
Dense Matrix Algorithms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

• Matrix-Vector Multiplication

• Matrix-Matrix Multiplication

• Solving a System of Linear Equations

– Typeset by FoilTEX – 1

Matix Algorithms: Introduction

• Due to their regular structure, parallel computations involving
matrices and vectors readily lend themselves to data-
decomposition.

• Typical algorithms rely on input, output, or intermediate data
decomposition.

• Most algorithms use one- and two-dimensional block, cyclic,
and block-cyclic partitionings.

– Typeset by FoilTEX – 2

Matrix-Vector Multiplication

• We aim to multiply a dense n × n matrix A with an n × 1 vector
x to yield the n × 1 result vector y.

• The serial algorithm requires n2 multiplications and additions.

W = n2. (1)

– Typeset by FoilTEX – 3

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• The n × n matrix is partitioned among n processors, with each
processor storing complete row of the matrix.

• The n × 1 vector x is distributed such that each process owns
one of its elements.

– Typeset by FoilTEX – 4

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

1

p-1

0 1 p-1

0 1 p-1

0 1 p-1

0 1 p-1

0

1

p-10 1 p-1

p-1

p-1

.

.
P

P

P

1

0

.

.

P

P

P

1

0

0

1

p-1

n/p

 the processes by all-to-all broadcast

n

0

(d) Final distribution of the matrix
 and the result vector

(c) Entire vector distributed to each

p-1

.

.

P

P

P

0

1

.

.

P

P

P

0

1

p-1

(a) Initial partitioning of the matrix
 and the starting vector

Matrix Vector

VectorMatrix A x

yA

x

y

(b) Distribution of the full vector among all

Processes

 process after the broadcast

Multiplication of an n × n matrix with an n × 1 vector using
rowwise block 1-D partitioning. For the one-row-per-process

case, p = n.

– Typeset by FoilTEX – 5

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• Since each process starts with only one element of x, an all-to-
all broadcast is required to distribute all the elements to all the
processes.

• Process Pi now computes y[i] = Σn−1
j=0 (A[i, j] × x[j]).

• The all-to-all broadcast and the computation of y[i] both take
time Θ(n). Therefore, the parallel time is Θ(n).

– Typeset by FoilTEX – 6

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• Consider now the case when p < n and we use block 1D
partitioning.

• Each process initially stores n/p complete rows of the matrix and
a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes and
involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure is

TP =
n2

p
+ ts log p + twn. (2)

This is cost-optimal.

– Typeset by FoilTEX – 7

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

• We know that To = pTP − W , therefore, we have,

To = tsp log p + twnp. (3)

• For isoefficiency, we have W = KTo, where K = E/(1 − E) for
desired efficiency E.

• From this, we have W = O(p2) (from the tw term).

• There is also a bound on isoefficiency because of concurrency.
In this case, p < n, therefore, W = n2 = Ω(p2).

• Overall isoefficiency is W = O(p2).

– Typeset by FoilTEX – 8

Matrix-Vector Multiplication: 2-D Partitioning

• The n × n matrix is partitioned among n2 processors such that
each processor owns a single element.

• The n × 1 vector x is distributed only in the last column of n
processors.

– Typeset by FoilTEX – 9

Matrix-Vector Multiplication: 2-D Partitioning
AMatrix

(c) All-to-one reduction of partial results

(a) Initial data distribution and communication
 steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of

. .

.

.

Vector

Vector

y

x

. .

.

.

(d) Final distribution of the result vector

Matrix A

 the vector along process columns

PSfrag replacements

n/
√

p

n√
p

P0

P0

P1

P1

n

Pp-1

Pp-1

P2
√

p

P2
√

p

P√p-1

P√p-1

P√p

P√p

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n2 if the matrix size is n × n.

– Typeset by FoilTEX – 10

Matrix-Vector Multiplication: 2-D Partitioning

• We must first aling the vector with the matrix appropriately.

• The first communication step for the 2-D partitioning aligns the
vector x along the principal diagonal of the matrix.

• The second step copies the vector elements from each
diagonal process to all the processes in the corresponding
column using n simultaneous broadcasts among all processors
in the column.

• Finally, the result vector is computed by performing an all-to-
one reduction along the columns.

– Typeset by FoilTEX – 11

Matrix-Vector Multiplication: 2-D Partitioning

• Three basic communication operations are used in this
algorithm: one-to-one communication to align the vector
along the main diagonal, one-to-all broadcast of each vector
element among the n processes of each column, and all-to-
one reduction in each row.

• Each of these operations takes Θ(log n) time and the parallel
time is Θ(log n).

• The cost (process-time product) is Θ(n2 log n); hence, the
algorithm is not cost-optimal.

– Typeset by FoilTEX – 12

Matrix-Vector Multiplication: 2-D Partitioning

• When using fewer than n2 processors, each process owns an
(n/

√
p) × (n/

√
p) block of the matrix.

• The vector is distributed in portions of n/
√

p elements in the last
process-column only.

• In this case, the message sizes for the alignment, broadcast,
and reduction are all (n/

√
p).

• The computation is a product of an (n/
√

p) × (n/
√

p) submatrix
with a vector of length (n/

√
p).

– Typeset by FoilTEX – 13

Matrix-Vector Multiplication: 2-D Partitioning

• The first alignment step takes time ts + twn/
√

p.

• The broadcast and reductions take time (ts + twn/
√

p) log(
√

p).

• Local matrix-vector products take time tcn
2/p.

• Total time is

TP ≈
n2

p
+ ts log p + tw

n
√

p
log p (4)

– Typeset by FoilTEX – 14

Matrix-Vector Multiplication: 2-D Partitioning

Scalability Analysis:

• To = pTp − W = tsp log p + twn
√

p log p.

• Equating To with W , term by term, for isoefficiency, we have,
W = K2t2wp log2 p as the dominant term.

• The isoefficiency due to concurrency is O(p).

• The overall isoefficiency is O(p log2 p) (due to the network
bandwidth).

• For cost optimality, we have, W = n2 = p log2 p. For this, we
have, p = O

(

n2

log2 n

)

.

– Typeset by FoilTEX – 15

Matrix-Matrix Multiplication

• Consider the problem of multiplying two n × n dense, square
matrices A and B to yield the product matrix C = A × B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms (Strassen’s
method), although, these can be used as serial kernels in the
parallel algorithms.

• A useful concept in this case is called block operations. In this
view, an n × n matrix A can be regarded as a q × q array of
blocks Ai,j (0 ≤ i, j < q) such that each block is an (n/q) × (n/q)
submatrix.

• In this view, we perform q3 matrix multiplications, each involving
(n/q) × (n/q) matrices.

– Typeset by FoilTEX – 16

Matrix-Matrix Multiplication

• Consider two n × n matrices A and B partitioned into p blocks
Ai,j and Bi,j (0 ≤ i, j <

√
p) of size (n/

√
p) × (n/

√
p) each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block Ci,j

of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k and Bk,j

for 0 ≤ k <
√

p.

• All-to-all broadcast blocks of A along rows and B along
columns.

• Perform local submatrix multiplication.

– Typeset by FoilTEX – 17

Matrix-Matrix Multiplication

• The two broadcasts take time 2(ts log(
√

p) + tw(n2/p)(
√

p − 1)).

• The computation requires
√

p multiplications of (n/
√

p)× (n/
√

p)
sized submatrices.

• The parallel run time is approximately

TP =
n3

p
+ ts log p + 2tw

n2

√
p
. (5)

• The algorithm is cost optimal and the isoefficiency is O(p1.5) due
to bandwidth term tw and concurrency.

• Major drawback of the algorithm is that it is not memory
optimal.

– Typeset by FoilTEX – 18

Matrix-Matrix Multiplication: Cannon’s Algorithm

• In this algorithm, we schedule the computations of the
√

p
processes of the ith row such that, at any given time, each
process is using a different block Ai,k.

• These blocks can be systematically rotated among the
processes after every submatrix multiplication so that every
process gets a fresh Ai,k after each rotation.

– Typeset by FoilTEX – 19

Matrix-Matrix Multiplication: Cannon’s Algorithm

(a) Initial alignment of A

(e) Submatrix locations after second shift

(d) Submatrix locations after first shift

(f) Submatrix locations after third shift

(b) Initial alignment of B

(c) A and B after initial alignment

A0,2

A1,3

A2,0

A3,1

B0,0 B1,1 B2,2 B3,3

B2,1 B3,2 B0,3B1,0

A

3,2

0,1

1,2

A2,3

A3,0

B2,0 B3,1 B0,2 B1,3

B2,0 B3,1 B0,2 B1,3

B3,0 B0,1

A

1,2 BB

B0,0 B1,1 B2,2 B3,3

B2,1 B3,2 B0,3B1,0

B3,0 B0,1 B1,2 B2,3

B3,0

B2,0

B1,0

B0,0
A0,0 A0,1 A0,2 A0,3

A1,1 A1,2 A1,3A1,0

A2,1 A

2,3

A2,2A2,0

A

2,3

A3,1 A3,2 A3,3

A0,0

A1,1

A2,2

A3,3

A0,1

A1,2

A2,3

A3,0

A0,2

A1,3

A2,0

A3,1

A0,3

A1,0

A

2,1

A3,2

A0,0

A1,1

2,2

3,0

A3,3

A0,1 A0,2 A0,3

A1,2 A

A

A1,0

A2,3 A2,0 A2,1

A3,0 A3,1 A3,2

B2,0 B3,1 B0,2 B1,3

B2,1 B3,2 B0,3B1,0

B0,0 B1,1 B2,2 B3,3

B0,0 B1,1 B2,2 B3,3

B3,0 B0,1 B1,2 B2,3

B3,0 B0,1 B1,2 B2,3

B2,1 B3,2 B0,3B1,0

B2,0 B3,1 B0,2 B1,3

0,3A

3,0A

2,3A

1,2A

0,1A

3,2A

2,1A

1,0A

0,3A

3,1A

2,0A

1,3A

0,2A

3,3A

2,2A

1,1A

0,0A

3,3A

2,2A

1,1A

0,0

A

A

1,3

B

B

B

B B B

BB

B

B B

B

0,1 0,2 0,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

2,1A

1,0

A

communication steps in Cannon’s algorithm on 16 processes.

– Typeset by FoilTEX – 20

Matrix-Matrix Multiplication: Cannon’s Algorithm

• Align the blocks of A and B in such a way that each process
multiplies its local submatrices. This is done by shifting all
submatrices Ai,j to the left (with wraparound) by i steps and
all submatrices Bi,j up (with wraparound) by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

• Perform next block multiplication, add to partial result, repeat
until all

√
p blocks have been multiplied.

– Typeset by FoilTEX – 21

Matrix-Matrix Multiplication: Cannon’s Algorithm

• In the alignment step, since the maximum distance over which
a block shifts is

√
p− 1, the two shift operations require a total of

2(ts + twn2/p) time.

• Each of the
√

p single-step shifts in the compute-and-shift phase
of the algorithm takes ts + twn2/p time.

• The computation time for multiplying
√

p matrices of size
(n/

√
p) × (n/

√
p) is n3/p.

• The parallel time is approximately:

TP =
n3

p
+ 2

√
pts + 2tw

n2

√
p
. (6)

• The cost-efficiency and isoefficiency of the algorithm are
identical to the first algorithm, except, this is memory optimal.

– Typeset by FoilTEX – 22

Matrix-Matrix Multiplication: DNS Algorithm

• Uses a 3-D partitioning.

• Visualize the matrix multiplication algorithm as a cube –
matrices A and B come in two orthogonal faces and result C
comes out the other orthogonal face.

• Each internal node in the cube represents a single add-multiply
operation (and thus the complexity).

• DNS algorithm partitions this cube using a 3-D block scheme.

– Typeset by FoilTEX – 23

Matrix-Matrix Multiplication: DNS Algorithm

• Assume an n × n × n mesh of processors.

• Move the columns of A and rows of B and perform broadcast.

• Each processor computes a single add-multiply.

• This is followed by an accumulation along the C dimension.

• Since each add-multiply takes constant time and accumulation
and broadcast takes log n time, the total runtime is log n.

• This is not cost optimal. It can be made cost optimal by using
n/ log n processors along the direction of accumulation.

– Typeset by FoilTEX – 24

Matrix-Matrix Multiplication: DNS Algorithm

(d) Corresponding distribution of Baxisj

to Pi,j,jA

along

and B

k

x

x

x

x

i

j
k = 0

k = 1

k = 2

k = 3

C[0,0]
=

+

+

+

(a) Initial distribution of

A, B
A

A
B

0,0 1,0

0,1

0,2

1,1

2,0 3,0

2,1

1,2

1,30,3 2,3

2,2

3,1

3,2

3,3

1,0

1,1

1,2

1,3

1,0

1,1

1,2

1,3

1,0

1,1

1,2

1,3

1,0

1,1

1,2

1,3

0,0

0,1

0,2

0,3

0,0

0,1

0,2

0,3

0,0

0,1

0,2

0,3

0,0

0,1

0,2

0,3

3,0

3,1

3,2

3,3

3,0

3,1

3,2

3,3

3,0

3,1

3,2

3,3

3,0

3,1

3,2

3,3

2,0

2,1

2,2

2,3

2,0

2,1

2,2

2,3

2,0

2,1

2,2

2,3

2,0

2,1

2,2

2,3

3,32,31,30,3

0,3 1,3

0,3

0,3

1,3

2,3

2,3

3,3

1,3 2,3

3,3

3,3

3,12,11,10,1

0,1 1,1

0,1

0,1

1,1

1,1

2,1

2,1 3,1

3,1

2,1 3,1

0,0

0,0 1,0

0,0

1,0

1,0

0,0 1,0

2,0

2,0

2,0 3,0

3,0

3,0

2,0 3,0

3,22,21,20,2

0,2 1,2

0,2

0,2

1,2

2,2

2,2

3,2

3,2

3,22,21,2

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

A[0,2] B[2,0]

A[0,1] B[1,0]

A[0,0] B[0,0]

A[0,3] B[3,0]

(b) After moving

(c) After broadcastingA[i,j]

from PA[i,j] i,j,0

The communication steps in the DNS algorithm while multiplying 4 × 4
matrices A and B on 64 processes.

– Typeset by FoilTEX – 25

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n3 processors.

• Assume that the number of processes p is equal to q3 for some
q < n.

• The two matrices are partitioned into blocks of size (n/q)×(n/q).
Each matrix can thus be regarded as a q × q two-dimensional
square array of blocks.

• The algorithm follows from the previous one, except, in this
case, we operate on blocks rather than on individual elements.

– Typeset by FoilTEX – 26

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n3 processors.

• The first one-to-one communication step is performed for both
A and B, and takes ts + tw(n/q)2 time for each matrix.

• The two one-to-all broadcasts take 2(ts log q+tw(n/q)2 log q) time
for each matrix.

• The reduction takes time ts log q + tw(n/q)2 log q.

• Multiplication of (n/q) × (n/q) submatrices takes (n/q)3 time.

• The parallel time is approximated by:

TP =
n3

p
+ ts log p + tw

n2

p2/3
log p. (7)

The isoefficiency function is Θ(p(log p)3).

– Typeset by FoilTEX – 27

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

a0,0x0 + a0,1x1 + · · · + a0,n−1xn−1 = b0,
a1,0x0 + a1,1x1 + · · · + a1,n−1xn−1 = b1,

...
an−1,0x0 + an−1,1x1 + · · · + an−1,n−1xn−1 = bn−1.

This is written as Ax = b, where A is an n × n matrix with
A[i, j] = ai,j, b is an n × 1 vector [b0, b1, . . . , bn−1]

T , and x is the
solution.

– Typeset by FoilTEX – 28

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and
back-substitution. The triangular form is as:

x0 + u0,1x1 + u0,2x2 + · · · + u0,n−1xn−1 = y0,
x1 + u1,2x2 + · · · + u1,n−1xn−1 = y1,

... ...
xn−1 = yn−1.

We write this as: Ux = y.

A commonly used method for transforming a given matrix into
an upper-triangular matrix is Gaussian Elimination.

– Typeset by FoilTEX – 29

Gaussian Elimimation

1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n − 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n − 1 do
6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n − 1 do
10. begin
11. for j := k + 1 to n − 1 do
12. A[i, j] := A[i, j] − A[i, k] × A[k, j]; /* Elimination step */
13. b[i] := b[i] − A[i, k] × y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN ELIMINATION

Serial Gaussian Elimination

– Typeset by FoilTEX – 30

Gaussian Elimination

• The computation has three nested loops – in the kth iteration of
the outer loop, the algorithm performs (n − k)2 computations.
Summing from k = 1..n, we have roughly (n3/3) multiplications-
subtractions.

A[i,j] := A[i,j] - A[i,k] A[k,j]

Row k

Row i

(k,k) (k,j)

Inactive part

Active part

A[k,j] := A[k,j]/A[k,k]

x(i,k) (i,j)

C
ol

um
n

 k

C
ol

um
n

 j

A typical computation in Gaussian elimination.

– Typeset by FoilTEX – 31

Parallel Gaussian Elimination

• Assume p = n with each row assigned to a processor.

• The first step of the algorithm normalizes the row. This is a serial
operation and takes time (n − k) in the kth iteration.

• In the second step, the normalized row is broadcast to all the
processors. This takes time (ts + tw(n − k − 1)) log n.

• Each processor can independently eliminate this row from its
own. This requires (n − k − 1) multiplications and subtractions.

• The total parallel time can be computed by summing from k =
1..n − 1 as

TP =
3

2
n(n − 1) + tsn log n +

1

2
twn(n − 1) log n. (8)

• The formulation is not cost optimal because of the tw term.

– Typeset by FoilTEX – 32

Parallel Gaussian Elimination
P0

P

P

P

P

P

P

P1

2

3

4

5

6

7

P0

P

P

P

P

P

P

P1

2

3

4

5

6

7

P0

P

P

P

P

P

P

P1

2

3

4

5

6

7

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

(b) Communication:

 0 0

 0

(3,3) (3,4) (3,5) (3,6) (3,7)

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,5) (3,6) (3,7) 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(3,4) (3,5) (3,6) (3,7) 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

 0

(3,4)

(7,3)

 0 (7,3) (7,4) (7,5) (7,6) (7,7) 0 0

(c) Computation:

(a) Computation:

(i) A[k,j] := A[k,j]/A[k,k] for k < j < n

One-to-all brodcast of row A[k,*]

(ii) A[i,k] := 0 for k < i < n

for k < i < n and k < j < n

(ii) A[k,k] := 1

x(i) A[i,j] := A[i,j] - A[i,k] A[k,j]

Gaussian elimination steps during the iteration corresponding to
k = 3 for an 8 × 8 matrix partitioned rowwise among eight

processes.

– Typeset by FoilTEX – 33

Parallel Gaussian Elimination: Pipelined Execution

• In the previous formulation, the (k+1)st iteration starts only after
all the computation and communication for the kth iteration is
complete.

• In the pipelined version, there are three steps – normalization
of a row, communication, and elimination. These steps are
performed in an asynchronous fashion.

• A processor Pk waits to receive and eliminate all rows prior to k.
Once it has done this, it forwards its own row to processor Pk+1.

– Typeset by FoilTEX – 34

Parallel Gaussian Elimination: Pipelined Execution

(4,1) (4,2) (4,4)

(3,1) (3,2) (3,3)

(1,1)

(3,4)

(1,2)

(2,3)

(1,4)

(2,1) (2,2) (2,3)

(c)

(f)(e) Iteration k = 1 starts

(k) (l)

(d)

(p) Iteration k = 4

(b)

(n) (o) Iteration k = 3 ends

(h)

(j) Iteration k = 1 ends

(m) Iteration k = 3 starts

(i) Iteration k = 2 starts

(a) Iteration k = 0 starts

(g) Iteration k = 0 ends

(0,4)

(1,4)

(4,4)

(3,4)

(0,2)(0,1) (0,3)

(1,3)

(4,3)

(3,3)(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(2,4)

(4,4)

(3,4)

(0,2)(0,1) (0,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1

 0

 1

 0

 0 0

 0

 1 1

 0

 0

 0

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(0,0)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1 1

(2,0)

(3,0)

(4,0)

 1

(0,4)

(1,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(0,4)

(1,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)

(0,4)

(1,4)

(2,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(3,3)

 1 1

 0

 1 1

 0 0

 0

 0

 0

 0

 0

 1

 0

 0

 0

 0

 1

 0

 1

 0

 0

 0

 0

 1

 0

 0

(4,4)

(0,4)

(2,4)

(4,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)(4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)(3,2)

(4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(2,3)

(3,3)

(0,4)

(1,4)

(4,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)(4,1) (4,2)

 1 1

 0

 1 1

 0 0

 0

 0

 0

 0

 0

 1

 0

 0

 0

 0

 1

 0

 1

 0

 0

 0

 0

 1

 0

 0

 0

 0 0

 0

 1 1 1

 0 0

 0 0

Communication for k = 2 Computation for k = 2

 0

Communication for k = 1

Communication for k = 0, 3 Computation for k = 0, 3

Computation for k = 1, 4

(3,2)

(1,0)

 1

 0

 0

 0

 0

 0

 0

 0

(1,3)

 1

(3,2)

 0

 1 1

 1

 0

 0

(1,4)

(2,3)

(1,2)

 0

(2,3) (2,4)

 1 0

 0

 1

(2,4)

 0

 0 0

 1

(2,2) (2,4)

(4,3)

(4,2) (4,3) (4,4) (4,4)

(3,3) (3,4)

(2,4)

(1,3)

Pipelined Gaussian elimination on a 5 × 5 matrix partitioned with
one row per process.

– Typeset by FoilTEX – 35

Parallel Gaussian Elimination: Pipelined Execution

• The total number of steps in the entire pipelined procedure is
Θ(n).

• In any step, either O(n) elements are communicated between
directly-connected processes, or a division step is performed
on O(n) elements of a row, or an elimination step is performed
on O(n) elements of a row.

• The parallel time is therefore O(n2).

• This is cost optimal.

– Typeset by FoilTEX – 36

Parallel Gaussian Elimination: Pipelined Execution
P0

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

(3,4) (3,6) (3,7) 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

(3,5)

P

P

P1

2

3

The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 × 8 matrix distributed among four

processes using block 1-D partitioning.

– Typeset by FoilTEX – 37

Parallel Gaussian Elimination: Block 1D with p < n

• The above algorithm can be easily adapted to the case when
p < n.

• In the kth iteration, a processor with all rows belonging to the
active part of the matrix performs (n − k − 1)n/p multiplications
and subtractions.

• In the pipelined version, for n > p, computation dominates
communication.

• The parallel time is given by: 2(n/p)Σn−1
k=0(n − k − 1), or

approximately, n3/p.

• While the algorithm is cost optimal, the cost of the parallel
algorithm is higher than the sequential run time by a factor of
3/2.

– Typeset by FoilTEX – 38

Parallel Gaussian Elimination: Block 1D with p < n

(b) Cyclic 1-D mapping(a) Block 1-D mapping

(7,3)

(3,3)

 0

 0

 0

 0

 0

 0

(0,7)

(7,7)

(3,7)

(6,7)

(2,7)

(5,7)

(1,7)

(4,7)

(0,1)

 0

 0

 0

 0

 0

 1

 0

(0,2)

 0

 0

 0

 1

 0

(1,2)

 0

(0,3)

(7,3)

(6,3)

(2,3)

(5,3)

(1,3)

(4,3)

(3,3)

(0,4)

(7,4)

(3,4)

(6,4)

(2,4)

(5,4)

(1,4)

(4,4)

(0,6)

(7,6)

(3,6)

(6,6)

(2,6)

(5,6)

(1,6)

(4,6)

(0,5)

(7,5)

(3,5)

(6,5)

(2,5)

(5,5)

(1,5)

(4,5)
P0 P0

P

P

P

(0,1)

1

(0,3)

2

3 P

P

P1

2

3

 1 (1,3)

(2,3)

(4,3)

(5,3)

(0,4) (0,5) (0,6) (0,7) 1

 0

(1,4) (1,5) (1,6) (1,7)

(2,4) (2,5) (2,6) (2,7)

(4,4) (4,5) (4,6) (4,7)

(5,4) (5,5) (5,6) (5,7)

(6,4) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7)

 0

 0

 0

 0

 0

 0

 1(0,2)

 0

 0

 0

 0

 1

(1,2)

 0

 0

 0

 0

 0

 0

 0

 0

(6,3)

Computation load on different processes in block and cyclic 1-D
partitioning of an 8 × 8 matrix on four processes during the

Gaussian elimination iteration corresponding to k = 3.

– Typeset by FoilTEX – 39

Parallel Gaussian Elimination: Cyclic 1D Mapping

• The load imbalance problem can be alleviated by using a
cyclic mapping.

• In this case, other than processing of the last p rows, there is no
load imbalance.

• This corresponds to a cumulative load imbalance overhead of
O(n2p) (instead of O(n3) in the previous case).

– Typeset by FoilTEX – 40

Parallel Gaussian Elimination: 2-D Mapping

• Assume an n × n matrix A mapped onto an n × n mesh of
processors.

• Each update of the partial matrix can be thought of as a
scaled rank-one update (scaling by the pivot element).

• In the first step, the pivot is broadcast to the row of processors.

• In the second step, each processor locally updates its value.
For this it needs the corresponding value from the pivot row,
and the scaling value from its own row.

• This requires two broadcasts, each of which takes log n time.

• This results in a non-cost-optimal algorithm.

– Typeset by FoilTEX – 41

Parallel Gaussian Elimination: 2-D Mapping

(d) A[i,j] := A[i,j]-A[i,k] A[k,j]

(a) Rowwise broadcast of A[i,k] (b) A[k,j] := A[k,j]/A[k,k]

(c) Columnwise broadcast of A[k,j]

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

(3,3) (3,4) (3,5) (3,6) (3,7)

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,5) (4,6) (4,7)

(5,4)

(4,4)

(5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7) 1

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7) 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7) 1

 0

 0

 0

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0 0 0

 0

 0 0

 0

 0 0

 0

(3,3) (3,4) (3,5) (3,6) (3,7)

for (k - 1) < i < n for k < j < n

for k < j < n

(5,3)

for k < i < n and k < j < n
x

(7,3)

Various steps in the Gaussian elimination iteration corresponding
to k = 3 for an 8 × 8 matrix on 64 processes arranged in a logical

two-dimensional mesh.

– Typeset by FoilTEX – 42

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

• We pipeline along two dimensions. First, the pivot value is
pipelined along the row. Then the scaled pivot row is pipelined
down.

• Processor Pi,j (not on the pivot row) performs the elimination
step A[i, j] := A[i, j]−A[i, k]×A[k, j] as soon as A[i, k] and A[k, j]
are available.

• The computation and communication for each iteration moves
through the mesh from top-left to bottom-right as a “front.”

• After the front corresponding to a certain iteration passes
through a process, the process is free to perform subsequent
iterations.

• Multiple fronts that correspond to different iterations are active
simultaneously.

– Typeset by FoilTEX – 43

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining

• If each step (division, elimination, or communication) is
assumed to take constant time, the front moves a single step in
this time. The front takes Θ(n) time to reach Pn−1,n−1.

• Once the front has progressed past a diagonal processor, the
next front can be initiated. In this way, the last front passes the
bottom-right corner of the matrix Θ(n) steps after the first one.

• The parallel time is therefore O(n), which is cost-optimal.

– Typeset by FoilTEX – 44

2-D Mapping with Pipelining

(p) Iteration k = 0 ends(n)

(i)

(a) Iteration k = 0 starts

(g) Iteration k = 1 starts(e)

(d)(c)(b)

(h)

(m) Iteration k = 2 starts

(l)(k) (j)

(o)

(f)

Communication for k = 1

Communication for k = 0

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2) (1,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1

 0

 1

 0

 0 0

 0

 1 1

 0

 0

 0

(0,4)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(1,1)

(2,2)(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(0,0)

(1,1)

(2,2)

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2)

(4,0) (4,1) (4,2)

 1 1

 0

(2,0)

(3,0) (3,0)

(4,0) (4,0)

 1

(0,4)

(1,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)(3,2)

(4,2)

(0,4)

(1,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)

(3,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)

(3,2)

(4,1) (4,2)

 1 1

 0

 1 1

 0 0

 0

 0

 0

 0

 0

 1

 0

 0

 0

 0

 1

 0

 1

 0

 0

 0

 0

 1

 0

 0

(4,4)

(0,1)

(0,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(4,3)

(3,3)

(2,2)

(4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)

(3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(2,3)

(4,3)

(3,3)(3,1) (3,2)

(4,1) (4,2)

(0,4)

(1,4)

(2,4)

(4,4)

(3,4)

(0,2)

(1,2)

(0,1) (0,3)

(1,3)

(2,3)

(4,3)

(3,3)

(2,2)(2,1)

(3,1) (3,2)

(4,1) (4,2)

 1 1

 0

 1 1

 0 0

 0

 0

 0

 0

 0

 1

 0

 0

 0

 0

 1

 0

 1

 0

 0

 0

 0

 1

 0

 0

(0,3)

(2,3)

(4,0) (4,4)

(3,1)

(4,1)

(3,4)

 0

 0 0

 0

 1 1 1

 0 0

 0 0

Communication for k = 2

Computation for k = 0

Computation for k = 1

Computation for k = 2

 0

(2,2)

(1,3)

(3,2)

(2,3)

(1,4)

(1,2)

(4,2)

(3,3)

(2,3) (2,4)

(4,3)

(3,3)

(2,4)

(0,2)

Pipelined Gaussian elimination for a 5 × 5 matrix with 25 processors.

– Typeset by FoilTEX – 45

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

• In this case, a processor containing a completely active part of
the matrix performs n2/p multiplications and subtractions, and
communicates n/

√
p words along its row and its column.

• The computation dominantes communication for n >> p.

• The total parallel run time of this algorithm is (2n2/p) × n, since
there are n iterations. This is equal to 2n3/p.

• This is three times the serial operation count!

– Typeset by FoilTEX – 46

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

(a) Rowwise broadcast of A[i,k] (b) Columnwise broadcast of A[k,j]
for i = k to (n - 1)

(0,4) (0,5) (0,6) (0,7) 1

 0

(1,5)(1,4) (1,7)

(2,4) (2,5) (2,6) (2,7)

(4,4) (4,5) (4,6) (4,7)

(5,4) (5,5) (5,6) (5,7)

(6,4) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7)

 0

 0

 0

 0

 0

 0

(0,1) (0,2) (0,4)(0,3) (0,5) (0,6) (0,7)

 0

(1,6)

 0

 1

 0

 0

 1

 1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,3) (2,4) (2,5) (2,6) (2,7)

(4,3) (4,4) (4,5) (4,6) (4,7)

(5,3) (5,4) (5,5) (5,6) (5,7)

(6,4)(6,3) (6,6)(6,5) (6,7)

(7,3) (7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7) 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

(0,2)

 0

 0

 0

 0

 1

(1,2)

 0

for j = (k + 1) to (n - 1)

(0,1)

 1

(2,3)

(4,3)

(5,3)

(6,3)

(7,3)

(3,3)

 0

 0

 0

 0

 0

 0

 (0,3)

 (1,3)

 0PSfrag replacementsn√
p

n/
√

pn

n

The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 × 8 matrix on 16 processes of a

two-dimensional mesh.

– Typeset by FoilTEX – 47

Parallel Gaussian Elimination: 2-D Mapping with
Pipelining and p < n

(a) Block-checkerboard mapping (b) Cyclic-checkerboard mapping

 0

 0

 0

 0

(0,7)

 0

(3,7)

(7,7)

(2,7)

(5,7)

(1,7)

(4,7)

(0,1)

 0

(6,7) 0

 0

 0

 1

 0

(0,2)

 0

 0

 0

 1

 0

(1,2)

 0

(0,3)

 0

 0 (2,3)

(5,3)

(1,3)

(4,3)

(3,3)

(7,3)(7,4)

(3,4)

(6,4)

(2,4)

(5,4)

(1,4)

(4,4)

(0,5)

(7,5)

(3,5)

(6,5)

(2,5)

(5,5)

(1,5)

(4,5)

(0,6)

(7,6)

(3,6)

(6,6)

(2,6)

(5,6)

(1,6)

(4,6)

(6,3)

(7,3)

(3,3)(6,3)

(5,3)

(4,3)

(2,3)

(1,3) 1

(0,4)(0,3) (0,4) (0,5) (0,6) (0,7) 1

 0

(1,4) (1,5) (1,6) (1,7)

(2,4) (2,5) (2,6) (2,7)

(4,4) (4,5) (4,6) (4,7)

(5,4) (5,5) (5,6) (5,7)

(6,4) (6,6)(6,5) (6,7)

(7,4) (7,5) (7,6) (7,7)

(3,4) (3,5) (3,6) (3,7)

 0

 0

 0

 0

 0

 0

 1(0,2)

 0

 0

 0

 0

 1

(1,2)

 0

 0

 0

 0

 0

 0

 0

 0

(0,1)

Computational load on different processes in block and cyclic
2-D mappings of an 8 × 8 matrix onto 16 processes during the

Gaussian elimination iteration corresponding to k = 3.

– Typeset by FoilTEX – 48

Parallel Gaussian Elimination: 2-D Cyclic Mapping

• The idling in the block mapping can be alleviated using a
cyclic mapping.

• The maximum difference in computational load between any
two processes in any iteration is that of one row and one
column update.

• This contributes Θ(n
√

p) to the overhead function. Since there
are n iterations, the total overhead is Θ(n2√p).

– Typeset by FoilTEX – 49

Gaussian Elimination with Partial Pivoting

• For numerical stability, one generally uses partial pivoting.

• In the kth iteration, we select a column i (called the pivot
column) such that A[k, i] is the largest in magnitude among all
A[k, j] such that k ≤ j < n.

• The kth and the ith columns are interchanged.

• Simple to implement with row-partitioning and does not add
overhead since the division step takes the same time as
computing the max.

• Column-partitioning, however, requires a global reduction,
adding a log p term to the overhead.

• Pivoting precludes the use of pipelining.

– Typeset by FoilTEX – 50

Gaussian Elimination with Partial Pivoting: 2-D
Partitioning

• Partial pivoting restricts use of pipelining, resulting in performance
loss.

• This loss can be alleviated by restricting pivoting to specific
columns.

• Alternately, we can use faster algorithms for broadcast.

– Typeset by FoilTEX – 51

Solving a Triangular System: Back-Substitution

• The upper triangular matrix U undergoes back-substitution to
determine the vector x.

1. procedure BACK SUBSTITUTION (U , x, y)
2. begin
3. for k := n − 1 downto 0 do /* Main loop */
4. begin
5. x[k] := y[k];
6. for i := k − 1 downto 0 do
7. y[i] := y[i] − x[k] × U [i, k];
8. endfor;
9. end BACK SUBSTITUTION

A serial algorithm for back-substitution.

– Typeset by FoilTEX – 52

Solving a Triangular System: Back-Substitution

• The algorithm performs approximately n2/2 multiplications and
subtractions.

• Since complexity of this part is asymptotically lower, we should
optimize the data distribution for the factorization part.

• Consider a rowwise block 1-D mapping of the n × n matrix U
with vector y distributed uniformly.

• The value of the variable solved at a step can be pipelined
back.

• Each step of a pipelined implementation requires a constant
amount of time for communication and Θ(n/p) time for
computation.

• The parallel run time of the entire algorithm is Θ(n2/p).

– Typeset by FoilTEX – 53

Solving a Triangular System: Back-Substitution

• If the matrix is partitioned by using 2-D partitioning on a
√

p ×√
p logical mesh of processes, and the elements of the vector

are distributed along one of the columns of the process mesh,
then only the

√
p processes containing the vector perform any

computation.

• Using pipelining to communicate the appropriate elements of
U to the process containing the corresponding elements of y
for the substitution step (line 7), the algorithm can be executed
in Θ(n2/

√
p) time.

• While this is not cost optimal, since this does not dominante the
overall computation, the cost optimality is determined by the
factorization.

– Typeset by FoilTEX – 54

