
Analytical Modeling of Parallel Systems

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Topic Overview

• Sources of Overhead in Parallel Programs

• Performance Metrics for Parallel Systems

• Effect of Granularity on Performance

• Scalability of Parallel Systems

• Minimum Execution Time and Minimum Cost-Optimal Execution
Time

• Asymptotic Analysis of Parallel Programs

• Other Scalability Metrics

– Typeset by FoilTEX – 1

Analytical Modeling – Basics

• A sequential algorithm is evaluated by its runtime (in general,
asymptotic runtime as a function of input size).

• The asymptotic runtime of a sequential program is identical on
any serial platform.

• The parallel runtime of a program depends on the input size,
the number of processors, and the communication parameters
of the machine.

• An algorithm must therefore be analyzed in the context of the
underlying platform.

• A parallel system is a combination of a parallel algorithm and
an underlying platform.

– Typeset by FoilTEX – 2

Analytical Modeling – Basics

• A number of performance measures are intuitive.

• Wall clock time – the time from the start of the first processor to
the stopping time of the last processor in a parallel ensemble.
But how does this scale when the number of processors
is changed of the program is ported to another machine
alltogether?

• How much faster is the parallel version? This begs the obvious
followup question – whats the baseline serial version with which
we compare? Can we use a suboptimal serial program to
make our parallel program look

• Raw FLOP count – What good are FLOP counts when they dont
solve a problem?

– Typeset by FoilTEX – 3

Sources of Overhead in Parallel Programs

• If I use two processors, shouldnt my program run twice as fast?

• No – a number of overheads, including wasted computation,
communication, idling, and contention cause degradation in
performance.

P6

Essential/Excess Computation

P7

Interprocessor Communication

P4

Idling

P5

P3

P2

P1

P0

Execution Time

The execution profile of a hypothetical parallel program
executing on eight processing elements. Profile indicates times
spent performing computation (both essential and excess),
communication, and idling.

– Typeset by FoilTEX – 4

Sources of Overheads in Parallel Programs

• Interprocess interactions: Processors working on any non-trivial
parallel problem will need to talk to each other.

• Idling: Processes may idle because of load imbalance,
synchronization, or serial components.

• Excess Computation: This is computation not performed by the
serial version. This might be because the serial algorithm is
difficult to parallelize, or that some computations are repeated
across processors to minimize communication.

– Typeset by FoilTEX – 5

Performance Metrics for Parallel Systems: Execution
Time

• Serial runtime of a program is the time elapsed between
the beginning and the end of its execution on a sequential
computer.

• The parallel runtime is the time that elapses from the moment
the first processor starts to the moment the last processor
finishes execution.

• We denote the serial runtime by TS and the parallel runtime by
TP .

– Typeset by FoilTEX – 6

Performance Metrics for Parallel Systems: Total Parallel
Overhead

• Let Tall be the total time collectively spent by all the processing
elements.

• TS is the serial time.

• Observe that Tall − TS is then the total time spend by all
processors combined in non-useful work. This is called the total
overhead.

• The total time collectively spent by all the processing elements
Tall = pTP (p is the number of processors).

• The overhead function (To) is therefore given by

To = pTP − TS. (1)

– Typeset by FoilTEX – 7

Performance Metrics for Parallel Systems: Speedup

• What is the benefit from parallelism?

• Speedup (S) is the ratio of the time taken to solve a problem
on a single processor to the time required to solve the same
problem on a parallel computer with p identical processing
elements.

– Typeset by FoilTEX – 8

Performance Metrics: Example

• Consider the problem of adding n numbers by using n
processing elements.

• If n is a power of two, we can perform this operation in log n
steps by propagating partial sums up a logical binary tree of
processors.

– Typeset by FoilTEX – 9

Performance Metrics: Example
0 3 4 111 2 5 6 7 8 9 10 12 13 14 15

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

Σ0
15

Σ0 Σ15

ΣΣΣΣ0
3

4
7

8
11

12
15

Σ0 Σ Σ Σ Σ Σ Σ Σ151
2
3

4
5

6
7

8
9

10
11

12
13

14

7
8

(d) Fourth communication step

(c) Third communication step

(b) Second communication step

(a) Initial data distribution and the first communication step

(e) Accumulation of the sum at processing element 0 after the final communication

Computing the globalsum of 16 partial sums using 16
processing elements . Σj

i denotes the sum of numbers with
consecutive labels from i to j.

– Typeset by FoilTEX – 10

Performance Metrics: Example (continued)

• If an addition takes constant time, say, tc and communication
of a single word takes time ts + tw, we have the parallel time
TP = Θ(log n)

• We know that TS = Θ(n)

• Speedup S is given by S = Θ
(

n
log n

)

– Typeset by FoilTEX – 11

Performance Metrics: Speedup

• For a given problem, there might be many serial algorithms
available. These algorithms may have different asymptotic
runtimes and may be parallelizable to different degrees.

• For the purpose of computing speedup, we always consider
the best sequential program as the baseline.

– Typeset by FoilTEX – 12

Performance Metrics: Speedup Example

• Consider the problem of parallel bubble sort.

• The serial time for bubblesort is 150 seconds.

• The parallel time for odd-even sort (efficient parallelization of
bubble sort) is 40 seconds.

• The speedup would appear to be 150/40 = 3.75.

• But is this really a fair assessment of the system?

• What if serial quicksort only took 30 seconds? In this case, the
speedup is 30/40 = 0.75. This is a more realistic assessment of
the system.

– Typeset by FoilTEX – 13

Performance Metrics: Speedup Bounds

• Speedup can be as low as 0 (the parallel program never
terminates).

• Speedup, in theory, should be upper bounded by p – after all,
we can only expect a p-fold speedup if we use p times as many
resources.

• A speedup greater than p is possible only if each processing
element spends less than time TS/p solving the problem.

• In this case, a single processor could be timeslided to achieve
a faster serial program, which contradicts our assumption of
fastest serial program as basis for speedup.

– Typeset by FoilTEX – 14

Performance Metrics: Superlinear Speedups

One reason for superlinearity is that the parallel version does
less work than corresponding serial algorithm.

Processing element 1Processing element 0

S

Searching an unstructured tree for a node with a given label,
‘S’, on two processing elements using depth-first traversal. The
two-processor version with processor 0 searching the left subtree
and processor 1 searching the right subtree expands only the
shaded nodes before the solution is found. The corresponding
serial formulation expands the entire tree. It is clear that the serial
algorithm does more work than the parallel algorithm.

– Typeset by FoilTEX – 15

Performance Metrics: Superlinear Speedups

Resource-based superlinearity: The higher aggregate cache/memory
bandwidth can result in better cache-hit ratios, and therefore
superlinearity.

Example: A processor with 64KB of cache yields an 80% hit
ratio. If two processors are used, since the problem size/processor
is smaller, the hit ratio goes up to 90%. Of the remaining 10%
access, 8% come from local memory and 2% from remote
memory.

If DRAM access time is 100 ns, cache access time is 2 ns,
and remote memory access time is 400ns, this corresponds to a
speedup of 2.43!

– Typeset by FoilTEX – 16

Performance Metrics: Efficiency

• Efficiency is a measure of the fraction of time for which a
processing element is usefully employed

• Mathematically, it is given by

E =
S

p
. (2)

• Following the bounds on speedup, efficiency can be as low as
0 and as high as 1.

– Typeset by FoilTEX – 17

Performance Metrics: Efficiency Example

• The speedup S of adding n numbers on n processors is given
by S = n

log n.

• Efficiency E is given by

E =
Θ

(

n
log n

)

n

= Θ

(

1

log n

)

– Typeset by FoilTEX – 18

Parallel Time, Speedup, and Efficiency Example

Consider the problem of edge-detection in images. The
problem requires us to apply a 3 × 3 template to each pixel. If
each multiply-add operation takes time tc, the serial time for an
n × n image is given by TS = tcn

2.

(b)(a)

3210

(c)

0

1

2

1

0

0

−1

−2

−1

−1

0

1

1

−2

0

2

0

−1

Example of edge detection: (a) an 8 × 8 image; (b) typical
templates for detecting edges; and (c) partitioning of the image
across four processors with shaded regions indicating image data
that must be communicated from neighboring processors to
processor 1.

– Typeset by FoilTEX – 19

Parallel Time, Speedup, and Efficiency Example
(continued)

• One possible parallelization partitions the image equally into
vertical segments, each with n2/p pixels.

• The boundary of each segment is 2n pixels. This is also the
number of pixel values that will have to be communicated. This
takes time 2(ts + twn).

• Templates may now be applied to all n2/p pixels in time TS =
9tcn

2/p.

– Typeset by FoilTEX – 20

Parallel Time, Speedup, and Efficiency Example
(continued)

• The total time for the algorithm is therefore given by:

TP = 9tc
n2

p
+ 2(ts + twn)

• The corresponding values of speedup and efficiency are given
by:

S =
9tcn

2

9tc
n2

p + 2(ts + twn)

and
E =

1

1 + 2p(ts+twn)
9tcn2

.

– Typeset by FoilTEX – 21

Cost of a Parallel System

• Cost is the product of parallel runtime and the number of
processing elements used (p × TP).

• Cost reflects the sum of the time that each processing element
spends solving the problem.

• A parallel system is said to be cost-optimal if the cost of solving
a problem on a parallel computer is asymptotically identical to
serial cost.

• Since E = TS/pTP , for cost optimal systems, E = O(1).

• Cost is sometimes referred to as work or processor-time
product.

– Typeset by FoilTEX – 22

Cost of a Parallel System: Example

Consider the problem of adding n numbers on n processors.

• We have, TP = log n (for p = n).

• The cost of this system is given by pTP = n log n.

• Since the serial runtime of this operation is Θ(n), the algorithm
is not cost optimal.

– Typeset by FoilTEX – 23

Impact of Non-Cost Optimality

Consider a sorting algorithm that uses n processing elements
to sort the list in time (log n)2.

• Since the serial runtime of a (comparison-based) sort is n log n,
the speedup and efficiency of this algorithm are given by
n/ log n and 1/ log n, respectively.

• The pTP product of this algorithm is n(log n)2.

• This algorithm is not cost optimal but only by a factor of log n.

• If p < n, assigning n tasks to p processors gives TP = n(log n)2/p.

• The corresponding speedup of this formulation is p/ log n.

• This speedup goes down as the problem size n is increased for
a given p!

– Typeset by FoilTEX – 24

Effect of Granularity on Performance

• Often, using fewer processors improves performance of parallel
systems.

• Using fewer than the maximum possible number of processing
elements to execute a parallel algorithm is called scaling down
a parallel system.

• A naive way of scaling down is to think of each processor in
the original case as a virtual processor and to assign virtual
processors equally to scaled down processors.

• Since the number of processing elements decreases by a
factor of n/p, the computation at each processing element
increases by a factor of n/p.

• The communication cost should not increase by this factor
since some of the virtual processors assigned to a physical
processors might talk to each other. This is the basic reason
for the improvement from building granularity.

– Typeset by FoilTEX – 25

Building Granularity: Example

Consider the problem of adding n numbers on p processing
elements such that p < n and both n and p are powers of 2.

• Use the parallel algorithm for n processors, except, in this case,
we think of them as virtual processors.

• Each of the p processors is now assigned n/p virtual processors.

• The first log p of the log n steps of the original algorithm are
simulated in (n/p) log p steps on p processing elements.

• Subsequent log n−log p steps do not require any communication.

– Typeset by FoilTEX – 26

Building Granularity: Example (continued)

• The overall parallel execution time of this parallel system is
Θ((n/p) log p).

• The cost is Θ(n log p), which is asymptotically higher than the
Θ(n) cost of adding n numbers sequentially. Therefore, the
parallel system is not cost-optimal.

– Typeset by FoilTEX – 27

Building Granularity: Example (continued)

Can we build granularity in the example in a cost-optimal
fashion?

• Each processing element locally adds its n/p numbers in time
Θ(n/p).

• The p partial sums on p processing elements can be added in
time Θ(log p)

12

13

14

15

840

1 5 9

10

11 7

62

 3

Σ ΣΣ Σ15
0
3

4
7

8
11

12

0 1 2 3 0 1 2 3

(a) (b)

Σ Σ0 8
7 15

0 1 2 3

Σ0
15

0 1 32

(d)(c)

A cost-optimal way of computing the sum of 16 numbers using
four processing elements.

– Typeset by FoilTEX – 28

Building Granularity: Example (continued)

• The parallel runtime of this algorithm is

TP = Θ(n/p + log p), (3)

• The cost is Θ(n + p log p).

• This is cost-optimal, so long as n = Ω(p log p)!

– Typeset by FoilTEX – 29

Scalability of Parallel Systems

How do we extrapolate performance from small problems and
small systems to larger problems on larger configurations?

Consider three parallel algorithms for computing an n-point
Fast Fourier Transform (FFT) on 64 processing elements.

180001600014000120001000080006000400020000
0

5

10

15

20

25

30

35

40

45

Binary exchange
2-D transpose
3-D transpose

n

S

A comparison of the speedups obtained by the binary-
exchange, 2-D transpose and 3-D transpose algorithms on 64
processing elements with tc = 2, tw = 4, ts = 25, and th = 2.

Clearly, it is difficult to infer scaling characteristics from
observations on small datasets on small machines.

– Typeset by FoilTEX – 30

Scaling Characteristics of Parallel Programs

• The efficiency of a parallel program can be written as:

E =
S

p
=

TS

pTP

or
E =

1

1 + To
TS

. (4)

• The total overhead function To is an increasing function of p.

– Typeset by FoilTEX – 31

Scaling Characteristics of Parallel Programs

• For a given problem size (i.e., the value of TS remains
constant), as we increase the number of processing elements,
To increases.

• The overall efficiency of the parallel program goes down. This is
the case for all parallel programs.

– Typeset by FoilTEX – 32

Scaling Characteristics of Parallel Programs: Example

Consider the problem of adding n numbers on p processing
elements.

We have seen that:

TP =
n

p
+ 2 log p (5)

S =
n

n
p + 2 log p

(6)

E =
1

1 + 2p log p
n

(7)

– Typeset by FoilTEX – 33

Scaling Characteristics of Parallel Programs: Example
(continued)

Plotting the speedup for various input sizes gives us:

 = 64

 = 192

 = 320

 = 512

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Linear

p

S

n

n

n

n

Speedup versus the number of processing elements for adding
a list of n umbers.

Speedup tends to saturate and efficiency drops as a
consequence of Amdahl’s law.

– Typeset by FoilTEX – 34

Scaling Characteristics of Parallel Programs

• Total overhead function To is a function of both problem size TS

and the number of processing elements p.

• In many cases, To grows sublinearly with respect to TS.

• In such cases, the efficiency increases if the problem size
is increased keeping the number of processing elements
constant.

• For such systems, we can simultaneously increase the problem
size and number of processors to keep efficiency constant.

• We call such systems scalable parallel systems.

– Typeset by FoilTEX – 35

Scaling Characteristics of Parallel Programs

• Recall that cost-optimal parallel systems have an efficiency of
Θ(1).

• Scalability and cost-optimality are therefore related.

• A scalable parallel system can always be made cost-optimal
if the number of processing elements and the size of the
computation are chosen appropriately.

– Typeset by FoilTEX – 36

Isoefficiency Metric of Scalability

• For a given problem size, as we increase the number of
processing elements, the overall efficiency of the parallel
system goes down for all systems.

• For some systems, the efficiency of a parallel system increases
if the problem size is increased while keeping the number of
processing elements constant.

– Typeset by FoilTEX – 37

Isoefficiency Metric of Scalability

(a) (b)

E

W

Fixed number of processors (p)Fixed problem size (W)

p

E

Variation of efficiency: (a) as the number of processing
elements is in creased for a given problem size; and (b) as
the problem size is increased for a given number of processing
elements. The phenomenon illustrated in graph (b) is not
common to all parallel systems.

– Typeset by FoilTEX – 38

Isoefficiency Metric of Scalability

• What is the rate at which the problem size must increase with
respect to the number of processing elements to keep the
efficiency fixed?

• This rate determines the scalability of the system. The slower this
rate, the better.

• Before we formalize this rate, we define the problem size W as
the asymptotic number of operations associated with the best
serial algorithm to solve the problem.

– Typeset by FoilTEX – 39

Isoefficiency Metric of Scalability

• We can write parallel runtime as:

TP =
W + To(W,p)

p
(8)

• The resulting expression for speedup is

S =
W

TP

=
Wp

W + To(W,p)
. (9)

• Finally, we write the expression for efficiency as

E =
S

p

=
W

W + To(W,p)

=
1

1 + To(W, p)/W
. (10)

– Typeset by FoilTEX – 40

Isoefficiency Metric of Scalability

• For scalable parallel systems, efficiency can be maintained at
a fixed value (between 0 and 1) if the ratio To/W is maintained
at a constant value.

• For a desired value E of efficiency,

E =
1

1 + To(W,p)/W
,

To(W,p)

W
=

1 − E

E
,

W =
E

1 − E
To(W,p). (11)

• If K = E/(1 − E) is a constant depending on the efficiency to
be maintained, since To is a function of W and p, we have

W = KTo(W, p). (12)

– Typeset by FoilTEX – 41

Isoefficiency Metric of Scalability

• The problem size W can usually be obtained as a function of p
by algebraic manipulations to keep efficiency constant.

• This function is called the isoefficiency function.

• This function determines the ease with which a parallel
system can maintain a constant efficiency and hence achieve
speedups increasing in proportion to the number of processing
elements.

– Typeset by FoilTEX – 42

Isoefficiency Metric: Example

• The overhead function for the problem of adding n numbers
on p processing elements is approximately 2p log p.

• Substituting To by 2p log p, we get

W = K2p log p. (13)

Thus, the asymptotic isoefficiency function for this parallel
system is Θ(p log p).

• If the number of processing elements is increased from p to
p′, the problem size (in this case, n) must be increased by a
factor of (p′ log p′)/(p log p) to get the same efficiency as on p
processing elements.

– Typeset by FoilTEX – 43

Isoefficiency Metric: Example

Consider a more complex example where To = p3/2+p3/4W 3/4.

• Using only the first term of To in Equation 12, we get

W = Kp3/2. (14)

• Using only the second term, Equation 12 yields the following
relation between W and p:

W = Kp3/4W 3/4

W 1/4 = Kp3/4

W = K4p3 (15)

• The larger of these two asymptotic rates determines the
isoefficiency. This is given by Θ(p3).

– Typeset by FoilTEX – 44

Cost-Optimality and the Isoefficiency Function

• A parallel system is cost-optimal if and only if

pTP = Θ(W). (16)

• From this, we have:

W + To(W, p) = Θ(W)

To(W, p) = O(W) (17)

W = Ω(To(W,p)) (18)

• If we have an isoefficiency function f(p), then it follows that
the relation W = Ω(f(p)) must be satisfied to ensure the cost-
optimality of a parallel system as it is scaled up.

– Typeset by FoilTEX – 45

Lower Bound on the Isoefficiency Function

• For a problem consisting of W units of work, no more than W
processing elements can be used cost-optimally.

• The problem size must increase at least as fast as Θ(p) to
maintain fixed efficiency; hence, Ω(p) is the asymptotic lower
bound on the isoefficiency function.

– Typeset by FoilTEX – 46

Degree of Concurrency and the Isoefficiency Function

• The maximum number of tasks that can be executed
simultaneously at any time in a parallel algorithm is called its
degree of concurrency.

• If C(W) is the degree of concurrency of a parallel algorithm,
then for a problem of size W , no more than C(W) processing
elements can be employed effectively.

– Typeset by FoilTEX – 47

Degree of Concurrency and the Isoefficiency
Function: Example

Consider solving a system of n equations in n variables by using
Gaussian elimination (W = Θ(n3))

• The n variables must be eliminated one after the other, and
eliminating each variable requires Θ(n2) computations.

• At most Θ(n2) processing elements can be kept busy at any
time.

• Since W = Θ(n3) for this problem, the degree of concurrency
C(W) is Θ(W 2/3).

• Given p processing elements, the problem size should be at
least Ω(p3/2) to use them all.

– Typeset by FoilTEX – 48

Minimum Execution Time and Minimum Cost-Optimal
Execution Time

Often, we are interested in the minimum time to solution.

• We can determine the minimum parallel runtime T min
P for a

given W by differentiating the expression for TP w.r.t. p and
equating it to zero.

d
dp

TP = 0 (19)

• If p0 is the value of p as determined by this equation, TP (p0) is
the minimum parallel time.

– Typeset by FoilTEX – 49

Minimum Execution Time: Example

Consider the minimum execution time for adding n numbers.

TP =
n

p
+ 2 log p. (20)

Setting the derivative w.r.t. p to zero, we have p = n/2. The
corresponding runtime is

Tmin
P = 2 log n. (21)

(One may verify that this is indeed a min by verifying that the
second derivative is positive).

Note that at this point, the formulation is not cost-optimal.

– Typeset by FoilTEX – 50

Minimum Cost-Optimal Parallel Time

• Let T cost opt
P be the minimum cost-optimal parallel time.

• If the isoefficiency function of a parallel system is Θ(f(p)), then
a problem of size W can be solved cost-optimally if and only if
W = Ω(f(p)).

• In other words, for cost optimality, p = O(f−1(W)).

• For cost-optimal systems, TP = Θ(W/p), therefore,

T cost opt
P = Ω

(

W

f−1(W)

)

. (22)

– Typeset by FoilTEX – 51

Minimum Cost-Optimal Parallel Time: Example

Consider the problem of adding n numbers.

• The isoefficiency function f(p) of this parallel system is Θ(p log p).

• From this, we have p ≈ n/log n.

• At this processor count, the parallel runtime is:

T cost opt
P = log n + log

(

n

log n

)

= 2 log n − log log n. (23)

• Note that both T min
P and T cost opt

P for adding n numbers are
Θ(log n). This may not always be the case.

– Typeset by FoilTEX – 52

Asymptotic Analysis of Parallel Programs

Consider the problem of sorting a list of n numbers. The fastest
serial programs for this problem run in time O(n log n). Consider
four parallel algorithms, A1, A2, A3, and A4 as follows:

Comparison of four different algorithms for sorting a given list
of numbers. The table shows number of processing elements,
parallel runtime, speedup, efficiency and the pTP product.

Algorithm A1 A2 A3 A4

p n2 log n n
√

n

TP 1 n
√

n
√

n log n

S n log n log n
√

n log n
√

n

E log n
n 1 log n√

n
1

pTP n2 n log n n1.5 n log n

– Typeset by FoilTEX – 53

Asymptotic Analysis of Parallel Programs

• If the metric is speed, algorithm A1 is the best, followed by A3,
A4, and A2 (in order of increasing TP .

• In terms of efficiency, A2 and A4 are the best, followed by A3
and A1.

• In terms of cost, algorithms A2 and A4 are cost optimal, A1 and
A3 are not.

• It is important to identify the objectives of analysis and to use
appropriate metrics!

– Typeset by FoilTEX – 54

Other Scalability Metrics

• A number of other metrics have been proposed, dictated by
specific needs of applications.

• For real-time applications, the objective is to scale up a system
to accomplish a task in a specified time bound.

• In memory constrained environments, metrics operate at the
limit of memory and estimate performance under this problem
growth rate.

– Typeset by FoilTEX – 55

Other Scalability Metrics: Scaled Speedup

• Speedup obtained when the problem size is increased linearly
with the number of processing elements.

• If scaled speedup is close to linear, the system is considered
scalable.

• If the isoefficiency is near linear, scaled speedup curve is close
to linear as well.

• If the aggregate memory grows linearly in p, scaled speedup
increases problem size to fill memory.

• Alternately, the size of the problem is increased subject to an
upper-bound on parallel execution time.

– Typeset by FoilTEX – 56

Scaled Speedup: Example

• The serial runtime of multiplying a matrix of dimension n×n with
a vector is tcn

2.

• For a given parallel algorithm,

S =
tcn

2

tc
n2

p + ts log p + twn
(24)

• Total memory requirement of this algorithm is Θ(n2).

– Typeset by FoilTEX – 57

Scaled Speedup: Example (continued)

Consider the case of memory-constrained scaling.

• We have m = Θ(n2) = Θ(p).

• Memory constrained scaled speedup is given by

S′ =
tcc × p

tc
c×p

p + ts log p + tw
√

c × p

or S′ = O(
√

p).

• This is not a particularly scalable system.

– Typeset by FoilTEX – 58

Scaled Speedup: Example (continued)

Consider the case of time-constrained scaling.

• We have TP = O(n2/p).

• Since this is constrained to be constant, n2 = O(p).

• Note that in this case, time-constrained speedup is identical to
memory constrained speedup.

• This is not surprising, since the memory and time complexity of
the operation are identical.

– Typeset by FoilTEX – 59

Scaled Speedup: Example

• The serial runtime of multiplying two matrices of dimension n×n
is tcn

3.

• The parallel runtime of a given algorithm is:

TP = tc
n3

p
+ ts log p + 2tw

n2

√
p

• The speedup S is given by:

S =
tcn

3

tc
n3

p + ts log p + 2tw
n2
√

p

(25)

– Typeset by FoilTEX – 60

Scaled Speedup: Example (continued)

Consider memory-constrained scaled speedup.

• We have memory complexity m = Θ(n2) = Θ(p), or n2 = c × p.

• At this growth rate, scaled speedup S ′ is given by:

S′ =
tc(c × p)1.5

tc
(c×p)1.5

p + ts log p + 2tw
c×p√

p

= O(p)

• Note that this is scalable.

– Typeset by FoilTEX – 61

Scaled Speedup: Example (continued)

Consider time–constrained scaled speedup.

• We have TP = O(1) = O(n3/p), or n3 = c × p.

• Time-constrained speedup S ′′ is given by:

S′′ =
tcc × p

tc
c×p

p + ts log p + 2tw
(c×p)2/3

√
p

= O(p5/6)

• Memory constrained scaling yields better performance.

– Typeset by FoilTEX – 62

Serial Fraction f

• If the serial runtime of a computation can be divided into a
totally parallel and a totally serial component, we have:

W = Tser + Tpar.

• From this, we have,

TP = Tser +
Tpar

p
.

TP = Tser +
W − Tser

p
(26)

– Typeset by FoilTEX – 63

Serial Fraction f

• The serial fraction f of a parallel program is defined as:

f =
Tser

W
.

Therefore, we have:

TP = f × W +
W − f × W

p

TP

W
= f +

1 − f

p

– Typeset by FoilTEX – 64

Serial Fraction

• Since S = W/TP , we have

1

S
= f +

1 − f

p
.

• From this, we have:

f =
1/S − 1/p

1 − 1/p
. (27)

• If f increases with the number of processors, this is an indicator
of rising overhead, and thus an indicator of poor scalability.

– Typeset by FoilTEX – 65

Serial Fraction: Example

Consider the problem of extimating the serial component of
the matrix-vector product.

We have:

f =

tc
n2

p +ts log p+twn

tcn2

1 − 1/p
(28)

or

f =
tsp log p + twnp

tcn2
×

1

p − 1

f ≈
ts log p + twn

tcn2

Here, the denominator is the serial runtime and the numerator
is the overhead.

– Typeset by FoilTEX – 66

