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Topic Overview

e Malftrix-Vector Multiplication
e Matrix-Matrix Mulfiplication

e Solving a System of Linear Equations



Matix Algorithms: Intfroduction

e Due to their regular structure, parallel computations involving
matrices and vectors readily lend fthemselves fto data-
decomposition.

e Typical algorithms rely on inpuf, output, or infermediate dafa
decomposition.

e Most algorithms use one- and two-dimensional block, cyclic,
and block-cyclic partitionings.



Matrix-Vector Multiplication

e We aim to multiply a dense n x n matrix A with an n x 1 vector
x To yield the n x 1 result vector y.

e The serial algorithm requires n? multiplications and additions.

W = n? (D



Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e The n x n matrix is partitioned among n processors, with each
processor storing complete row of the maitrix.

e The n x 1 vector x is distributed such that each process owns
one of its elements.



Matrix-Vector Multiplication: Rowwise 1-D Partitioning
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Multiplication of an n x n matrix with an n x 1 vector using
rowwise block 1-D parfitioning. For the one-row-per-process
case, p = n.



Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e Since each process starts with only one element of x, an all-to-
all broadcast is required to distribute all the elements to all the

Processes.

e Process P; now computes yi] = X725 (Afi, j] % z[j]).

e The all-to-all broadcast and the computation of y[:] both take
time O(n). Therefore, the parallel fime is O(n).



Matrix-Vector Multiplication: Rowwise 1-D Partitioning

e Consider now the case when p < n and we use block 1D
parfitfioning.

e Each processinitially stores n/p complete rows of the matrix and
a portion of the vector of size n/p.

e The all-fo-all broadcast takes place among p processes and
involves messages of size n/p.

e This is followed by n/p local dot products.

e Thus, the parallel run time of this procedure is

2
Tp = n +tslogp + tyn. (2)
p

This is cost-optimal.



Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

e We know that T, = pTp — W, therefore, we have,

T, = tsplogp + ty,np. (3)

e For isoefficiency, we have W = KT,, where K = E/(1 — E) for
desired efficiency FE.

e From this, we have W = O(p?) (from the t,, term).

e There is also a bound on isoefficiency because of concurrency.
In this case, p < n, therefore, W = n? = Q(p?).

e Overallisoefficiency is W = O(p?).



Matrix-Vector Multiplication: 2-D Partitioning

e The n x n matrix is partitioned among n? processors such that
each processor owns a single element.

e The n x 1 vector z Is distributed only in the last column of n
Processors.



Matrix-Vector Multiplication: 2-D Partitioning
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(c) All-to-one reduction of partial results (d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix size is n x n.



Matrix-Vector Multiplication: 2-D Partitioning

We must first aling the vector with the matrix appropriately.

The first communication step for the 2-D partitioning aligns the
vector z along the principal diagonal of the matrix.

The second step copies the vector elements from each
diagonal process o all the processes in the corresponding
column using n simultaneous broadcasts among all processors
in the column.,

Finally, tThe result vector is computed by performing an all-to-
one reduction along the columns.



Matrix-Vector Multiplication: 2-D Partitioning

e Three basic communicatfion operations are used in this
algorithm: one-to-one communication to align the vector
along the main diagonal, one-fo-all broadcast of each vector
element among the n processes of each column, and all-fo-
one reduction in each row.

e Each of these operafions takes O(logn) time and the parallel
time is ©(logn).

e The cost (process-time product) is ©(n?*logn); hence, the
algorithm is not cost-optimal.



Matrix-Vector Multiplication: 2-D Partitioning

e When using fewer than n? processors, each process owns an
(n/\/p) x (n/,/p) ODlock of the matrix.

e The vector is distriouted in portions of n/,/p elements in the last
process-column only.

e In this case, the message sizes for the alignment, broadcast,
and reduction are all (n/,/p).

e The computation is a product of an (n/,/p) x (n//p) submatrix
with a vector of length (n/,/p).



Matrix-Vector Multiplication: 2-D Partitioning

e The first alignment step takes time t, + t,n/\/p.
e The broadcast and reductions take time (ts + t.,n//p) log(y/D).
e Local matrix-vector products take time t.n?/p.

e JOtTal fime is

n? n
Tp ~ — +tslogp+t,—logp 4
p VP



Matrix-Vector Multiplication: 2-D Partitioning

Scalability Analysis:

o I, =pI,— W =ts,plogp+ t,n,/plogp.

e EQuating T, with W, term by term, for isoefficiency, we have,
W = K?t2 plog® p as the dominant term.

e The isoefficiency due to concurrency is O(p).

e The overall isoefficiency is O(plog®p) (due to the network
bandwidth).

e For cost optimality, we have, W = n2 = plog®p. For this, we
have,p:()( ”j )

log




Matrix-Matrix Multiplication

e Consider the problem of multiplying two n x n dense, square
matrices A and B 1o yield the product matrix C = A x B.

e The serial complexity is O(n?).

e We do not consider better serial algorithms (Strassen’s
method), although, these can be used as serial kernels in the
parallel algorithms.

e A useful concept in this case is called block operations. In this
view, dn n x n MAfrix A can be regarded as a ¢ x ¢ aArray of
blocks A4, ; (0 < 1,5 < ¢ such that each block is an (n/q) x (n/q)
submatrix.

e In this view, we perform ¢® matrix multiplications, each involving
(n/q) x (n/q) Mmatrices.



Matrix-Matrix Multiplication

e Consider two n x n matrices A and B parfitioned intfo p blocks
A;;and B; ; (0 <4,5 < /p) of size (n//p) x (n//p) €aCh.

e Process P; ; initially stores A; ; and B; ; and computes block C; ;
of the result matrix.

e Compufing submafrix C; ; requires all submaftrices A; , and By, ;
foro <k <./p.

e All-fo-all broadcast blocks of A along rows and B along
columns.

e Perform local submatrix multiplication.



Matrix-Matrix Multiplication

e The two broadcasts take time 2(t,1og(/p) + tw(n?/p)(/p — 1)).

e The computation requires ,/p multiplications of (n/,/p) x (n/\/p)
sized submaftrices.

e The parallel run fime is approximately

n3 n2
Tp = — + tslog p + 2ty—. (5)
p VP

e The algorithm is cost optimal and the isoefficiency is O(p'-°) due
tfo bandwidth term ¢,, and concurrency.

e Mqgjor drawback of the algorithm is that it is not memory
optimal.



Matrix-Matrix Multiplication: Cannon’s Algorithm

e In this algorithm, we schedule the computatfions of the ,/p
processes of the ith row such that, at any given time, each
process is using a different block A; .

e These blocks can be systematfically rotated among the
processes affer every submaftrix mulfiplication so that every
process gefts a fresh A, , after each rotation.



Matrix-Matrix Multiplication: Cannon’s Algorithm

(a) Initial alignment of A
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(e) Submatrix locations after second shift (f) Submatrix locations after third shift

communication steps in Cannon’s algorithm on 16 processes.



Matrix-Matrix Multiplication: Cannon’s Algorithm

Align the blocks of A and B in such a way that each process
multiplies its local submatrices. This is done by shifting Aall
submatrices A; ; to the left (with wraparound) by i steps and
all submatrices B; ; up (with wraparound) by j steps.

Perform local block mulfiplication.

Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

Perform next block multiplication, add to parfial result, repeat
until all ,/p blocks have been multiplied.



Matrix-Matrix Multiplication: Cannon’s Algorithm

e INn the alignment step, since the maximum distance over which
a block shiffs is ,/p — 1, the two shiff operations require a fotal of
2(ts + t,n?/p) time.

e Each of the ,/p single-step shifts in the compute-and-shift phase
of the algorithm ftakes ¢, + t,,n*/p time.

e The computation fime for mulfiplying /p matrices of size

(n//p) x (n/\/p) is n°/p.

e The parallel fime is approximately:

n3 n2
Tp = — + 2/pts + 2t,,——. (6)
p VP VP

e The cost-efficiency and isoefficiency of the algorithm are
identical o the first algorithm, except, this is memory opfimal.



Matrix-Matrix Multiplication: DNS Algorithm

Uses a 3-D partitioning.

Visudlize the maftrix multiplication algorithm as a cube -
matrices A and B come in two orthogonal faces and result C
comes out the other ortfhogonal face.

Each internal node in the cube represents a single add-multiply
operation (and thus the complexity).

DNS algorithm partitions this cubbe using a 3-D block scheme.



Matrix-Matrix Multiplication: DNS Algorithm

e Assume an n x n x n Mesh of processors.

e Move the columns of A and rows of B and perform lbbroadcast.
e Each processor computes a single add-mulfiply.

e This is followed by an accumulation along the C' dimension.

e Since each add-multiply tfakes constant fime and accumulation
and broadcast takes logn time, the total runtfime is log n.

e This is not cost optimal. It can be made cost optimal by using
n/logn processors along the direction of accumulation.



Matrix-Matrix Multiplication: DNS Algorithm
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The communication steps in the DNS algorithm while multiplying 4 x 4
matrices A and B on 64 processes.



Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n? processors.

e Assume that the number of processes p is equal to ¢? for some
q <n.

e The two matrices are parfitioned into blocks of size (n/q) x (n/q).
Each matrix can thus be regarded as a ¢ x ¢ Two-dimensiondl
square array of blocks.

e The algorithm follows from the previous one, except, in this
case, we operate on blocks rather than on individual elements.



Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n? processors.

e The first one-to-one communication step is performed for both
A and B, and takes t, + t,,(n/q)? time for each matrix.

e The two one-to-all broadcasts take 2(t, log g+t.,(n/q)? log q) time
for each matrix.

e The reduction takes time t,log g + t.,(n/q)*logq.
e Multiplication of (n/q) x (n/q) submatrices takes (n/q)° tfime.

e The parallel fime is approximated by:

n’ n?
Tp=— +t, 10gp+tw2—/310gp. (/)
p p

The isoefficiency function is ©(p(log p)?).



Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

aporo t+ apiri + -+ agn—1Tp—1 = bo.
1,070 + a1171 + -+ a1 p_1Tp-1 = b1,
Ap—1,0C0 + Qp-11T1 + - + Qp_1n-1Tp—1= bp_1.

This is written as Ax = b, where A is an n x n matrix with
Ali, j] = a; 5, bis an n x 1 vector [bg, b1, ...,b,_1]7. and z is the
solution.



Solving a System of Linear Equations

Two steps in solufion are: reduction to friangular form, and
back-substitution. The friangular form is as:

To + up1T1+ up2xr2t+ - + Uon-1Tn-1 = Yo.
r1 + uUrxrot+ .- T Ul p-1Tn-1 = Y1,
Ln—1 = Yn—1-

We write this as: Uz = y.

A commonly used method for fransforming a given matrix into
an upper-triangular matrix is Gaussian Elimination.
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Gaussian Elimimation

procedure GAUSSIAN_ELIMINATION (A, b, y)
begin
fork:=0ton — 1do /* Outer loop */
begin
forj:=k+1ton —1do
Alk, j] := Alk, j]/A[k, k]; /™ Division step */
ylk] := blk]/Alk, k],

Alk, k] := 1,
for: .= k+1ton —1do
begin

forj:=k+1ton —1do
Ali, j] := Ali, j] — Ali, k] x Alk, 7]; /* Elimination step */
b[i] := b[i] — A[s, k] X y[k]:

Ali, k] := 0;
endfor; /¥ Line 9 */
endfor; /¥ Line 3 */

end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination



Gaussian Elimination

e The computation has three nested loops - in the kth iteration of
the outer loop, the algorithm performs (n — k)? computations.
Summing from k& = 1..n, we have roughly (n?/3) multiplications-

subtractions.

o =
El 1§1
Inactive part =t el
O o4
T Row kTR ) | = ALk,j] := ALk, /A[KK]
Active part -+ >
CRow il |G [ Alif] = Alij] - AlLK] X Alkj]

A typical computation in Gaussian elimination.



Parallel Gaussian Elimination

e Assume p = n with each row assigned to a processor.

e The first step of the algorithm normalizes the row. This is a serial
operation and takes fime (n — k) in the kth iteration.

e In the second step, the normalized row is broadcast to all the
processors. This takes time (t; + t,(n — k — 1)) logn.

e Fach processor can independently eliminate this row from ifs
own. This requires (n — k — 1) mulfiplications and subtractions.

e The total parallel time can be computed by summing from k£ =
l.n—1as

3 1
Tp = in(n — 1)+ tsnlogn + itwn(n — 1) logn. (8)

e The formulafion is not cost optimal because of the t,, term.



Parallel Gaussian Elimination
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(a) Computation:
(i) Alk,jl := Alkjl/AlkK] for k<j<n
(1) Alkk]:=1

(b) Communication:

One-to-all brodcast of row A[k,*]

(¢) Computation:

) AlLj] = AlL,j] - Alik] x Afk,j]
for k<i<n and k<j<n

(ii) Ali,k]:=0 for k<i<n

Gaussian elimination steps during the iteration corresponding to
k =3 for an 8 x 8 matrix partitioned rowwise among eight
processes.



Parallel Gaussian Elimination: Pipelined Execution

e In the previous formulation, the (k+ 1)st iteratfion starts only after
all the computation and communication for the kth iteration is

complete.

e In the pipelined version, there are three steps — normalization
of a row, communication, and elimination. These steps are
performed in an asynchronous fashion.

e A processor P, waits fo receive and eliminate all rows prior to k.
Once it has done this, it forwards its own row to processor Py 1.



Parallel Gaussian
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Pipelined Gaussian elimination on a 5 x & matrix partitioned with

one row per process.




Parallel Gaussian Elimination: Pipelined Execution

e The toftal number of steps in the entire pipelined procedure is
O(n).

e In any step, either O(n) elements are communicated between
directly-connected processes, or a division step is performed
on O(n) elements of a row, or an elimination step is performed
on O(n) elements of a row.

e The parallel time is therefore O(n?).

e This is cost optimal.



Parallel Gaussian Elimination: Pipelined Execution
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The communication in the Gaussian elimination iteratfion
corresponding to k = 3 for an 8 x 8 matrix distributed among four
processes using block 1-D partitioning.



Parallel Gaussian Elimination: Block 1D with p < n

e The above algorithm can be easily adapted to the case when
p < n.

e In the kth iteration, a processor with all rows belonging to the
active part of the matrix performs (n — k — 1)n/p mulfiplicatfions
and subfractions.

e In the pipelined version, for n > p, computation dominates
communication.

e The parallel fime is given by: 2(n/p)Xi_;(n — k — 1), or
approximately, n3/p.

e While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run fime by a factor of
3/2.



Parallel Gaussian Elimination: Block 1D with p < n
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Computation load on different processes in block and cyclic 1-D
partitioning of an 8 x 8 matrix on four processes during the
Gaussian elimination iteration corresponding to k = 3.



Parallel Gaussian Elimination: Cyclic 1D Mapping

e The load imbalance problem can be dlleviated by using a
cyclic mapping.

e In this case, other than processing of the last p rows, there is no
load imbalance.

e This corresponds to a cumulafive load imbalance overhead of
O(n?p) (instead of O(n?) in the previous case).



Parallel Gaussian Elimination: 2-D Mapping

e Assume an n x n matrix A mapped onfo an n x n mesh of
Processors.

e Each update of the partial matrix can be thought of as a
scaled rank-one update (scaling by the pivot element).

e INn the first step, the pivot is broadcast to the row of processors.

e In the second step, each processor locally updates its value.
For this it needs the corresponding value from the pivot row,
and the scaling value from its own row.

e This requires two broadcasts, each of which takes log n time.

e This results in a non-cost-optimal algorithm.



Parallel Gaussian Elimination: 2-D Mapping
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(a) Rowwise broadcast of A[i,k] (b) Alk,j] := Alk,jI/A[kK]
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(c) Columnwise broadcast of A[k.j] (d) Ali,j] ==Alijl-Ali.k] X Alk,j]

fork<j<n fork<i<nandk<j<n

Various steps in the Gaussian elimination iteration corresponding
to k =3 for an 8 x 8 matrix on 64 processes arranged in a logical
two-dimensional mesh.



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

e We pipeline along two dimensions. First, the pivot value is
pipelined along the row. Then the scaled pivot row is pipelined
down.

e Processor P, ; (nof on the pivot row) performs the elimination
step Ali, j] := Ali, j| — Ali, k] x Alk, j] assoon as Ali, k] and Alk, j]
are available.

e The computation and communication for each iteration moves
through the mesh from fop-left to bottom-right as a “front.”

e After the front corresponding to a certain iteration passes
through a process, the process is free to perform subsequent
iterations.

e Multiple fronts that correspond o different iterations are active
simultaneously.



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

e If each step (division, elimination, or communication) s
assumed to take constant time, the front moves a single step in
this fime. The front takes ©(n) fime to reach P,,_1 ,,—1.

e Once the front has progressed past a diagonal processor, the
next front can be initiated. In this way, the last front passes the
bottom-right corner of the matrix ©(n) steps after the first one.

e The parallel fime is therefore O(n), which is cost-optimal.



2-D Mapping with Pipelining
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Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

e In this case, a processor containing a completely active part of
the matrix performs n?/p multiplications and subtractions, and
communicates n/,/p words along its row and its column.

e The computation dominantes communication for n >> p.

e The total parallel run time of this algorithm is (2n?/p) x n, since
there are n iterations. This is equal to 2n3 /p.

e This is three times the serial operation count!



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

n n/vp
1 (0,1) |(0,2) (0,3)(0,4) (0,5)[(0,6) (0,7) 1 (0,1)((0,2) (0,3)(0,4) (0,5)[(0,6) (0,7)
0 1 |(1,2) (1,3)(1.4) (1,5)((1,6) (1,7) 0 1 |(1,2) (1,3)|(1,4) (1,5)|(1,6) (1,7)
0 0 1 (2,3) |(2,4) (2,9)((2,6) (2,7) 0 0 1 (2,324 (2,9)(2,6) (2,7)
0 0 | 0,334 (3.5]3.6) (3.7) 0 0|0 1 34353637

% 0 0 0 E(Z_,_;’_): (424) (45) (AEG) 4,7) 0 0 |0 43 E4,_4;v;(4_1,5_) E4,_6;v5(4_1,7_) n

0 0 0 |(5,3): (5,4) (5,9)(5,6) (5.7), 0 0 |0 (53 (5,4)3 (5,5) (5,6)3 (5,7)
0 0 0 5(6,3): 7(2,4) (65) 7(2,6) (6,7) 0 0 |0 (63) (6,4)@(6,5) (6,6)@(6,7)
0 0 0 l(z,’:’_): (7,4) (7,5)|(7,6) (7,7), 0 0 |0 (7,3))74)(75)7.6) (7
(a) Rowwise broadcast of A[i,k] (b) Columnwise broadcast of A[k,j]

fori=kto(n-1) forj=(kk+1)to(n-1)

The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a
two-dimensional mesh.



Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n
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(a) Block-checkerboard mapping (b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic
2-D mappings of an 8 x 8 matrix onfto 16 processes during the
Gaussian elimination iteration corresponding to k = 3.



Parallel Gaussian Elimination: 2-D Cyclic Mapping

e The idling in the block mapping can be dlleviated using a
cyclic mapping.

e The maximum difference in computational load between any
two processes in any iteration is that of one row and one
column update.

¢ This confriobutes ©(n,/p) o the overhead function. Since there
are n iterations, the total overhead is ©(n?,/p).



Gaussian Elimination with Partial Pivoting

e For numerical stability, one generally uses parfial pivoting.

e INn the kth iteration, we select a column ¢ (called the pivof
column) such that Alk, i] is The largest in magnitude among all
Alk, jl such that £ < j < n.

e The kth and the ¢th columns are interchanged.

e Simple to implement with row-partitioning and does not add
overnead since the division step takes the same fime as
computing the makx.

e Column-parfitioning, however, requires a global reduction,
adding a log p ferm fo the overhead.

e Pivoting precludes the use of pipelining.



Gaussian Elimination with Partial Pivoting: 2-D
Partitioning

e Partial pivoting restricts use of pipelining, resulting in performance
loss.

e This loss can be dlleviated by restricting pivoting to specific
columns.

e Alternately, we can use faster algorithms for broadcast.



Solving a Triangular System: Back-Substitution

e The upper triangular matrix U undergoes back-substitution fo
determine the vector .

procedure BACK_SUBSTITUTION (U, =, v)
begin
fork := n — 1 downto 0 do /* Main loop */
begin
rlk] := y[k].
for: := £k — 1 downto 0 do
yli] := yli] — z[k] x Uli, kJ;
endfor;

Voo NO A~

end BACK_SUBSTITUTION

A serial algorithm for back-substitution.



Solving a Triangular System: Back-Substitution

e The algorithm performs approximately n?/2 multiplications and
subtractions.

e Since complexity of this part is asymptotically lower, we should
optimize the data distribution for the factorization part.

e Consider a rowwise block 1-D mapping of the n x n matrix U
with vector y distributed uniformly.

e [he value of the variable solved at a step can be pipelined
back.

e Each step of a pipelined implementation requires a constant
amount of fime for communication and O(n/p) time for
computation.

e The parallel run time of the entire algorithm is ©(n?/p).



Solving a Triangular System: Back-Substitution

o If the matrix is parfitioned by using 2-D partifioning on a /p x
/D logical mesh of processes, and the elements of the vector
are distributed along one of the columns of the process mesh,
then only the ,/p processes containing the vector perform any
computation.

e Using pipelining to communicate the appropriate elements of
U to the process containing the corresponding elements of y
for the substitution step (line 7), the algorithm can be executed

in ©(n?/,/p) time.

e While this is not cost optimal, since this does not dominante the
overall computation, the cost optimality is determined by the
factorization.



