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Topic Overview

• Principles of Message-Passing Programming

• The Building Blocks: Send and Receive Operations

• MPI: the Message Passing Interface

• Topologies and Embedding

• Overlapping Communication with Computation

• Collective Communication and Computation Operations

• Groups and Communicators
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Principles of Message-Passing Programming

• The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.

• Each data element must belong to one of the partitions of the
space; hence, data must be explicitly partitioned and placed.

• All interactions (read-only or read/write) require cooperation of
two processes – the process that has the data and the process
that wants to access the data.

• These two constraints, while onerous, make underlying costs
very explicit to the programmer.
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Principles of Message-Passing Programming

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks execute
asynchronously.

• In the loosely synchronous model, tasks or subsets of
tasks synchronize to perform interactions. Between these
interactions, tasks execute completely asynchronously.

• Most message-passing programs are written using the single
program multiple data (SPMD) model.
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The Building Blocks: Send and Receive Operations

• The prototypes of these operations are as follows:

send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

• Consider the following code segments:

P0 P1

a = 100; receive(&a, 1, 0)
send(&a, 1, 1); printf("%d\n", a);
a = 0;

• The semantics of the send operation require that the value
received by process P1 must be 100 as opposed to 0.

• This motivates the design of the send and receive protocols.

– Typeset by FoilTEX – 4



Non-Buffered Blocking Message Passing Operations

• A simple method for forcing send/receive semantics is for the
send operation to return only when it is safe to do so.

• In the non-buffered blocking send, the operation does not
return until the matching receive has been encountered at the
receiving process.

• Idling and deadlocks are major issues with non-buffered
blocking sends.

• In buffered blocking sends, the sender simply copies the data
into the designated buffer and returns after the copy operation
has been completed. The data is copied at a buffer at the
receiving end as well.

• Buffering alleviates idling at the expense of copying overheads.
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Non-Buffered Blocking Message Passing Operations
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Buffered Blocking Message Passing Operations

• A simple solution to the idling and deadlocking problem
outlined above is to rely on buffers at the sending and receiving
ends.

• The sender simply copies the data into the designated buffer
and returns after the copy operation has been completed.

• The data must be buffered at the receiving end as well.

• Buffering trades off idling overhead for buffer copying
overhead.
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Buffered Blocking Message Passing Operations
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Blocking buffered transfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends;

and (b) in the absence of communication hardware, sender
interrupts receiver and deposits data in buffer at receiver end.
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Buffered Blocking Message Passing Operations

Bounded buffer sizes can have significant impact on
performance.

P0 P1

for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {
produce_data(&a); receive(&a, 1, 0);
send(&a, 1, 1); consume_data(&a);

} }

What if consumer was much slower than producer?
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Buffered Blocking Message Passing Operations

Deadlocks are still possible with buffering since receive
operations block.

P0 P1

receive(&a, 1, 1); receive(&a, 1, 0);
send(&b, 1, 1); send(&b, 1, 0);
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Non-Blocking Message Passing Operations

• The programmer must ensure semantics of the send and
receive.

• This class of non-blocking protocols returns from the send or
receive operation before it is semantically safe to do so.

• Non-blocking operations are generally accompanied by a
check-status operation.

• When used correctly, these primitives are capable of
overlapping communication overheads with useful computations.

• Message passing libraries typically provide both blocking and
non-blocking primitives.
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Non-Blocking Message Passing Operations
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Send and Receive Protocols
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MPI: the Message Passing Interface

• MPI defines a standard library for message-passing that can
be used to develop portable message-passing programs using
either C or Fortran.

• The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

• Vendor implementations of MPI are available on almost all
commercial parallel computers.

• It is possible to write fully-functional message-passing programs
by using only the six routines.
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MPI: the Message Passing Interface

The minimal set of MPI routines.

MPI_Init Initializes MPI.
MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of the calling process.
MPI_Send Sends a message.
MPI_Recv Receives a message.
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Starting and Terminating the MPI Library

• MPI_Init is called prior to any calls to other MPI routines. Its
purpose is to initialize the MPI environment.

• MPI_Finalize is called at the end of the computation,
and it performs various clean-up tasks to terminate the MPI
environment.

• The prototypes of these two functions are:

int MPI_Init(int *argc, char ***argv)
int MPI_Finalize()

• MPI_Init also strips off any MPI related command-line
arguments.

• All MPI routines, data-types, and constants are prefixed
by “MPI_”. The return code for successful completion is
MPI_SUCCESS.
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Communicators

• A communicator defines a communication domain – a set of
processes that are allowed to communicate with each other.

• Information about communication domains is stored in
variables of type MPI_Comm.

• Communicators are used as arguments to all message transfer
MPI routines.

• A process can belong to many different (possibly overlapping)
communication domains.

• MPI defines a default communicator called MPI_COMM_WORLD
which includes all the processes.
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Querying Information

• The MPI_Comm_size and MPI_Comm_rank functions are used to
determine the number of processes and the label of the calling
process, respectively.

• The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

• The rank of a process is an integer that ranges from zero up to
the size of the communicator minus one.
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Our First MPI Program

#include <mpi.h>

main(int argc, char *argv[])
{
int npes, myrank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("From process %d out of %d, Hello World!\n",

myrank, npes);
MPI_Finalize();

}
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Sending and Receiving Messages

• The basic functions for sending and receiving messages in MPI
are the MPI_Send and MPI_Recv, respectively.

• The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

• MPI provides equivalent datatypes for all C datatypes. This is
done for portability reasons.

• The datatype MPI_BYTE corresponds to a byte (8 bits) and
MPI_PACKED corresponds to a collection of data items that has
been created by packing non-contiguous data.

• The message-tag can take values ranging from zero up to the
MPI defined constant MPI_TAG_UB.
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MPI Datatypes

MPI Datatype C Datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED
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Sending and Receiving Messages

• MPI allows specification of wildcard arguments for both source
and tag.

• If source is set to MPI_ANY_SOURCE, then any process of the
communication domain can be the source of the message.

• If tag is set to MPI_ANY_TAG, then messages with any tag are
accepted.

• On the receive side, the message must be of length equal to
or less than the length field specified.
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Sending and Receiving Messages

• On the receiving end, the status variable can be used to get
information about the MPI_Recv operation.

• The corresponding data structure contains:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

• The MPI_Get_count function returns the precise count of data
items received.

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)
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Avoiding Deadlocks

Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {
MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}
...

If MPI_Send is blocking, there is a deadlock.
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Avoiding Deadlocks

Consider the following piece of code, in which process i sends a
message to process i + 1 (modulo the number of processes) and

receives a message from process i − 1 (module the number of
processes).

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
...

Once again, we have a deadlock if MPI_Send is blocking.
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Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank%2 == 1) {
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);

}
else {
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD);

}
...
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Sending and Receiving Messages Simultaneously

To exchange messages, MPI provides the following function:

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvdatatype,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

The arguments include arguments to the send and receive
functions. If we wish to use the same buffer for both send and

receive, we can use:

int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)
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Topologies and Embeddings

• MPI allows a programmer to organize processors into logical k-
d meshes.

• The processor ids in MPI_COMM_WORLD can be mapped to other
communicators (corresponding to higher-dimensional meshes)
in many ways.

• The goodness of any such mapping is determined by the
interaction pattern of the underlying program and the
topology of the machine.

• MPI does not provide the programmer any control over these
mappings.
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Topologies and Embeddings
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(dotted line), and (d) shows a mapping in which neighboring
processes are directly connected in a hypercube.
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Creating and Using Cartesian Topologies

• We can create cartesian topologies using the function:

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims,
int *periods, int reorder, MPI_Comm *comm_cart)

This function takes the processes in the old communicator and
creates a new communicator with dims dimensions.

• Each processor can now be identified in this new cartesian
topology by a vector of dimension dims.
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Creating and Using Cartesian Topologies

• Since sending and receiving messages still require (one-
dimensional) ranks, MPI provides routines to convert ranks to
cartesian coordinates and vice-versa.

int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims,
int *coords)

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

• The most common operation on cartesian topologies is a shift.
To determine the rank of source and destination of such shifts,
MPI provides the following function:

int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step,
int *rank_source, int *rank_dest)
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Overlapping Communication with Computation

• In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking send
and receive operations.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

• These operations return before the operations have been
completed. Function MPI_Test tests whether or not the non-
blocking send or receive operation identified by its request
has finished.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

• MPI_Wait waits for the operation to complete.

int MPI_Wait(MPI_Request *request, MPI_Status *status)
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Avoiding Deadlocks

Using non-blocking operations remove most deadlocks.
Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {
MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);

}
...

Replacing either the send or the receive operations with
non-blocking counterparts fixes this deadlock.
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Collective Communication and Computation
Operations

• MPI provides an extensive set of functions for performing
common collective communication operations.

• Each of these operations is defined over a group corresponding
to the communicator.

• All processors in a communicator must call these operations.
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Collective Communication Operations

• The barrier synchronization operation is performed in MPI using:

int MPI_Barrier(MPI_Comm comm)

The one-to-all broadcast operation is:

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

• The all-to-one reduction operation is:

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int target,
MPI_Comm comm)
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Predefined Reduction Operations

Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs
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Collective Communication Operations

• The operation MPI_MAXLOC combines pairs of values (vi, li) and
returns the pair (v, l) such that v is the maximum among all vi’s
and l is the corresponding li (if there are more than one, it is
the smallest among all these li’s).

• MPI_MINLOC does the same, except for minimum value of vi.

Value

Process 0 1 2 3 4 5

111712111715

MinLoc(Value, Process) = (11, 2)

MaxLoc(Value, Process) = (17, 1)

An example use of the MPI MINLOC and MPI MAXLOC operators.
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Collective Communication Operations

MPI datatypes for data-pairs used with the MPI MAXLOC and MPI MINLOC
reduction operations.

MPI Datatype C Datatype
MPI_2INT pair of ints
MPI_SHORT_INT short and int
MPI_LONG_INT long and int
MPI_LONG_DOUBLE_INT long double and int
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int
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Collective Communication Operations

• If the result of the reduction operation is needed by all
processes, MPI provides:

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

• To compute prefix-sums, MPI provides:

int MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

– Typeset by FoilTEX – 39



Collective Communication Operations

• The gather operation is performed in MPI using:

int MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

• MPI also provides the MPI_Allgather function in which the
data are gathered at all the processes.

int MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• The corresponding scatter operation is:

int MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source, MPI_Comm comm)
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Collective Communication Operations

• The all-to-all personalized communication operation is performed by:

int MPI_Alltoall(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• Using this core set of collective operations, a number of
programs can be greatly simplified.
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Groups and Communicators

• In many parallel algorithms, communication operations need
to be restricted to certain subsets of processes.

• MPI provides mechanisms for partitioning the group of
processes that belong to a communicator into subgroups each
corresponding to a different communicator.

• The simplest such mechanism is:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

This operation groups processors by color and sorts resulting
groups on the key.
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Groups and Communicators

MPI_Comm_split
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0 1 2 0 1 2

0 00 1 1 1 1 2
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4 0

original rank

new rank

Using MPI Comm split to split a group of processes in a
communicator into subgroups.
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Groups and Communicators

• In many parallel algorithms, processes are arranged in a virtual
grid, and in different steps of the algorithm, communication
needs to be restricted to a different subset of the grid.

• MPI provides a convenient way to partition a Cartesian
topology to form lower-dimensional grids:

int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,
MPI_Comm *comm_subcart)

• If keep_dims[i] is true (non-zero value in C) then the ith
dimension is retained in the new sub-topology.

• The coordinate of a process in a sub-topology created
by MPI_Cart_sub can be obtained from its coordinate in
the original topology by disregarding the coordinates that
correspond to the dimensions that were not retained.
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Groups and Communicators
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Splitting a Cartesian topology of size 2 × 4 × 7 into (a) four
subgroups of size 2 × 1 × 7, and (b) eight subgroups of size

1 × 1 × 7.
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