(e)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	$(2,1)$	$(2,2)$	$\vdots(2,3)$	$(2,4)$
0	$(3,1)$	\cdots	$(3,2)$	$(3,3)$
$(3,4)$				
$(4,0)$	$\ldots, 1)$	$(4,2)$	$(4,3)$	$(4,4)$

(i)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	$(2,2)$	$(2,3)$	$(2,4)$
0	0	$(3,2)$	$(3,3)$	$(3,4)$
0	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(m) Iteration $\mathrm{k}=2$ starts

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(b)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
0	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(f)

(j)

(n)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
$(1,0)$	\vdots	$\rightarrow, 1)$	$(1,2)$	$(1,3)$
\ldots	$(1,4)$			
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(c)

(g) Iteration $\mathrm{k}=1$ starts

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

(d)

(h)

(k)

(o)

(l)

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$
0	0	1	$(2,3)$	$(\mathbf{2 , 4})$
0	0	0	$(\mathbf{3 , 3})$	$(3,4)$
0	0	$(4,2)$	$(\mathbf{4 , 3})$	$(4,4)$

(p) Iteration $\mathrm{k}=0$ ends
\rightarrow Communication for $\mathrm{k}=0$
\longrightarrow Communication for $\mathrm{k}=1$
---> Communication for $\mathrm{k}=2$

Computation for $\mathrm{k}=0$
\square Computation for $\mathrm{k}=1$
Computation for $\mathrm{k}=2$

Pipelined Gaussian elimination for a 5×5 matrix with 25 processors.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and $p<n$

- In this case, a processor containing a completely active part of the matrix performs n^{2} / p multiplications and subtractions, and communicates n / \sqrt{p} words along its row and its column.
- The computation dominantes communication for $n \gg p$.
- The total parallel run time of this algorithm is $\left(2 n^{2} / p\right) \times n$, since there are n iterations. This is equal to $2 n^{3} / p$.
- This is three times the serial operation count!

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and $p<n$

(a) Rowwise broadcast of $\mathrm{A}[\mathrm{i}, \mathrm{k}]$ for $\mathrm{i}=\mathrm{k}$ to $(\mathrm{n}-1)$

(b) Columnwise broadcast of $A[k, j]$ for $\mathrm{j}=(\mathrm{k}+1)$ to $(\mathrm{n}-1)$

The communication steps in the Gaussian elimination iteration corresponding to $k=3$ for an 8×8 matrix on 16 processes of a two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and $p<n$

1	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$	$(0,7)$
0	1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	$(1,7)$
0	0	1	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
0	0	0	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$
0	0	0	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$	$(4,7)$
0	0	0	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$	$(5,7)$
0	0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
0	0	0	$(7,3)$	$(7,4)$	$(7,5)$	$(7,6)$	$(7,7)$

(a) Block-checkerboard mapping

1	$(0,4)$	$(0,1)$	$(0,5)$	$(0,2)$	$(0,6)$	$(0,3)$	$(0,7)$
0	$(4,4)$	0	$(4,5)$	0	$(4,6)$	$(4,3)$	$(4,7)$
0	$(1,4)$	1	$(1,5)$	$(1,2)$	$(1,6)$	$(1,3)$	$(1,7)$
0	$(5,4)$	0	$(5,5)$	0	$(5,6)$	$(5,3)$	$(5,7)$
0	$(2,4)$	0	$(2,5)$	1	$(2,6)$	$(2,3)$	$(2,7)$
0	$(6,4)$	0	$(6,5)$	0	$(6,6)$	$(6,3)$	$(6,7)$
0	$(3,4)$	0	$(3,5)$	0	$(3,6)$	$(3,3)$	$(3,7)$
0	$(7,4)$	0	$(7,5)$	0	$(7,6)$	$(7,3)$	$(7,7)$

(b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic 2-D mappings of an 8×8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to $k=3$.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

- The idling in the block mapping can be alleviated using a cyclic mapping.
- The maximum difference in computational load between any two processes in any iteration is that of one row and one column update.
- This contributes $\Theta(n \sqrt{p})$ to the overhead function. Since there are n iterations, the total overhead is $\Theta\left(n^{2} \sqrt{p}\right)$.

Gaussian Elimination with Partial Pivoting

- For numerical stability, one generally uses partial pivoting.
- In the k th iteration, we select a column i (called the pivot column) such that $A[k, i]$ is the largest in magnitude among all $A[k, j]$ such that $k \leq j<n$.
- The k th and the i th columns are interchanged.
- Simple to implement with row-partitioning and does not add overhead since the division step takes the same time as computing the max.
- Column-partitioning, however, requires a global reduction, adding a $\log p$ term to the overhead.
- Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D Partitioning

- Partial pivoting restricts use of pipelining, resulting in performance loss.
- This loss can be alleviated by restricting pivoting to specific columns.
- Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

- The upper triangular matrix U undergoes back-substitution to determine the vector x.

1. procedure BACK_SUBSTITUTION (U, x, y)
2. begin
3.
4.
5.
6.
7.
8.
9.

for $k:=n-1$ downto 0 do /* Main loop */ begin
$x[k]:=y[k] ;$
for $i:=k-1$ downto 0 do
$y[i]:=y[i]-x[k] \times U[i, k] ;$
endfor;
end BACK_SUBSTITUTION

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

- The algorithm performs approximately $n^{2} / 2$ multiplications and subtractions.
- Since complexity of this part is asymptotically lower, we should optimize the data distribution for the factorization part.
- Consider a rowwise block 1-D mapping of the $n \times n$ matrix U with vector y distributed uniformly.
- The value of the variable solved at a step can be pipelined back.
- Each step of a pipelined implementation requires a constant amount of time for communication and $\Theta(n / p)$ time for computation.
- The parallel run time of the entire algorithm is $\Theta\left(n^{2} / p\right)$.

Solving a Triangular System: Back-Substitution

- If the matrix is partitioned by using 2-D partitioning on a $\sqrt{p} \times$ \sqrt{p} logical mesh of processes, and the elements of the vector are distributed along one of the columns of the process mesh, then only the \sqrt{p} processes containing the vector perform any computation.
- Using pipelining to communicate the appropriate elements of U to the process containing the corresponding elements of y for the substitution step (line 7), the algorithm can be executed in $\Theta\left(n^{2} / \sqrt{p}\right)$ time.
- While this is not cost optimal, since this does not dominante the overall computation, the cost optimality is determined by the factorization.

