
Principles of Parallel Algorithm Design

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Chapter Overview: Algorithms and Concurrency

• Introduction to Parallel Algorithms

– Tasks and Decomposition
– Processes and Mapping
– Processes Versus Processors

• Decomposition Techniques

– Recursive Decomposition
– Recursive Decomposition
– Exploratory Decomposition
– Hybrid Decomposition

• Characteristics of Tasks and Interactions

– Task Generation, Granularity, and Context
– Characteristics of Task Interactions.

– Typeset by FoilTEX – 1

Chapter Overview: Concurrency and Mapping

• Mapping Techniques for Load Balancing

– Static and Dynamic Mapping

• Methods for Minimizing Interaction Overheads

– Maximizing Data Locality
– Minimizing Contention and Hot-Spots
– Overlapping Communication and Computations
– Replication vs. Communication
– Group Communications vs. Point-to-Point Communication

• Parallel Algorithm Design Models

– Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and Hybrid
Models

– Typeset by FoilTEX – 2

Preliminaries: Decomposition, Tasks, and
Dependency Graphs

• The first step in developing a parallel algorithm is to decompose
the problem into tasks that can be executed concurrently

• A given problem may be docomposed into tasks in many
different ways.

• Tasks may be of same, different, or even interminate sizes.

• A decomposition can be illustrated in the form of a directed
graph with nodes corresponding to tasks and edges indicating
that the result of one task is required for processing the next.
Such a graph is called a task dependency graph.

– Typeset by FoilTEX – 3

Example: Multiplying a Dense Matrix with a Vector

b yA

10 n
Task 1

Task n
n-1

2

Computation of each element of output vector y is independent of other
elements. Based on this, a dense matrix-vector product can be decomposed

into n tasks. The figure highlights the portion of the matrix and vector
accessed by Task 1.

Observations: While tasks share data (namely, the vector b), they
do not have any control dependencies – i.e., no task needs to
wait for the (partial) completion of any other. All tasks are of the
same size in terms of number of operations. Is this the maximum
number of tasks we could decompose this problem into?

– Typeset by FoilTEX – 4

Example: Database Query Processing

Consider the execution of the query:

MODEL = ‘‘CIVIC’’ AND YEAR = 2001 AND
(COLOR = ‘‘GREEN’’ OR COLOR = ‘‘WHITE)

on the following database:

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

– Typeset by FoilTEX – 5

Example: Database Query Processing

The execution of the query can be divided into subtasks in
various ways. Each task can be thought of as generating an
intermediate table of entries that satisfy a particular clause.

Civic AND 2001 AND (White OR Green)

White OR Green

2001Civic

Civic AND 2001

White Green

6734

ID# Model Year Color

6734
4395

ID# Model Year

4395
3845
5342
6734
7623

ID# Year

4523
6734
4395
7352

ID# Model

Civic
Civic
Civic
Civic

2001
2001
2001
2001
2001

Civic
Civic

2001
2001

3476
6734

ColorID# 7623
9834
5342
8354

ID# Color

3476
7623
9834
6734
5342
8354

ID# Color

Civic 2001 White

Green
Green
White
Green
Green
White

White
White

Green
Green
Green
Green

Decomposing the given query into a number of tasks.
Edges in this graph denote that the output of one task

is needed to accomplish the next.

– Typeset by FoilTEX – 6

Example: Database Query Processing

Note that the same problem can be decomposed into subtasks
in other ways as well.

2001 AND (White or Green)

Green

Civic AND 2001 AND (White OR Green)

Civic 2001 White

White OR Green

7623

6734 Civic White

ID# Model Year Color

2001

3476
6734

White
White

ColorID#

3476
7623
9834
6734
5342
8354

8354

Green
Green
White
Green
Green
White

ID# Color

Green
Green

4395
3845
5342
6734
7623

ID# Year

2001
2001
2001
2001
2001

20017623 Green
20016734 White

Green

ID# YearColor

2001Green5342

Green

ID# Color

4523
6734
4395
7352

Civic
Civic
Civic
Civic

ID# Model

5342
9834

An alternate decomposition of the given problem into
subtasks, along with their data dependencies.

Different task decompositions may lead to significant differences
with respect to their eventual parallel performance.

– Typeset by FoilTEX – 7

Granularity of Task Decompositions

• The number of tasks into which a problem is decomposed
determines its granularity.

• Decomposition into a large number of tasks results in fine-
grained decomposition and that into a small number of tasks
results in a coarse grained decomposition.

n10

A yb

...

Task 4

Task 2

Task 3

Task 1

A coarse grained counterpart to the dense matrix-vector product
example. Each task in this example corresponds to the computation of three
elements of the result vector.

– Typeset by FoilTEX – 8

Degree of Concurrency

• The number of tasks that can be executed in parallel is the
degree of concurrency of a decomposition.

• Since the number of tasks that can be executed in parallel
may change over program execution, the maximum degree
of concurrency is the maximum number of such tasks at any
point during execution. What is the maximum degree of
concurrency of the database query examples?

• The average degree of concurrency is the average number
of tasks that can be processed in parallel over the execution
of the program. Assuming that each tasks in the database
example takes identical processing time, what is the average
degree of concurrency in each decomposition?

• The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

– Typeset by FoilTEX – 9

Critical Path Length

• A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the other.

• The longest such path determines the shortest time in which the
program can be executed in parallel.

• The length of the longest path in a task dependency graph is
called the critical path length.

– Typeset by FoilTEX – 10

Critical Path Length

Consider the task dependency graphs of the two database
query decompositions:

10 10 10

Task 7

10

6

7

10 10 10 10

8

9 6

11

(a) (b)

Task 1Task 1Task 2Task 3Task 4

Task 5Task 6

Task 7

Task 2Task 3Task 4

Task 5

Task 6

What are the critical path lengths for the two task dependency graphs?
If each task takes 10 time units, what is the shortest parallel execution time
for each decomposition? How many processors are needed in each case to
achieve this minimum parallel execution time? What is the maximum degree
of concurrency?

– Typeset by FoilTEX – 11

Limits on Parallel Performance

• It would appear that the parallel time can be made arbitrarily
small by making the decomposition finer in granularity.

• There is an inherent bound on how fine the granularity of a
computation can be. For example, in the case of multiplying
a dense matrix with a vector, there can be no more than (n2)
concurrent tasks.

• Concurrent tasks may also have to exchange data with other
tasks. This results in communication overhead. The tradeoff
between the granularity of a decomposition and associated
overheads often determines performance bounds.

– Typeset by FoilTEX – 12

Task Interaction Graphs

• Subtasks generally exchange data with others in a decomposition.
For example, even in the trivial decomposition of the dense
matrix-vector product, if the vector is not replicated across all
tasks, they will have to communicate elements of the vector.

• The graph of tasks (nodes) and their interactions/data
exchange (edges) is referred to as a task interaction graph.

• Note that task interaction graphs represent data dependencies,
whereas task dependency graphs represent control dependencies.

– Typeset by FoilTEX – 13

Task Interaction Graphs: An Example

Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can be made:

• As before, the computation of each element of the result vector can be
viewed as an independent task.

• Unlike a dense matrix-vector product though, only non-zero elements of
matrix A participate in the computation.

• If, for memory optimality, we also partition b across tasks, then one can see
that the task interaction graph of the computation is identical to the graph
of the matrix A (the graph for which A represents the adjacency structure).

4 5 6 7 8 9 10110
b

21
A

3

(b)

2

4 6

1
3

5

11109

0

8

7

Task 0

Task 11

8

4

(a)

– Typeset by FoilTEX – 14

Task Interaction Graphs, Granularity, and
Communication

In general, if the granularity of a decomposition is finer, the
associated overhead (as a ratio of useful work assocaited with a
task) increases.

Example: Consider the sparse matrix-vector product example
from previous foil. Assume that each node takes unit time to
process and each interaction (edge) causes an overhead of a
unit time.

Viewing node 0 as an independent task involves a useful
computation of one time unit and overhead (communication) of
three time units.

Now, if we consider nodes 0, 4, and 5 as one task, then
the task has useful computation totaling to three time units and
communication corresponding to four time units (four edges).
Clearly, this is a more favorable ratio than the former case.

– Typeset by FoilTEX – 15

Processes and Mapping

• In general, the number of tasks in a decomposition exceeds
the number of processing elements available.

• For this reason, a parallel algorithm must also provide a
mapping of tasks to processes.

Note: We refer to the mapping as being from tasks to processes, as opposed
to processors. This is because typical programming APIs, as we shall see, do
not allow easy binding of tasks to physical processors. Rather, we aggregate
tasks into processes and rely on the system to map these processes to physical
processors. We use processes, not in the UNIX sense of a process, rather, simply
as a collection of tasks and associated data.

– Typeset by FoilTEX – 16

Processes and Mapping

• Appropriate mapping of tasks to processes is critical to the
parallel performance of an algorithm.

• Mappings are determined by both the task dependency and
task interaction graphs.

• Task dependency graphs can be used to ensure that work
is equally spread across all processes at any point (minimum
idling and optimal load balance).

• Task interaction graphs can be used to make sure that
processes need minimum interaction with other processes
(minimum communication).

– Typeset by FoilTEX – 17

Processes and Mapping

An appropriate mapping must minimize parallel execution time
by:

• Mapping independent tasks to different processes.

• Assigning tasks on critical path to processes as soon as they
become available.

• Minimizing interaction between processes by mapping tasks
with dense interactions to the same process.

Note: These criteria often conflict eith each other. For example,
a decomposition into one task (or no decomposition at all)
minimizes interaction but does not result in a speedup at all! Can
you think of other such conflicting cases?

– Typeset by FoilTEX – 18

Processes and Mapping: Example

0
P1P2P3

P0P0

P0P2
P0

P0

P1

10 10 10 10

6

7

10 10 10 10

8

9 6

11

(a) (b)

Task 1Task 1Task 2Task 3Task 4

Task 5Task 6

Task 7

Task 2Task 3Task 4

Task 5

Task 6

Task 7

P P P P03 2

Mapping tasks in the database query decomposition to
processes. These mappings were arrived at by viewing the
dependency graph in terms of levels (no two nodes in a level
have dependencies). Tasks within a single level are then assigned
to different processes.

– Typeset by FoilTEX – 19

Decomposition Techniques

So how does one decompose a task into various subtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used techniques that apply to broad
classes of problems. These include:

• recursive decomposition

• data decomposition

• exploratory decomposition

• speculative decomposition

– Typeset by FoilTEX – 20

Recursive Decomposition

• Generally suited to problems that are solved using the divide-
and-conquer strategy.

• A given problem is first decomposed into a set of sub-problems.

• These sub-problems are recursively decomposed further until a
desired granularity is reached.

– Typeset by FoilTEX – 21

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which
we can apply recursive decomposition is Quicksort.

11 12

10

9

65 87

3 421

1

11

2

1 3 4 2

3 4

865 1 311 47 2912 10

11 6 8 7 95 12 10

6 8 75

875 6 10 12 11

119 12 10

12

In this example, once the list has been partitioned around the pivot,
each sublist can be processed concurrently (i.e., each sublist represents an
independent subtask). This can be repeated recursively.

– Typeset by FoilTEX – 22

Recursive Decomposition: Example

The problem of finding the minimum number in a given list
(or indeed any other associative operation such as sum, AND,
etc.) can be fashioned as a divide-and-conquer algorithm. The
following algorithm illustrates this.

We first start with a simple serial loop for computing the
minimum entry in a given list:

1. procedure SERIAL MIN (A,n)
2. begin
3. min = A[0];
4. for i := 1 to n − 1 do
5. if (A[i] < min) min := A[i];
6. endfor;
7. return min;
8. end SERIAL MIN

– Typeset by FoilTEX – 23

Recursive Decomposition: Example

We can rewrite the loop as follows:

1. procedure RECURSIVE MIN (A,n)
2. begin
3. if (n = 1) then
4. min := A[0];
5. else
6. lmin := RECURSIVE MIN (A,n/2);
7. rmin := RECURSIVE MIN (&(A[n/2]), n − n/2);
8. if (lmin < rmin) then
9. min := lmin;
10. else
11. min := rmin;
12. endelse;
13. endelse;
14. return min;
15. end RECURSIVE MIN

– Typeset by FoilTEX – 24

Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using
a recursive decomposition strategy. We illustrate this with the
following example of finding the minimum number in the set {4,
9, 1, 7, 8, 11, 2, 12}. The task dependency graph associated with
this computation is as follows:

min(1,7) min(8,11)min(4,9) min(2,12)

min(1,2)

min(4,1) min(8,2)

– Typeset by FoilTEX – 25

Data Decomposition

• Identify the data on which computations are performed.

• Partition this data across various tasks.

• This partitioning induces a decomposition of the problem.

• Data can be partitioned in various ways – this critically impacts
performance of a parallel algorithm.

– Typeset by FoilTEX – 26

Data Decomposition: Output Data Decomposition

• Often, each element of the output can be computed
independently of others (but simply as a function of the input).

• A partition of the output across tasks decomposes the problem
naturally.

– Typeset by FoilTEX – 27

Output Data Decomposition: Example

Consider the problem of multiplying two n × n matrices A and B
to yield matrix C. The output matrix C can be partitioned into four
tasks as follows:

(

A1,1 A1,2

A2,1 A2,2

)

.

(

B1,1 B1,2

B2,1 B2,2

)

→

(

C1,1 C1,2

C2,1 C2,2

)

Task 1: C1,1 = A1,1B1,1 + A1,2B2,1

Task 2: C1,2 = A1,1B1,2 + A1,2B2,2

Task 3: C2,1 = A2,1B1,1 + A2,2B2,1

Task 4: C2,2 = A2,1B1,2 + A2,2B2,2

– Typeset by FoilTEX – 28

Output Data Decomposition: Example

A partitioning of output data does not result in a unique
decomposition into tasks. For example, for the same problem
as in previus foil, with identical output data distribution, we can
derive the following two (other) decompositions:

Decomposition I Decomposition II

Task 1: C1,1 = A1,1B1,1 Task 1: C1,1 = A1,1B1,1

Task 2: C1,1 = C1,1 + A1,2B2,1 Task 2: C1,1 = C1,1 + A1,2B2,1

Task 3: C1,2 = A1,1B1,2 Task 3: C1,2 = A1,2B2,2

Task 4: C1,2 = C1,2 + A1,2B2,2 Task 4: C1,2 = C1,2 + A1,1B1,2

Task 5: C2,1 = A2,1B1,1 Task 5: C2,1 = A2,2B2,1

Task 6: C2,1 = C2,1 + A2,2B2,1 Task 6: C2,1 = C2,1 + A2,1B1,1

Task 7: C2,2 = A2,1B1,2 Task 7: C2,2 = A2,1B1,2

Task 8: C2,2 = C2,2 + A2,2B2,2 Task 8: C2,2 = C2,2 + A2,2B2,2

– Typeset by FoilTEX – 29

Output Data Decomposition: Example

Consider the problem of counting the instances of given itemsets in a
database of transactions. In this case, the output (itemset frequencies) can
be partitioned across tasks.

Ite
m

se
ts

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
t F

re
qu

en
cy

Ite
m

se
t F

re
qu

en
cy

Ite
m

se
ts

Ite
m

se
t F

re
qu

en
cy

D
at

ab
as

e
T

ra
ns

ac
tio

ns

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
ts

0

0

A, B, C, E, G, H

A, E, F, K, L

B, D, E, F, K, L

A, B, F, H, L

D, E, F, H

2

F, G, H, K,

(b) Partitioning the frequencies (and itemsets) among the tasks

B, C, D, G, H, L

D, E, F, K, L

F, G, H, L

G, H, L

A, B, C

D, E

A, B, C, E, G, H

A, E, F, K, L

D, K

C, D, K

B, C, F

C, D
2

0

0

1

B, D, E, F, K, L

A, B, F, H, L

D, E, F, H

task 2

F, G, H, K,

B, C, D, G, H, L

D, E, F, K, L

F, G, H, L

G, H, L

C, F, G

C, D

B, C, F

C, D, K

A, B, C, E, G, H

A, E, F, K, L

B, D, E, F, K, L

A, B, F, H, L

D, E, F, H

F, G, H, K,

B, C, D, G, H, L

D, E, F, K, L

F, G, H, L

G, H, L

A, E

D, K

1

3

A, E

C, F, G

D, E

A, B, C

2

0

3

1

0

2

1

task 1

(a) Transactions (input), itemsets (input), and frequencies (output)

– Typeset by FoilTEX – 30

Output Data Decomposition: Example

From the previous example, the following observations can be
made:

• If the database of transactions is replicated across the
processes, each task can be independently accomplished
with no communication.

• If the database is partitioned across processes as well (for
reasons of memory utilization), each task first computes partial
counts. These counts are then aggregated at the appropriate
task.

– Typeset by FoilTEX – 31

Input Data Partitioning

• Generally applicable if each output can be naturally
computed as a function of the input.

• In many cases, this is the only natural decomposition because
the output is not clearly known a-priori (e.g., the problem of
finding the minimum in a list, sorting a given list, etc.).

• A task is associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subsequent processing combines these partial results.

– Typeset by FoilTEX – 32

Input Data Partitioning: Example

In the database counting example, the input (i.e., the transaction set) can be
partitioned. This induces a task decomposition in which each task generates
partial counts for all itemsets. These are combined subsequently for aggregate
counts.

Ite
m

se
t F

re
qu

en
cy

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
ts

Ite
m

se
t F

re
qu

en
cy

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
ts

D, K

A, E

C, D, K

B, C, F

C, D

C, F, G

D, E

A, B, C

C, F, G

1

0

0

1

1

0

1

0

task 2

D, E

A, B, C

Partitioning the transactions among the tasks

A, B, C, E, G, H

0

2

1

1

0

task 1

C, D

B, C, F

C, D, K

A, E

D, K

A, E, F, K, L

B, C, D, G, H, L

D, E, F, K, L

F, G, H, L

G, H, L

0

0

1

F, G, H, K,

D, E, F, H

A, B, F, H, L

B, D, E, F, K, L

– Typeset by FoilTEX – 33

Partitioning Input and Output Data

Often input and output data decomposition can be combined for a higher
degree of concurrency. For the itemset counting example, the transaction set
(input) and itemset counts (output) can both be decomposed as follows:

Ite
m

se
ts

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
t F

re
qu

en
cy

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
ts

Ite
m

se
t F

re
qu

en
cy

D
at

ab
as

e
T

ra
ns

ac
tio

ns

Ite
m

se
t F

re
qu

en
cy

Ite
m

se
ts

Ite
m

se
t F

re
qu

en
cy

Ite
m

se
ts

D
at

ab
as

e
T

ra
ns

ac
tio

ns

B, D, E, F, K, L

A, B, C, E, G, H

D, K

A, E, F, K, L

B, C, D, G, H, L

D, E, F, K, L

F, G, H, L

G, H, L 1

Partitioning both transactions and frequencies among the tasks

task 4task 3

0

1

0

1

1

0

0

C, D

B, C, F

C, D, K

D, E, F, K, L

B, C, F

C, D, K

D, K

A, E

C, F, G

D, E

A, B, C

F, G, H, K,

D, E, F, H

A, B, F, H, L

B, D, E, F, K, L

A, B, C, E, G, H

1

0

2

1

task 1

C, D

A, B, F, H, L

D, E, F, H

G, H, L

F, G, H, L

B, C, D, G, H, L

A, E, F, K, L

F, G, H, K,

A, B, C

D, E

C, F, G

A, E

task 2

0

0

0

1

– Typeset by FoilTEX – 34

Intermediate Data Partitioning

• Computation can often be viewed as a sequence of
transformation from the input to the output data.

• In these cases, it is often beneficial to use one of the
intermediate stages as a basis for decomposition.

– Typeset by FoilTEX – 35

Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix multiplication. We first show how we
can visualize this computation in terms of intermediate matrices D.

1,1 1,2BB

1,1C

D

DD

D

D

D

D

D1,1,1

A 2,1

1,1A

2,2

A 1,2

A B 2,22,1B

.

.

+

2,1,1

1,1,2

1,2,1 1,2,2

2,1,2

2,2,1

C C

C 1,2

2,1 2,2

2,2,2

– Typeset by FoilTEX – 36

Intermediate Data Partitioning: Example

A decomposition of intermediate data structure D leads to the following
decomposition into 8 + 4 tasks:

Stage I

„

A1,1 A1,2

A2,1 A2,2

«

.

„

B1,1 B1,2

B2,1 B2,2

«

→

0

B

B

@

„

D1,1,1 D1,1,2

D1,2,2 D1,2,2

«

„

D2,1,1 D2,1,2

D2,2,2 D2,2,2

«

1

C

C

A

Stage II

„

D1,1,1 D1,1,2

D1,2,2 D1,2,2

«

+

„

D2,1,1 D2,1,2

D2,2,2 D2,2,2

«

→

„

C1,1 C1,2

C2,1 C2,2

«

Task 01: D1,1,1 = A1,1B1,1 Task 02: D2,1,1 = A1,2B2,1

Task 03: D1,1,2 = A1,1B1,2 Task 04: D2,1,2 = A1,2B2,2

Task 05: D1,2,1 = A2,1B1,1 Task 06: D2,2,1 = A2,2B2,1

Task 07: D1,2,2 = A2,1B1,2 Task 08: D2,2,2 = A2,2B2,2

Task 09: C1,1 = D1,1,1 + D2,1,1 Task 10: C1,2 = D1,1,2 + D2,1,2

Task 11: C2,1 = D1,2,1 + D2,2,1 Task 12: C2,2 = D1,2,2 + D2,2,2

– Typeset by FoilTEX – 37

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition (shown in
previous foil) into 12 tasks is as follows:

1

12

3 42 5 6 7 8

9 10 11

– Typeset by FoilTEX – 38

The Owner Computes Rule

• The Owner Computes Rule generally states that the process
assined a particular data item is responsible for all computation
associated with it.

• In the case of input data decomposition, the owner computes
rule imples that all computations that use the input data are
performed by the process.

• In the case of output data decomposition, the owner
computes rule implies that the output is computed by the
process to which the output data is assigned.

– Typeset by FoilTEX – 39

Exploratory Decomposition

• In many cases, the decomposition of the problem goes hand-
in-hand with its execution.

• These problems typically involve the exploration (search) of a
state space of solutions.

• Problems in this class include a variety of discrete optimization
problems (0/1 integer programming, QAP, etc.), theorem
proving, game playing, etc.

– Typeset by FoilTEX – 40

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in the
solution to a 15 puzzle (a tile puzzle). We show a sequence of
three moves that transform a given initial state (a) to desired final
state (d).

1 2 3 4

5 6 8

9 10

13 14 15 12

117

1 2 3 4

5 6 7 8

9 10

13 14 15 12

11

(d)

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) (b) (c)

Of-course, the problem of computing the solution, in general,
is much more difficult than in this simple example.

– Typeset by FoilTEX – 41

Exploratory Decomposition: Example

The state space can be explored by generating various successor
states of the current state and to view them as independent tasks.

1
2

3
4

5
6

7
8

9
10

13
14

15
12 11

1
2

3
4

5
6

8

9
10

13
14

15
12 11

7
1

2
4

5
6

8

9
10

13
14

15
12 11

7 3

1
2

3
4

5
8

9
10

13
14

15
12 11

7 6

1
2

3
4

5
6

9
10

13
14

15
12 11

7 8

1
2

3
4

5
6

8

9
10

13
14

15
12 11

7

1
2

3
4

5
6

7
8

913
14

15
12 11

10

1
2

3
4

5
6

7
8

13
14

15
12 11

10
9

1
2

3
4

5
7

8

913
14

15
12 11

10
6

1
2

3
4

5
6

7
8

913
15

12 11
10

task 1

14

1
2

3
4

5
6

7
8

913
14

15
12 11

10

1
2

3
4

5
6

7
8

9
10

13
12 11

1514

1
2

3
4

5
6

7
8

9
10

13
14

12 11
15

1
2

3
4

5
6

7
8

9
10

13
14

11
1512

1
2

3
4

5
6

7
8

9
10

13
14

12 11

15

1
2

3
4

5
6

7
8

9
10

13
14

15
12

11

1
2

3
4

5
6

7

9
10

13
14

15
12

11
8

1
2

3
4

5
6

7
8

9
10

13
14

15
12 11

task 3task 2 task 4

1
2

3
4

5
6

7
8

9
10

13
14

15 11
12

– Typeset by FoilTEX – 42

Exploratory Decomposition: Anomalous
Computations

• In many instances of exploratory decomposition, the decomposition
technique may change the amount of work done by the
parallel formulation.

• This change results in super- or sub-linear speedups.

Solution

(b)

m m m m m m m m

Total serial work: 2m+1

Total parallel work: 1

Total serial work: m

Total parallel work: 4m

(a)

– Typeset by FoilTEX – 43

Speculative Decomposition

• In some applications, dependencies between tasks are not
known a-priori.

• For such applications, it is impossible to identify independent
tasks.

• There are generally two approaches to dealing with
such applications: conservative approaches, which identify
independent tasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule
tasks even when they may potentially be erroneous.

• Conservative approaches may yield little concurrency and
optimistic approaches may require roll-back mechanism in the
case of an error.

– Typeset by FoilTEX – 44

Speculative Decomposition: Example

A classic example of speculative decomposition is in discrete
event simulation.

• The central data structure in a discrete event simulation is a
time-ordered event list.

• Events are extracted precisely in time order, processed, and if
required, resulting events are inserted back into the event list.

• Consider your day today as a discrete event system – you get
up, get ready, drive to work, work, eat lunch, work some more,
drive back, eat dinner, and sleep.

• Each of these events may be processed independently,
however, in driving to work, you might meet with an
unfortunate accident and not get to work at all.

• Therefore, an optimistic scheduling of other events will have to
be rolled back.

– Typeset by FoilTEX – 45

Speculative Decomposition: Example

Another example is the simulation of a network of nodes (for
instance, an assembly line or a computer network through which
packets pass). The task is to simulate the behavior of this network
for various inputs and node delay parameters (note that networks
may become unstable for certain values of service rates, queue
sizes, etc.).

System Components

A

B

C

D

E

F

G

H

I

S
ys

te
m

 In
pu

ts

S
ys

te
m

 O
ut

pu
t

– Typeset by FoilTEX – 46

Hybrid Decompositions

Often, a mix of decomposition techniques is necessary for decomposing a
problem. Consider the following examples:

• In quicksort, recursive decomposition alone limits concurrency (Why?). A
mix of data and recursive decompositions is more desirable.

• In discrete event simulation, there might be concurrency in task processing.
A mix of speculative decomposition and data decomposition may work
well.

• Even for simple problems like finding a minimum of a list of numbers, a mix
of data and recursive decomposition works well.

2 1

1

1

Recursive
decomposition

Data
decomposition

3 7 2 11 75 8 10 6 13 19 3 99 4

– Typeset by FoilTEX – 47

Characteristics of Tasks

Once a problem has been decomposed into independent tasks,
the characteristics of these tasks critically impact choice and
performance of parallel algorithms. Relevant task characteristics
include:

• Task generation.

• Task sizes.

• Size of data associated with tasks.

– Typeset by FoilTEX – 48

Task Generation

• Static task generation: Concurrent tasks can be identified
a-priori. Typical matrix operations, graph algorithms,
image processing applications, and other regularly structured
problems fall in this class. These can typically be decomposed
using data or recursive decomposition techniques.

• Dynamic task generation: Tasks are generated as we perform
computation. A classic example of this is in game playing
– each 15 puzzle board is generated from the previous
one. These applications are typically decomposed using
exploratory or speculative decompositions.

– Typeset by FoilTEX – 49

Task Sizes

• Task sizes may be uniform (i.e., all tasks are the same size) or
non-uniform.

• Non-uniform task sizes may be such that they can be
determined (or estimated) a-priori or not.

• Examples in this class include discrete optimization problems, in
which it is difficult to estimate the effective size of a state space.

– Typeset by FoilTEX – 50

Size of Data Associated with Tasks

• The size of data associated with a task may be small or large
when viewed in the context of the size of the task.

• A small context of a task implies that an algorithm can easily
communicate this task to other processes dynamically (e.g.,
the 15 puzzle).

• A large context ties the task to a process, or alternately, an
algorithm may attempt to reconstruct the context at another
processes as opposed to communicating the context of the
task (e.g., 0/1 integer programming).

– Typeset by FoilTEX – 51

Characteristics of Task Interactions

Tasks may communicate with each other in various ways. The
associated dichotomy is:

• Static interactions: The tasks and their interactions are known
a-priori. These are relatively simpler to code into programs.

• Dynamic interactions: The timing or interacting tasks cannot
be determined a-priori. These interactions are harder to code,
especitally, as we shall see, using message passing APIs.

– Typeset by FoilTEX – 52

Characteristics of Task Interactions

• Regular interactions: There is a definite pattern (in the graph
sense) to the interactions. These patterns can be exploited for
efficient implementation.

• Irregular interactions: Interactions lack well-defined topologies.

– Typeset by FoilTEX – 53

Characteristics of Task Interactions: Example

A simple example of a regular static interaction pattern is
in image dithering. The underlying communication pattern is a
structured (2-D mesh) one as shown here:

Pixels

Tasks

– Typeset by FoilTEX – 54

Characteristics of Task Interactions: Example

The multiplication of a sparse matrix with a vector is a good
example of a static irregular interaction pattern. Here is an
example of a sparse matrix and its associated interaction pattern.

4 5 6 7 8 9 10110
b

21
A

3

(b)

2

4 6

1
3

5

11109

0

8

7

Task 0

Task 11

8

4

(a)

– Typeset by FoilTEX – 55

Characteristics of Task Interactions

• Interactions may be read-only or read-write.

• In read-only interactions, tasks just read data items associated
with other tasks.

• In read-write interactions tasks read, as well as modily data
items associated with other tasks.

• In general, read-write interactions are harder to code, since
they require additional synchronization primitives.

– Typeset by FoilTEX – 56

Characteristics of Task Interactions

• Interactions may be one-way or two-way.

• A one-way interaction can be initiated and accomplished by
one of the two interacting tasks.

• A two-way interaction requires participation from both tasks
involved in an interaction.

• One way interactions are somewhat harder to code in
message passing APIs.

– Typeset by FoilTEX – 57

Mapping Techniques

• Once a problem has been decomposed into concurrent tasks,
these must be mapped to processes (that can be executed on
a parallel platform).

• Mappings must minimize overheads.

• Primary overheads are communication and idling.

• Minimizing these overheads often represents contradicting
objectives.

• Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.

– Typeset by FoilTEX – 58

Mapping Techniques for Minimum Idling

Mapping must simultaneously minimize idling and load
balance. Merely balancing load does not minimize idling.

12

11

10

P1 9

P2

synchronization

P3

P4

t = 0

start

1

t = 0

start

1

2

3

4

5

6

7

8

finish

t = 3

2 3

4 5 6

7 8 9

10 11 12

synchronization

t = 3

finish

t = 6

(a) (b)

P1

P2

P3

P4

t = 2

– Typeset by FoilTEX – 59

Mapping Techniques for Minimum Idling

Mapping techniques can be static or dynamic.

• Static Mapping: Tasks are mapped to processes a-priori. For
this to work, we must have a good estimate of the size of each
task. Even in these cases, the problem may be NP complete.

• Dynamic Mapping: Tasks are mapped to processes at runtime.
This may be because the tasks are generated at runtime, or
that their sizes are not known.

Other factors that determine the choice of techniques include
the size of data associated with a task and the nature of
underlying domain.

– Typeset by FoilTEX – 60

Schemes for Static Mapping

• Mappings based on data partitioning.

• Mappings based on task graph partitioning.

• Hybrid mappings.

– Typeset by FoilTEX – 61

Mappings Based on Data Partitioning

We can combine data partitioning with the “owner-
computes” rule to partition the computation into subtasks. The
simplest data decomposition schemes for dense matrices are 1-D
block distribution schemes.

column-wise distributionrow-wise distribution

PSfrag replacements

P0

P0

P1

P1

P2

P2

P3
P3 P4

P4

P5

P5

P6

P6

P7

P7

P8

P9

P10

P11

P12

P13

P14

P15

– Typeset by FoilTEX – 62

Block Array Distribution Schemes

Block distribution schemes can be generalized to higher
dimensions as well.

(b)(a)

PSfrag replacements

P0

P0 P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

P7

P7

P8

P8

P9

P9

P10

P10

P11

P11

P12

P12

P13

P13

P14

P14

P15

P15

– Typeset by FoilTEX – 63

Block Array Distribution Schemes: Examples

• For multiplying two dense matrices A and B, we can partition
the output matrix C using a block decomposition.

• For load balance, we give each task the same number of
elements of C. (Note that each element of C corresponds to a
single dot product.)

• The choice of precise decomposition (1-D or 2-D) is determined
by the associated communication overhead.

• In general, higher dimension decomposition allows the use of
larger number of processes.

– Typeset by FoilTEX – 64

Data Sharing in Dense Matrix Multiplication

(a)

(b)

X

X =

=

PSfrag replacements

P0

P0

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

P7

P7

P8

P8

P9

P9

P10

P10

P11

P11

P12

P12

P13

P13

P14

P14

P15

P15

C

CA

A B

B

– Typeset by FoilTEX – 65

Cyclic and Block Cyclic Distributions

• If the amount of computation associated with data items
varies, a block decomposition may lead to significant load
imbalances.

• A simple example of this is in LU decomposition (or Gaussian
Elimination) of dense matrices.

– Typeset by FoilTEX – 66

LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks – notice the
significant load imbalance.

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 →

L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

 .

U1,1 U1,2 U1,3

0 U2,2 U2,3

0 0 U3,3

1: A1,1 → L1,1U1,1 6: A2,2 = A2,2 − L2,1U1,2 11: L3,2 = A3,2U
−1

2,2

2: L2,1 = A2,1U
−1
1,1 7: A3,2 = A3,2 − L3,1U1,2 12: U2,3 = L−1

2,2A2,3

3: L3,1 = A3,1U
−1

1,1 8: A2,3 = A2,3 − L2,1U1,3 13: A3,3 = A3,3 − L3,2U2,3

4: U1,2 = L−1
1,1A1,2 9: A3,3 = A3,3 − L3,1U1,3 14: A3,3 → L3,3U3,3

5: U1,3 = L−1

1,1A1,3 10: A2,2 → L2,2U2,2

– Typeset by FoilTEX – 67

Block Cyclic Distributions

• Variation of the block distribution scheme that can be used to
alleviate the load-imbalance and idling problems.

• Partition an array into many more blocks than the number of
available processes.

• Blocks are assigned to processes in a round-robin manner so
that each process gets several non-adjacent blocks.

– Typeset by FoilTEX – 68

Block-Cyclic Distribution for Gaussian Elimination

The active part of the matrix in Gaussian Elimination changes.
By assigning blocks in a block-cyclic fashion, each processor
receives blocks from different parts of the matrix.

A[i,j] := A[i,j] - A[i,k] A[k,j]

Row k

Row i

(k,k) (k,j)

Inactive part

Active part

A[k,j] := A[k,j]/A[k,k]

x(i,k) (i,j)

C
ol

um
n

 k

C
ol

um
n

 j

– Typeset by FoilTEX – 69

Block-Cyclic Distribution: Examples

One- and two-dimensional block-cyclic distributions among 4
processes.

0 P P

PPP1

P

T T

P

T T T

P

T

TTT

P

T

14

T

T T T
6

2

3

4

5

7

8

1

2

3

4 5

6 10

7

8

911

12

13

– Typeset by FoilTEX – 70

Block-Cyclic Distribution

• A cyclic distribution is a special case in which block size is one.

• A block distribution is a special case in which block size is n/p,
where n is the dimension of the matrix and p is the number of
processes.

(b)(a)

PSfrag replacements

P0

P0
P0 P0

P0P0
P1

P1

P1

P1

P1

P1

P2

P2
P2

P2

P2

P2

P3

P3P3

P3

P3 P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

– Typeset by FoilTEX – 71

Graph Partitioning Dased Data Decomposition

• In case of sparse matrices, block decompositions are more
complex.

• Consider the problem of multiplying a sparse matrix with a
vector.

• The graph of the matrix is a useful indicator of the work (number
of nodes) and communication (the degree of each node).

• In this case, we would like to partition the graph so as to assign
equal number of nodes to each process, while minimizing
edge count of the graph partition.

– Typeset by FoilTEX – 72

Partitioning the Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut.

– Typeset by FoilTEX – 73

Mappings Based on Task Paritioning

• Partitioning a given task-dependency graph across processes.

• Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.

• Excellent heuristics exist for structured graphs.

– Typeset by FoilTEX – 74

Task Paritioning: Mapping a Binary Tree Dependency
Graph

Example illustrates the dependency graph of one view of
quick-sort and how it can be assigned to processes in a
hypercube.

76

0

543210

0 4

0 2 4 6

– Typeset by FoilTEX – 75

Task Paritioning: Mapping a Sparse Graph

Sparse graph for computing a sparse matrix-vector product
and its mapping.

4 5 6 7 8 9 10110

C2 = (0,4,5,6)

21
b

C1 = (0,1,2,3,8,9,10,11)

C0 = (4,5,6,7,8)

3

Process 0

Process 1

Process 2

A

C2 = (1,2,4,5,7,8)

2

4 6

1
3

5

11109

0

8

7

C1 = (0,5,6) Process 1

Process 0

Process 2

C0 = (1,2,6,9)

– Typeset by FoilTEX – 76

Hierarchical Mappings

• Sometimes a single mapping technique is inadequate.

• For example, the task mapping of the binary tree (quicksort)
cannot use a large number of processors.

• For this reason, task mapping can be used at the top level and
data partitioning within each level.

– Typeset by FoilTEX – 77

Hierarchical Mapping: Example

An example of task partitioning at top level with data
partitioning at the lower level.

P3

P0 P1

P2 P3

P0 P1

P3P2

P4 P5

P6 P7

P4 P5

P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P4 P5 P6 P7

– Typeset by FoilTEX – 78

Schemes for Dynamic Mapping

• Dynamic mapping is sometimes also referred to as dynamic
load balancing, since load balancing is the primary motivation
for dynamic mapping.

• Dynamic mapping schemes can be centralized or distributed.

– Typeset by FoilTEX – 79

Centralized Dynamic Mapping

• Processes are designated as masters or slaves.

• When a process runs out of work, it requests the master for more
work.

• When the number of processes increases, the master may
become the bottleneck.

• To alleviate this, a process may pick up a number of tasks (a
chunk) at one time. This is called Chunk scheduling.

• Selecting large chunk sizes may lead to significant load
imbalances as well.

• A number of schemes have been used to gradually decrease
chunk size as the computation progresses.

– Typeset by FoilTEX – 80

Distributed Dynamic Mapping

• Each process can send or receive work from other processes.

• This alleviates the bottleneck in centralized schemes.

• There are four critical questions: how are sensing and receiving
processes paired together, who initiates work transfer, how
much work is transferred, and when is a transfer triggered?

• Answers to these questions are generally application specific.
We will look at some of these techniques later in this class.

– Typeset by FoilTEX – 81

Minimizing Interaction Overheads

• Maximize data locality: Where possible, reuse intermediate
data. Restructure computation so that data can be reused
in smaller time windows.

• Minimize volume of data exchange: There is a cost associated
with each word that is communicated. For this reason, we must
minimize the volume of data communicated.

• Minimize frequency of interactions: There is a startup cost
associated with each interaction. Therefore, try to merge
multiple interactions to one, where possible.

• Minimize contention and hot-spots: Use decentralized
techniques, replicate data where necessary.

– Typeset by FoilTEX – 82

Minimizing Interaction Overheads (continued)

• Overlapping computations with interactions: Use non-blocking
communications, multithreading, and prefetching to hide
latencies.

• Replicating data or computations.

• Using group communications instead of point-to-point primitives.

• Overlap interactions with other interactions.

– Typeset by FoilTEX – 83

Parallel Algorithm Models

An algorithm model is a way of structuring a parallel algorithm
by selecting a decomposition and mapping technique and
applying the appropriate strategy to minimize interactions.

• Data Parallel Model: Tasks are statically (or semi-statically)
mapped to processes and each task performs similar
operations on different data.

• Task Graph Model: Starting from a task dependency graph,
the interrelationships among the tasks are utilized to promote
locality or to reduce interaction costs.

– Typeset by FoilTEX – 84

Parallel Algorithm Models (continued)

• Master-Slave Model: One or more processes generate work
and allocate it to worker processes. This allocation may be
static or dynamic.

• Pipeline / Producer-Comsumer Model: A stream of data is
passed through a succession of processes, each of which
perform some task on it.

• Hybrid Models: A hybrid model may be composed either
of multiple models applied hierarchically or multiple models
applied sequentially to different phases of a parallel algorithm.

– Typeset by FoilTEX – 85

