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Topic Overview

• Matrix-Vector Multiplication

• Matrix-Matrix Multiplication

• Solving a System of Linear Equations
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Matix Algorithms: Introduction

• Due to their regular structure, parallel computations involving
matrices and vectors readily lend themselves to data-
decomposition.

• Typical algorithms rely on input, output, or intermediate data
decomposition.

• Most algorithms use one- and two-dimensional block, cyclic,
and block-cyclic partitionings.
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Matrix-Vector Multiplication

• We aim to multiply a dense n × n matrix A with an n × 1 vector
x to yield the n × 1 result vector y.

• The serial algorithm requires n2 multiplications and additions.

W = n2. (1)
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Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• The n × n matrix is partitioned among n processors, with each
processor storing complete row of the matrix.

• The n × 1 vector x is distributed such that each process owns
one of its elements.
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Matrix-Vector Multiplication: Rowwise 1-D Partitioning
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Multiplication of an n × n matrix with an n × 1 vector using
rowwise block 1-D partitioning. For the one-row-per-process

case, p = n.
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Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• Since each process starts with only one element of x, an all-to-
all broadcast is required to distribute all the elements to all the
processes.

• Process Pi now computes y[i] = Σn−1
j=0 (A[i, j] × x[j]).

• The all-to-all broadcast and the computation of y[i] both take
time Θ(n). Therefore, the parallel time is Θ(n).
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Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• Consider now the case when p < n and we use block 1D
partitioning.

• Each process initially stores n/p complete rows of the matrix and
a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes and
involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure is

TP =
n2

p
+ ts log p + twn. (2)

This is cost-optimal.
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Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

• We know that To = pTP − W , therefore, we have,

To = tsp log p + twnp. (3)

• For isoefficiency, we have W = KTo, where K = E/(1 − E) for
desired efficiency E.

• From this, we have W = O(p2) (from the tw term).

• There is also a bound on isoefficiency because of concurrency.
In this case, p < n, therefore, W = n2 = Ω(p2).

• Overall isoefficiency is W = O(p2).
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Matrix-Vector Multiplication: 2-D Partitioning

• The n × n matrix is partitioned among n2 processors such that
each processor owns a single element.

• The n × 1 vector x is distributed only in the last column of n
processors.
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Matrix-Vector Multiplication: 2-D Partitioning
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Matrix-Vector Multiplication: 2-D Partitioning

• We must first aling the vector with the matrix appropriately.

• The first communication step for the 2-D partitioning aligns the
vector x along the principal diagonal of the matrix.

• The second step copies the vector elements from each
diagonal process to all the processes in the corresponding
column using n simultaneous broadcasts among all processors
in the column.

• Finally, the result vector is computed by performing an all-to-
one reduction along the columns.
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Matrix-Vector Multiplication: 2-D Partitioning

• Three basic communication operations are used in this
algorithm: one-to-one communication to align the vector
along the main diagonal, one-to-all broadcast of each vector
element among the n processes of each column, and all-to-
one reduction in each row.

• Each of these operations takes Θ(log n) time and the parallel
time is Θ(log n).

• The cost (process-time product) is Θ(n2 log n); hence, the
algorithm is not cost-optimal.
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Matrix-Vector Multiplication: 2-D Partitioning

• When using fewer than n2 processors, each process owns an
(n/

√
p) × (n/

√
p) block of the matrix.

• The vector is distributed in portions of n/
√

p elements in the last
process-column only.

• In this case, the message sizes for the alignment, broadcast,
and reduction are all (n/

√
p).

• The computation is a product of an (n/
√

p) × (n/
√

p) submatrix
with a vector of length (n/

√
p).
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Matrix-Vector Multiplication: 2-D Partitioning

• The first alignment step takes time ts + twn/
√

p.

• The broadcast and reductions take time (ts + twn/
√

p) log(
√

p).

• Local matrix-vector products take time tcn
2/p.

• Total time is

TP ≈
n2

p
+ ts log p + tw

n
√

p
log p (4)
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Matrix-Vector Multiplication: 2-D Partitioning

Scalability Analysis:

• To = pTp − W = tsp log p + twn
√

p log p.

• Equating To with W , term by term, for isoefficiency, we have,
W = K2t2wp log2 p as the dominant term.

• The isoefficiency due to concurrency is O(p).

• The overall isoefficiency is O(p log2 p) (due to the network
bandwidth).

• For cost optimality, we have, W = n2 = p log2 p. For this, we
have, p = O

(

n2

log2 n

)

.
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Matrix-Matrix Multiplication

• Consider the problem of multiplying two n × n dense, square
matrices A and B to yield the product matrix C = A × B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms (Strassen’s
method), although, these can be used as serial kernels in the
parallel algorithms.

• A useful concept in this case is called block operations. In this
view, an n × n matrix A can be regarded as a q × q array of
blocks Ai,j (0 ≤ i, j < q) such that each block is an (n/q) × (n/q)
submatrix.

• In this view, we perform q3 matrix multiplications, each involving
(n/q) × (n/q) matrices.
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Matrix-Matrix Multiplication

• Consider two n × n matrices A and B partitioned into p blocks
Ai,j and Bi,j (0 ≤ i, j <

√
p) of size (n/

√
p) × (n/

√
p) each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block Ci,j

of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k and Bk,j

for 0 ≤ k <
√

p.

• All-to-all broadcast blocks of A along rows and B along
columns.

• Perform local submatrix multiplication.
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Matrix-Matrix Multiplication

• The two broadcasts take time 2(ts log(
√

p) + tw(n2/p)(
√

p − 1)).

• The computation requires
√

p multiplications of (n/
√

p)× (n/
√

p)
sized submatrices.

• The parallel run time is approximately

TP =
n3

p
+ ts log p + 2tw

n2

√
p
. (5)

• The algorithm is cost optimal and the isoefficiency is O(p1.5) due
to bandwidth term tw and concurrency.

• Major drawback of the algorithm is that it is not memory
optimal.
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Matrix-Matrix Multiplication: Cannon’s Algorithm

• In this algorithm, we schedule the computations of the
√

p
processes of the ith row such that, at any given time, each
process is using a different block Ai,k.

• These blocks can be systematically rotated among the
processes after every submatrix multiplication so that every
process gets a fresh Ai,k after each rotation.
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Matrix-Matrix Multiplication: Cannon’s Algorithm

(a)  Initial alignment of A

(e)  Submatrix locations after second shift

(d)  Submatrix locations after first shift

(f)  Submatrix locations after third shift

(b)  Initial alignment of B

(c)  A and B after initial alignment
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communication steps in Cannon’s algorithm on 16 processes.
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Matrix-Matrix Multiplication: Cannon’s Algorithm

• Align the blocks of A and B in such a way that each process
multiplies its local submatrices. This is done by shifting all
submatrices Ai,j to the left (with wraparound) by i steps and
all submatrices Bi,j up (with wraparound) by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

• Perform next block multiplication, add to partial result, repeat
until all

√
p blocks have been multiplied.
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Matrix-Matrix Multiplication: Cannon’s Algorithm

• In the alignment step, since the maximum distance over which
a block shifts is

√
p− 1, the two shift operations require a total of

2(ts + twn2/p) time.

• Each of the
√

p single-step shifts in the compute-and-shift phase
of the algorithm takes ts + twn2/p time.

• The computation time for multiplying
√

p matrices of size
(n/

√
p) × (n/

√
p) is n3/p.

• The parallel time is approximately:

TP =
n3

p
+ 2

√
pts + 2tw

n2

√
p
. (6)

• The cost-efficiency and isoefficiency of the algorithm are
identical to the first algorithm, except, this is memory optimal.
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Matrix-Matrix Multiplication: DNS Algorithm

• Uses a 3-D partitioning.

• Visualize the matrix multiplication algorithm as a cube –
matrices A and B come in two orthogonal faces and result C
comes out the other orthogonal face.

• Each internal node in the cube represents a single add-multiply
operation (and thus the complexity).

• DNS algorithm partitions this cube using a 3-D block scheme.
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Matrix-Matrix Multiplication: DNS Algorithm

• Assume an n × n × n mesh of processors.

• Move the columns of A and rows of B and perform broadcast.

• Each processor computes a single add-multiply.

• This is followed by an accumulation along the C dimension.

• Since each add-multiply takes constant time and accumulation
and broadcast takes log n time, the total runtime is log n.

• This is not cost optimal. It can be made cost optimal by using
n/ log n processors along the direction of accumulation.
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Matrix-Matrix Multiplication: DNS Algorithm
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matrices A and B on 64 processes.
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Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n3 processors.

• Assume that the number of processes p is equal to q3 for some
q < n.

• The two matrices are partitioned into blocks of size (n/q)×(n/q).
Each matrix can thus be regarded as a q × q two-dimensional
square array of blocks.

• The algorithm follows from the previous one, except, in this
case, we operate on blocks rather than on individual elements.
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Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n3 processors.

• The first one-to-one communication step is performed for both
A and B, and takes ts + tw(n/q)2 time for each matrix.

• The two one-to-all broadcasts take 2(ts log q+tw(n/q)2 log q) time
for each matrix.

• The reduction takes time ts log q + tw(n/q)2 log q.

• Multiplication of (n/q) × (n/q) submatrices takes (n/q)3 time.

• The parallel time is approximated by:

TP =
n3

p
+ ts log p + tw

n2

p2/3
log p. (7)

The isoefficiency function is Θ(p(log p)3).
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Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1 = b0,
a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 = b1,

... ... ... ...
an−1,0x0 + an−1,1x1 + · · · + an−1,n−1xn−1 = bn−1.

This is written as Ax = b, where A is an n × n matrix with
A[i, j] = ai,j, b is an n × 1 vector [b0, b1, . . . , bn−1]

T , and x is the
solution.
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Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and
back-substitution. The triangular form is as:

x0 + u0,1x1 + u0,2x2 + · · · + u0,n−1xn−1 = y0,
x1 + u1,2x2 + · · · + u1,n−1xn−1 = y1,

... ...
xn−1 = yn−1.

We write this as: Ux = y.

A commonly used method for transforming a given matrix into
an upper-triangular matrix is Gaussian Elimination.
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Gaussian Elimimation

1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n − 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n − 1 do
6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n − 1 do
10. begin
11. for j := k + 1 to n − 1 do
12. A[i, j] := A[i, j] − A[i, k] × A[k, j]; /* Elimination step */
13. b[i] := b[i] − A[i, k] × y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN ELIMINATION

Serial Gaussian Elimination
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Gaussian Elimination

• The computation has three nested loops – in the kth iteration of
the outer loop, the algorithm performs (n − k)2 computations.
Summing from k = 1..n, we have roughly (n3/3) multiplications-
subtractions.

A[i,j] := A[i,j] - A[i,k]     A[k,j]

Row  k

Row  i

(k,k) (k,j)

Inactive part

Active part

A[k,j] := A[k,j]/A[k,k]

x(i,k) (i,j)

C
ol

um
n 

 k

C
ol

um
n 

 j

A typical computation in Gaussian elimination.
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Parallel Gaussian Elimination

• Assume p = n with each row assigned to a processor.

• The first step of the algorithm normalizes the row. This is a serial
operation and takes time (n − k) in the kth iteration.

• In the second step, the normalized row is broadcast to all the
processors. This takes time (ts + tw(n − k − 1)) log n.

• Each processor can independently eliminate this row from its
own. This requires (n − k − 1) multiplications and subtractions.

• The total parallel time can be computed by summing from k =
1..n − 1 as

TP =
3

2
n(n − 1) + tsn log n +

1

2
twn(n − 1) log n. (8)

• The formulation is not cost optimal because of the tw term.
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Parallel Gaussian Elimination
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(c)  Computation:

(a)  Computation:

(i)  A[k,j] := A[k,j]/A[k,k]  for  k < j < n

One-to-all brodcast of row A[k,*]

(ii)  A[i,k] := 0  for  k < i < n

for  k < i < n  and  k < j < n

(ii)  A[k,k] := 1

x(i)  A[i,j] := A[i,j] - A[i,k]    A[k,j] 

Gaussian elimination steps during the iteration corresponding to
k = 3 for an 8 × 8 matrix partitioned rowwise among eight

processes.
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Parallel Gaussian Elimination: Pipelined Execution

• In the previous formulation, the (k+1)st iteration starts only after
all the computation and communication for the kth iteration is
complete.

• In the pipelined version, there are three steps – normalization
of a row, communication, and elimination. These steps are
performed in an asynchronous fashion.

• A processor Pk waits to receive and eliminate all rows prior to k.
Once it has done this, it forwards its own row to processor Pk+1.
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Parallel Gaussian Elimination: Pipelined Execution
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Pipelined Gaussian elimination on a 5 × 5 matrix partitioned with
one row per process.
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Parallel Gaussian Elimination: Pipelined Execution

• The total number of steps in the entire pipelined procedure is
Θ(n).

• In any step, either O(n) elements are communicated between
directly-connected processes, or a division step is performed
on O(n) elements of a row, or an elimination step is performed
on O(n) elements of a row.

• The parallel time is therefore O(n2).

• This is cost optimal.
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Parallel Gaussian Elimination: Pipelined Execution
P0
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  0

  0

  0

  0

  0

  0

  0

  0

  0

  0
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(3,5)

P

P

P1

2

3

The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 × 8 matrix distributed among four

processes using block 1-D partitioning.
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Parallel Gaussian Elimination: Block 1D with p < n

• The above algorithm can be easily adapted to the case when
p < n.

• In the kth iteration, a processor with all rows belonging to the
active part of the matrix performs (n − k − 1)n/p multiplications
and subtractions.

• In the pipelined version, for n > p, computation dominates
communication.

• The parallel time is given by: 2(n/p)Σn−1
k=0(n − k − 1), or

approximately, n3/p.

• While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run time by a factor of
3/2.
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Parallel Gaussian Elimination: Block 1D with p < n

(b)  Cyclic 1-D mapping(a)  Block 1-D mapping
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Computation load on different processes in block and cyclic 1-D
partitioning of an 8 × 8 matrix on four processes during the

Gaussian elimination iteration corresponding to k = 3.
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Parallel Gaussian Elimination: Cyclic 1D Mapping

• The load imbalance problem can be alleviated by using a
cyclic mapping.

• In this case, other than processing of the last p rows, there is no
load imbalance.

• This corresponds to a cumulative load imbalance overhead of
O(n2p) (instead of O(n3) in the previous case).

– Typeset by FoilTEX – 40



Parallel Gaussian Elimination: 2-D Mapping

• Assume an n × n matrix A mapped onto an n × n mesh of
processors.

• Each update of the partial matrix can be thought of as a
scaled rank-one update (scaling by the pivot element).

• In the first step, the pivot is broadcast to the row of processors.

• In the second step, each processor locally updates its value.
For this it needs the corresponding value from the pivot row,
and the scaling value from its own row.

• This requires two broadcasts, each of which takes log n time.

• This results in a non-cost-optimal algorithm.
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Parallel Gaussian Elimination: 2-D Mapping

(d)  A[i,j] := A[i,j]-A[i,k]     A[k,j]

(a)  Rowwise broadcast of A[i,k] (b)  A[k,j] := A[k,j]/A[k,k]

(c)  Columnwise broadcast of A[k,j]
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Various steps in the Gaussian elimination iteration corresponding
to k = 3 for an 8 × 8 matrix on 64 processes arranged in a logical

two-dimensional mesh.
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Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

• We pipeline along two dimensions. First, the pivot value is
pipelined along the row. Then the scaled pivot row is pipelined
down.

• Processor Pi,j (not on the pivot row) performs the elimination
step A[i, j] := A[i, j]−A[i, k]×A[k, j] as soon as A[i, k] and A[k, j]
are available.

• The computation and communication for each iteration moves
through the mesh from top-left to bottom-right as a “front.”

• After the front corresponding to a certain iteration passes
through a process, the process is free to perform subsequent
iterations.

• Multiple fronts that correspond to different iterations are active
simultaneously.
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Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

• If each step (division, elimination, or communication) is
assumed to take constant time, the front moves a single step in
this time. The front takes Θ(n) time to reach Pn−1,n−1.

• Once the front has progressed past a diagonal processor, the
next front can be initiated. In this way, the last front passes the
bottom-right corner of the matrix Θ(n) steps after the first one.

• The parallel time is therefore O(n), which is cost-optimal.
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2-D Mapping with Pipelining
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(g) Iteration k = 1 starts(e)

(d)(c)(b)

(h)

(m) Iteration k = 2 starts

(l)(k) (j)

(o)

(f)

Communication for k = 1

Communication for k = 0

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2) (1,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

  1

  0

  1

  0

  0   0

  0

  1   1

  0

  0

  0

(0,4)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

  1(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(0,0)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

  1   1

  0

(2,0)

(3,0) (3,0)

(4,0) (4,0)

  1

(0,4)

(1,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)(3,2)

(4,2)

(0,4)

(1,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)

(3,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)

(3,2)

(4,1) (4,2)

  1   1

  0

  1   1

  0  0

  0

  0

  0

  0

  0

  1

  0

  0

  0

  0

  1

  0

  1

  0

  0

  0

  0

  1

  0

  0

(4,4)

(0,1)

(0,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)

(3,3)

(2,2)

(4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)

(3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(2,3)

(4,3)

(3,3)(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

  1   1

  0

  1   1

  0  0

  0

  0

  0

  0

  0

  1

  0

  0

  0

  0

  1

  0

  1

  0

  0

  0

  0

  1

  0

  0

(0,3)

(2,3)

(4,0) (4,4)

(3,1)

(4,1)

(3,4)

  0

  0   0

  0

  1   1   1

  0  0

  0   0

Communication for k = 2

Computation for k = 0

Computation for k = 1

Computation for k = 2

  0

(2,2)

(1,3)

(3,2)

(2,3)

(1,4)

(1,2)

(4,2)

(3,3)

(2,3) (2,4)

(4,3)

(3,3)

(2,4)

(0,2)

Pipelined Gaussian elimination for a 5 × 5 matrix with 25 processors.

– Typeset by FoilTEX – 45



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

• In this case, a processor containing a completely active part of
the matrix performs n2/p multiplications and subtractions, and
communicates n/

√
p words along its row and its column.

• The computation dominantes communication for n >> p.

• The total parallel run time of this algorithm is (2n2/p) × n, since
there are n iterations. This is equal to 2n3/p.

• This is three times the serial operation count!
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Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

(a)  Rowwise broadcast of A[i,k] (b)  Columnwise broadcast of A[k,j]
for i = k to (n - 1)
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The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 × 8 matrix on 16 processes of a

two-dimensional mesh.
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Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

(a)  Block-checkerboard mapping (b)  Cyclic-checkerboard mapping

  0

  0

  0

  0

(0,7)

  0

(3,7)

(7,7)

(2,7)

(5,7)

(1,7)

(4,7)

(0,1)

  0

(6,7)  0

  0

  0

  1

  0

(0,2)

  0

  0

  0

  1

  0

(1,2)

  0

(0,3)

  0

  0 (2,3)

(5,3)

(1,3)

(4,3)

(3,3)

(7,3)(7,4)

(3,4)

(6,4)

(2,4)

(5,4)

(1,4)

(4,4)

(0,5)

(7,5)

(3,5)

(6,5)

(2,5)

(5,5)

(1,5)

(4,5)

(0,6)

(7,6)

(3,6)

(6,6)

(2,6)

(5,6)

(1,6)

(4,6)

(6,3)

(7,3)

(3,3)(6,3)

(5,3)

(4,3)

(2,3)

(1,3)  1

(0,4)(0,3) (0,4) (0,5) (0,6) (0,7)  1

  0

(1,4) (1,5) (1,6) (1,7)

(2,4) (2,5) (2,6) (2,7)

(4,4) (4,5) (4,6) (4,7)

(5,4) (5,5) (5,6) (5,7)

(6,4) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7)

  0

  0

  0

  0

  0

  0

  1(0,2)

  0

  0

  0

  0

  1

(1,2)

  0

  0

  0

  0

  0

  0

  0

  0

(0,1)

Computational load on different processes in block and cyclic
2-D mappings of an 8 × 8 matrix onto 16 processes during the

Gaussian elimination iteration corresponding to k = 3.
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Parallel Gaussian Elimination: 2-D Cyclic Mapping

• The idling in the block mapping can be alleviated using a
cyclic mapping.

• The maximum difference in computational load between any
two processes in any iteration is that of one row and one
column update.

• This contributes Θ(n
√

p) to the overhead function. Since there
are n iterations, the total overhead is Θ(n2√p).
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Gaussian Elimination with Partial Pivoting

• For numerical stability, one generally uses partial pivoting.

• In the kth iteration, we select a column i (called the pivot
column) such that A[k, i] is the largest in magnitude among all
A[k, j] such that k ≤ j < n.

• The kth and the ith columns are interchanged.

• Simple to implement with row-partitioning and does not add
overhead since the division step takes the same time as
computing the max.

• Column-partitioning, however, requires a global reduction,
adding a log p term to the overhead.

• Pivoting precludes the use of pipelining.
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Gaussian Elimination with Partial Pivoting: 2-D
Partitioning

• Partial pivoting restricts use of pipelining, resulting in performance
loss.

• This loss can be alleviated by restricting pivoting to specific
columns.

• Alternately, we can use faster algorithms for broadcast.
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Solving a Triangular System: Back-Substitution

• The upper triangular matrix U undergoes back-substitution to
determine the vector x.

1. procedure BACK SUBSTITUTION (U , x, y)
2. begin
3. for k := n − 1 downto 0 do /* Main loop */
4. begin
5. x[k] := y[k];
6. for i := k − 1 downto 0 do
7. y[i] := y[i] − x[k] × U [i, k];
8. endfor;
9. end BACK SUBSTITUTION

A serial algorithm for back-substitution.
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Solving a Triangular System: Back-Substitution

• The algorithm performs approximately n2/2 multiplications and
subtractions.

• Since complexity of this part is asymptotically lower, we should
optimize the data distribution for the factorization part.

• Consider a rowwise block 1-D mapping of the n × n matrix U
with vector y distributed uniformly.

• The value of the variable solved at a step can be pipelined
back.

• Each step of a pipelined implementation requires a constant
amount of time for communication and Θ(n/p) time for
computation.

• The parallel run time of the entire algorithm is Θ(n2/p).

– Typeset by FoilTEX – 53



Solving a Triangular System: Back-Substitution

• If the matrix is partitioned by using 2-D partitioning on a
√

p ×√
p logical mesh of processes, and the elements of the vector

are distributed along one of the columns of the process mesh,
then only the

√
p processes containing the vector perform any

computation.

• Using pipelining to communicate the appropriate elements of
U to the process containing the corresponding elements of y
for the substitution step (line 7), the algorithm can be executed
in Θ(n2/

√
p) time.

• While this is not cost optimal, since this does not dominante the
overall computation, the cost optimality is determined by the
factorization.
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