
Programming Using the Message Passing
Paradigm

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

• Principles of Message-Passing Programming

• The Building Blocks: Send and Receive Operations

• MPI: the Message Passing Interface

• Topologies and Embedding

• Overlapping Communication with Computation

• Collective Communication and Computation Operations

• Groups and Communicators

– Typeset by FoilTEX – 1

Principles of Message-Passing Programming

• The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.

• Each data element must belong to one of the partitions of the
space; hence, data must be explicitly partitioned and placed.

• All interactions (read-only or read/write) require cooperation of
two processes – the process that has the data and the process
that wants to access the data.

• These two constraints, while onerous, make underlying costs
very explicit to the programmer.

– Typeset by FoilTEX – 2

Principles of Message-Passing Programming

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks execute
asynchronously.

• In the loosely synchronous model, tasks or subsets of
tasks synchronize to perform interactions. Between these
interactions, tasks execute completely asynchronously.

• Most message-passing programs are written using the single
program multiple data (SPMD) model.

– Typeset by FoilTEX – 3

The Building Blocks: Send and Receive Operations

• The prototypes of these operations are as follows:

send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

• Consider the following code segments:

P0 P1

a = 100; receive(&a, 1, 0)
send(&a, 1, 1); printf("%d\n", a);
a = 0;

• The semantics of the send operation require that the value
received by process P1 must be 100 as opposed to 0.

• This motivates the design of the send and receive protocols.

– Typeset by FoilTEX – 4

Non-Buffered Blocking Message Passing Operations

• A simple method for forcing send/receive semantics is for the
send operation to return only when it is safe to do so.

• In the non-buffered blocking send, the operation does not
return until the matching receive has been encountered at the
receiving process.

• Idling and deadlocks are major issues with non-buffered
blocking sends.

• In buffered blocking sends, the sender simply copies the data
into the designated buffer and returns after the copy operation
has been completed. The data is copied at a buffer at the
receiving end as well.

• Buffering alleviates idling at the expense of copying overheads.

– Typeset by FoilTEX – 5

Non-Buffered Blocking Message Passing Operations
sending
process

request to send

okay to send

request to send

okay to send

request to send

receiving
process

send

okay to send

data

receiving
process

receive

data

sending
process

receiving
process

receive

data

sending
process

send sendreceive

(a) Sender comes first; (b) Sender and receiver come (c) Receiver comes first;
idling at sender

idling minimized
at about the same time; idling at receiver

Handshake for a blocking non-buffered send/receive operation.
It is easy to see that in cases where sender and receiver do not

reach communication point at similar times, there can be
considerable idling overheads.

– Typeset by FoilTEX – 6

Buffered Blocking Message Passing Operations

• A simple solution to the idling and deadlocking problem
outlined above is to rely on buffers at the sending and receiving
ends.

• The sender simply copies the data into the designated buffer
and returns after the copy operation has been completed.

• The data must be buffered at the receiving end as well.

• Buffering trades off idling overhead for buffer copying
overhead.

– Typeset by FoilTEX – 7

Buffered Blocking Message Passing Operations

data

receiving
process

send

receiving
process

sending
process

receive

sending
process

data

send

receive

Data copied to
buffer at receiver

Blocking buffered transfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends;

and (b) in the absence of communication hardware, sender
interrupts receiver and deposits data in buffer at receiver end.

– Typeset by FoilTEX – 8

Buffered Blocking Message Passing Operations

Bounded buffer sizes can have significant impact on
performance.

P0 P1

for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {
produce_data(&a); receive(&a, 1, 0);
send(&a, 1, 1); consume_data(&a);

} }

What if consumer was much slower than producer?

– Typeset by FoilTEX – 9

Buffered Blocking Message Passing Operations

Deadlocks are still possible with buffering since receive
operations block.

P0 P1

receive(&a, 1, 1); receive(&a, 1, 0);
send(&b, 1, 1); send(&b, 1, 0);

– Typeset by FoilTEX – 10

Non-Blocking Message Passing Operations

• The programmer must ensure semantics of the send and
receive.

• This class of non-blocking protocols returns from the send or
receive operation before it is semantically safe to do so.

• Non-blocking operations are generally accompanied by a
check-status operation.

• When used correctly, these primitives are capable of
overlapping communication overheads with useful computations.

• Message passing libraries typically provide both blocking and
non-blocking primitives.

– Typeset by FoilTEX – 11

Non-Blocking Message Passing Operations

request to send

Unsafe to
update

data being
sent

request to send

Unsafe to
update

data being
sent

receiving
process

send

okay to send

data

receive

(b) With hardware support

sending
process

Unsafe to read
data being received

receiving
process

send

okay to send

data

receive

(a) Without hardware support

sending
process

Non-blocking non-buffered send and receive operations (a) in
absence of communication hardware; (b) in presence of

communication hardware.

– Typeset by FoilTEX – 12

Send and Receive Protocols

Non−Buffered

Non−Blocking OperationsBlocking Operations

Buffered

Sending process
returns after data
has been copied

into communication
buffer

Sending process
blocks until

matching receive
operation has been

encountered

Send and Receive
semantics assured by

corresponding operation

Programmer must
explicitly ensure

semantics by polling
to verify completion

Sending process
returns after initiating

DMA transfer to
buffer. This operation

may not be
completed on return

Space of possible protocols for send and receive operations.

– Typeset by FoilTEX – 13

MPI: the Message Passing Interface

• MPI defines a standard library for message-passing that can
be used to develop portable message-passing programs using
either C or Fortran.

• The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

• Vendor implementations of MPI are available on almost all
commercial parallel computers.

• It is possible to write fully-functional message-passing programs
by using only the six routines.

– Typeset by FoilTEX – 14

MPI: the Message Passing Interface

The minimal set of MPI routines.

MPI_Init Initializes MPI.
MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of the calling process.
MPI_Send Sends a message.
MPI_Recv Receives a message.

– Typeset by FoilTEX – 15

Starting and Terminating the MPI Library

• MPI_Init is called prior to any calls to other MPI routines. Its
purpose is to initialize the MPI environment.

• MPI_Finalize is called at the end of the computation,
and it performs various clean-up tasks to terminate the MPI
environment.

• The prototypes of these two functions are:

int MPI_Init(int *argc, char ***argv)
int MPI_Finalize()

• MPI_Init also strips off any MPI related command-line
arguments.

• All MPI routines, data-types, and constants are prefixed
by “MPI_”. The return code for successful completion is
MPI_SUCCESS.

– Typeset by FoilTEX – 16

Communicators

• A communicator defines a communication domain – a set of
processes that are allowed to communicate with each other.

• Information about communication domains is stored in
variables of type MPI_Comm.

• Communicators are used as arguments to all message transfer
MPI routines.

• A process can belong to many different (possibly overlapping)
communication domains.

• MPI defines a default communicator called MPI_COMM_WORLD
which includes all the processes.

– Typeset by FoilTEX – 17

Querying Information

• The MPI_Comm_size and MPI_Comm_rank functions are used to
determine the number of processes and the label of the calling
process, respectively.

• The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

• The rank of a process is an integer that ranges from zero up to
the size of the communicator minus one.

– Typeset by FoilTEX – 18

Our First MPI Program

#include <mpi.h>

main(int argc, char *argv[])
{
int npes, myrank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("From process %d out of %d, Hello World!\n",

myrank, npes);
MPI_Finalize();

}

– Typeset by FoilTEX – 19

Sending and Receiving Messages

• The basic functions for sending and receiving messages in MPI
are the MPI_Send and MPI_Recv, respectively.

• The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

• MPI provides equivalent datatypes for all C datatypes. This is
done for portability reasons.

• The datatype MPI_BYTE corresponds to a byte (8 bits) and
MPI_PACKED corresponds to a collection of data items that has
been created by packing non-contiguous data.

• The message-tag can take values ranging from zero up to the
MPI defined constant MPI_TAG_UB.

– Typeset by FoilTEX – 20

MPI Datatypes

MPI Datatype C Datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

– Typeset by FoilTEX – 21

Sending and Receiving Messages

• MPI allows specification of wildcard arguments for both source
and tag.

• If source is set to MPI_ANY_SOURCE, then any process of the
communication domain can be the source of the message.

• If tag is set to MPI_ANY_TAG, then messages with any tag are
accepted.

• On the receive side, the message must be of length equal to
or less than the length field specified.

– Typeset by FoilTEX – 22

Sending and Receiving Messages

• On the receiving end, the status variable can be used to get
information about the MPI_Recv operation.

• The corresponding data structure contains:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

• The MPI_Get_count function returns the precise count of data
items received.

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)

– Typeset by FoilTEX – 23

Avoiding Deadlocks

Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {
MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}
...

If MPI_Send is blocking, there is a deadlock.

– Typeset by FoilTEX – 24

Avoiding Deadlocks

Consider the following piece of code, in which process i sends a
message to process i + 1 (modulo the number of processes) and

receives a message from process i − 1 (module the number of
processes).

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
...

Once again, we have a deadlock if MPI_Send is blocking.

– Typeset by FoilTEX – 25

Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank%2 == 1) {
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);

}
else {
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);

}
...

– Typeset by FoilTEX – 26

Sending and Receiving Messages Simultaneously

To exchange messages, MPI provides the following function:

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvdatatype,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

The arguments include arguments to the send and receive
functions. If we wish to use the same buffer for both send and

receive, we can use:

int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

– Typeset by FoilTEX – 27

Topologies and Embeddings

• MPI allows a programmer to organize processors into logical k-
d meshes.

• The processor ids in MPI_COMM_WORLD can be mapped to other
communicators (corresponding to higher-dimensional meshes)
in many ways.

• The goodness of any such mapping is determined by the
interaction pattern of the underlying program and the
topology of the machine.

• MPI does not provide the programmer any control over these
mappings.

– Typeset by FoilTEX – 28

Topologies and Embeddings
0 4

21

3 5

67

8 9

101112

14 13

15

0 1 2 3

4 6 7

8 9 10 11

12 13 14 15

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

mapping
(a) Row−major

mapping
(b) Column−major

mapping
(c) Space−filling curve

mapping
(d) Hypercube

Different ways to map a set of processes to a two-dimensional
grid. (a) and (b) show a row- and column-wise mapping of these
processes, (c) shows a mapping that follows a space-filling curve

(dotted line), and (d) shows a mapping in which neighboring
processes are directly connected in a hypercube.

– Typeset by FoilTEX – 29

Creating and Using Cartesian Topologies

• We can create cartesian topologies using the function:

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims,
int *periods, int reorder, MPI_Comm *comm_cart)

This function takes the processes in the old communicator and
creates a new communicator with dims dimensions.

• Each processor can now be identified in this new cartesian
topology by a vector of dimension dims.

– Typeset by FoilTEX – 30

Creating and Using Cartesian Topologies

• Since sending and receiving messages still require (one-
dimensional) ranks, MPI provides routines to convert ranks to
cartesian coordinates and vice-versa.

int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims,
int *coords)

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

• The most common operation on cartesian topologies is a shift.
To determine the rank of source and destination of such shifts,
MPI provides the following function:

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step,
int *rank_source, int *rank_dest)

– Typeset by FoilTEX – 31

Overlapping Communication with Computation

• In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking send
and receive operations.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

• These operations return before the operations have been
completed. Function MPI_Test tests whether or not the non-
blocking send or receive operation identified by its request
has finished.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

• MPI_Wait waits for the operation to complete.

int MPI_Wait(MPI_Request *request, MPI_Status *status)

– Typeset by FoilTEX – 32

Avoiding Deadlocks

Using non-blocking operations remove most deadlocks.
Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {
MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);

}
...

Replacing either the send or the receive operations with
non-blocking counterparts fixes this deadlock.

– Typeset by FoilTEX – 33

Collective Communication and Computation
Operations

• MPI provides an extensive set of functions for performing
common collective communication operations.

• Each of these operations is defined over a group corresponding
to the communicator.

• All processors in a communicator must call these operations.

– Typeset by FoilTEX – 34

Collective Communication Operations

• The barrier synchronization operation is performed in MPI using:

int MPI_Barrier(MPI_Comm comm)

The one-to-all broadcast operation is:

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

• The all-to-one reduction operation is:

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int target,
MPI_Comm comm)

– Typeset by FoilTEX – 35

Predefined Reduction Operations

Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

– Typeset by FoilTEX – 36

Collective Communication Operations

• The operation MPI_MAXLOC combines pairs of values (vi, li) and
returns the pair (v, l) such that v is the maximum among all vi’s
and l is the corresponding li (if there are more than one, it is
the smallest among all these li’s).

• MPI_MINLOC does the same, except for minimum value of vi.

Value

Process 0 1 2 3 4 5

111712111715

MinLoc(Value, Process) = (11, 2)

MaxLoc(Value, Process) = (17, 1)

An example use of the MPI MINLOC and MPI MAXLOC operators.

– Typeset by FoilTEX – 37

Collective Communication Operations

MPI datatypes for data-pairs used with the MPI MAXLOC and MPI MINLOC
reduction operations.

MPI Datatype C Datatype
MPI_2INT pair of ints
MPI_SHORT_INT short and int
MPI_LONG_INT long and int
MPI_LONG_DOUBLE_INT long double and int
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int

– Typeset by FoilTEX – 38

Collective Communication Operations

• If the result of the reduction operation is needed by all
processes, MPI provides:

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

• To compute prefix-sums, MPI provides:

int MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

– Typeset by FoilTEX – 39

Collective Communication Operations

• The gather operation is performed in MPI using:

int MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

• MPI also provides the MPI_Allgather function in which the
data are gathered at all the processes.

int MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• The corresponding scatter operation is:

int MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source, MPI_Comm comm)

– Typeset by FoilTEX – 40

Collective Communication Operations

• The all-to-all personalized communication operation is performed by:

int MPI_Alltoall(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• Using this core set of collective operations, a number of
programs can be greatly simplified.

– Typeset by FoilTEX – 41

Groups and Communicators

• In many parallel algorithms, communication operations need
to be restricted to certain subsets of processes.

• MPI provides mechanisms for partitioning the group of
processes that belong to a communicator into subgroups each
corresponding to a different communicator.

• The simplest such mechanism is:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

This operation groups processors by color and sorts resulting
groups on the key.

– Typeset by FoilTEX – 42

Groups and Communicators

MPI_Comm_split

0 1 2 3 4 5 6 7

0 1 2 0 1 2

0 00 1 1 1 1 2

1 1 1 1 1 1 1 1

color

key

0 1 2 3 4 5 6 7process

4 0

original rank

new rank

Using MPI Comm split to split a group of processes in a
communicator into subgroups.

– Typeset by FoilTEX – 43

Groups and Communicators

• In many parallel algorithms, processes are arranged in a virtual
grid, and in different steps of the algorithm, communication
needs to be restricted to a different subset of the grid.

• MPI provides a convenient way to partition a Cartesian
topology to form lower-dimensional grids:

int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,
MPI_Comm *comm_subcart)

• If keep_dims[i] is true (non-zero value in C) then the ith
dimension is retained in the new sub-topology.

• The coordinate of a process in a sub-topology created
by MPI_Cart_sub can be obtained from its coordinate in
the original topology by disregarding the coordinates that
correspond to the dimensions that were not retained.

– Typeset by FoilTEX – 44

Groups and Communicators

2

4

7

keep_dims[] = {false, false, true}

(b)

7

2

7

keep_dims[] = {true, false, true}

(a)

Splitting a Cartesian topology of size 2 × 4 × 7 into (a) four
subgroups of size 2 × 1 × 7, and (b) eight subgroups of size

1 × 1 × 7.

– Typeset by FoilTEX – 45

