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Topic Overview

• Discrete Optimization – Basics

• Sequential Search Algorithms

• Parallel Depth-First Search

• Parallel Best-First Search

• Speedup Anomalies in Parallel Search Algorithms
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Discrete Optimization – Basics

• Discrete optimization forms a class of computationally
expensive problems of significant theoretical and practical
interest.

• Search algorithms systematically search the space of possible
solutions subject to constraints.
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Definitions

• A discrete optimization problem can be expressed as a tuple
(S, f). The set S is a finite or countably infinite set of all solutions
that satisfy specified constraints.

• The function f is the cost function that maps each element in
set S onto the set of real numbers R.

• The objective of a DOP is to find a feasible solution xopt, such
that f(xopt) ≤ f(x) for all x ∈ S.

• A number of diverse problems such as VLSI layouts, robot
motion planning, test pattern generation, and facility location
can be formulated as DOPs.
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Discrete Optimization: Example

• In the 0/1 integer-linear-programming problem, we are given
an m× n matrix A, an m× 1 vector b, and an n× 1 vector c.

• The objective is to determine an n×1 vector x whose elements
can take on only the value 0 or 1.

• The vector must satisfy the constraint

Ax ≥ b

and the function
f(x) = cTx

must be minimized.
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Discrete Optimization: Example

• The 8-puzzle problem consists of a 3 × 3 grid containing eight
tiles, numbered one through eight.

• One of the grid segments (called the “blank”) is empty. A tile
can be moved into the blank position from a position adjacent
to it, thus creating a blank in the tile’s original position.

• The goal is to move from a given initial position to the final
position in a minimum number of moves.
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Discrete Optimization: Example
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An 8-puzzle problem instance: (a) initial configuration; (b) final
configuration; and (c) a sequence of moves leading from the

initial to the final configuration.
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Discrete Optimization Basics

• The feasible space S is typically very large.

• For this reason, a DOP can be reformulated as the problem
of finding a minimum-cost path in a graph from a designated
initial node to one of several possible goal nodes.

• Each element x in S can be viewed as a path from the initial
node to one of the goal nodes.

• This graph is called a state space.
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Discrete Optimization Basics

• Often, it is possible to estimate the cost to reach the goal state
from an intermediate state.

• This estimate, called a heuristic estimate, can be effective in
guiding search to the solution.

• If the estimate is guaranteed to be an underestimate, the
heuristic is called an admissible heuristic.

• Admissible heuristics have desirable properties in terms of
optimality of solution (as we shall see later).
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Discrete Optimization: Example

An admissible heuristic for 8-puzzle is as follows:

• Assume that each position in the 8-puzzle grid is represented as
a pair.

• The distance between positions (i, j) and (k, l) is defined as |i−
k| + |j − l|. This distance is called the Manhattan distance.

• The sum of the Manhattan distances between the initial and
final positions of all tiles is an admissible heuristic.
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Parallel Discrete Optimization: Motivation

• DOPs are generally NP-hard problems. Does parallelism really
help much?

• For many problems, the average-case runtime is polynomial.

• Often, we can find suboptimal solutions in polynomial time.

• Many problems have smaller state spaces but require real-time
solutions.

• For some other problems, an improvement in objective
function is highly desirable, irrespective of time.
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Sequential Search Algorithms

• Is the search space a tree or a graph?

• The space of a 0/1 integer program is a tree, while that of an
8-puzzle is a graph.

• This has important implications for search since unfolding a
graph into a tree can have significant overheads.
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Sequential Search Algorithms
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Depth-First Search Algorithms

• Applies to search spaces that are trees.

• DFS begins by expanding the initial node and generating its
successors. In each subsequent step, DFS expands one of the
most recently generated nodes.

• If there exists no success, DFS backtracks to the parent and
explores an alternate child.

• Often, successors of a node are ordered based on their
likelihood of reaching a solution. This is called directed DFS.

• The main advantage of DFS is that its storage requirement is
linear in the depth of the state space being searched.
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Depth-First Search Algorithms
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States resulting from the first three steps of depth-first search
applied to an instance of the 8-puzzle.
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DFS Algorithms: Simple Backtracking

• Simple backtracking performs DFS until it finds the first feasible
solution and terminates.

• Not guaranteed to find a minimum-cost solution.

• Uses no heuristic information to order the successors of an
expanded node.

• Ordered backtracking uses heuristics to order the successors of
an expanded node.
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Depth-First Branch-and-Bound (DFBB)

• DFS technique in which upon finding a solution, the algorithm
updates current best solution.

• DFBB does not explore paths that ae guaranteed to lead to
solutions worse than current best solution.

• On termination, the current best solution is a globally optimal
solution.
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Iterative Deepening Search

• Often, the solution may exist close to the root, but on an
alternate branch.

• Simple backtracking might explore a large space before
finding this.

• Iterative deepening sets a depth bound on the space it
searches (using DFS).

• If no solution is found, the bound is increased and the process
repeated.
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Iterative Deepening A* (IDA*)

• Uses a bound on the cost of the path as opposed to the depth.

• IDA* defines a function for node x in the search space as l(x) =
g(x) + h(x). Here, g(x) is the cost of getting to the node and
h(x) is a heuristic estimate of the cost of getting from the node
to the solution.

• At each failed step, the cost bound is incremented to that
of the node that exceeded the prior cost bound by the least
amount.

• If the heuristic h is admissible, the solution found by IDA* is
optimal.
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DFS Storage Requirements and Data Structures

• At each step of DFS, untried alternatives must be stored for
backtracking.

• If m is the amount of storage required to store a state, and d is
the maximum depth, then the total space requirement of the
DFS algorithm is O(md).

• The state-space tree searched by parallel DFS can be
efficiently represented as a stack.

• Memory requirement of the stack is linear in depth of tree.
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DFS Storage Requirements and Data Structures
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Representing a DFS tree: (a) the DFS tree; Successor nodes
shown with dashed lines have already been explored; (b) the
stack storing untried alternatives only; and (c) the stack storing
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represent the parent state and the block to the right represents
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Best-First Search (BFS) Algorithms

• BFS algorithms use a heuristic to guide search.

• The core data structure is a list, called Open list, that stores
unexplored nodes sorted on their heuristic estimates.

• The best node is selected from the list, expanded, and its off-
spring are inserted at the right position.

• If the heuristic is admissible, the BFS finds the optimal solution.
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Best-First Search (BFS) Algorithms

• BFS of graphs must be slightly modified to account for multiple
paths to the same node.

• A closed list stores all the nodes that have been previously
seen.

• If a newly expanded node exists in the open or closed lists with
better heuristic value, the node is not inserted into the open list.
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The A* Algorithm

• A BFS technique that uses admissible heuristics.

• Defines function l(x) for each node x as g(x) + h(x).

• Here, g(x) is the cost of getting to node x and h(x) is an
admissible heuristic estimate of getting from node x to the
solution.

• The open list is sorted on l(x).

The space requirement of BFS is exponential in depth!
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Best-First Search: Example
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Applying best-first search to the 8-puzzle: (a) initial configuration;
(b) final configuration; and (c) states resulting from the first four
steps of best-first search. Each state is labeled with its h-value

(that is, the Manhattan distance from the state to the final state).
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Search Overhead Factor

• The amount of work done by serial and parallel formulations of
search algorithms is often different.

• LetW be serial work andWP be parallel work. Search overhead
factor s is defined as WP/W .

• Upper bound on speedup is p× (W/Wp).
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Parallel Depth-First Search

• How is the search space partitioned across processors?

• Different subtrees can be searched concurrently.

• However, subtrees can be very different in size.

• It is difficult to estimate the size of a subtree rooted at a node.

• Dynamic load balancing is required.
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Parallel Depth-First Search

C E F

BA

(a) (b)

D

The unstructured nature of tree search and the imbalance
resulting from static partitioning.
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Parallel Depth-First Search: Dynamic Load Balancing

• When a processor runs out of work, it gets more work from
another processor.

• This is done using work requests and responses in message
passing machines and locking and extracting work in shared
address space machines.

• On reaching final state at a processor, all processors terminate.

• Unexplored states can be conveniently stored as local stacks
at processors.

• The entire space is assigned to one processor to begin with.
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Parallel Depth-First Search: Dynamic Load Balancing
Service any pending

messages
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A generic scheme for dynamic load balancing.

– Typeset by FoilTEX – 30



Parameters in Parallel DFS: Work Splitting

• Work is split by splitting the stack into two.

• Ideally, we do not want either of the split pieces to be small.

• Select nodes near the bottom of the stack (node splitting), or

• Select some nodes from each level (stack splitting).

• The second strategy generally yields a more even split of the
space.
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Parameters in Parallel DFS: Work Splitting
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Load-Balancing Schemes

• Who do you request work from? Note that we would like to
distribute work requests evenly, in a global sense.

• Asynchronous round robin: Each processor maintains a counter
and makes requests in a round-robin fashion.

• Global round robin: The system maintains a global counter and
requests are made in a round-robin fashion, globally.

• Random polling: Request a randomly selected processor for
work.
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Analyzing DFS

• We cant compute, analytically, the serial work W or parallel
time. Instead, we quantify total overhead TO in terms of W to
compute scalability.

• For dynamic load balancing, idling time is subsumed by
communication.

• We must quantify the total number of requests in the system.
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Analyzing DFS: Assumptions

• Work at any processor can be partitioned into independent
pieces as long as its size exceeds a threshold ε.

• A reasonable work-splitting mechanism is available.

• If work w at a processor is split into two parts ψw and (1 − ψ)w,
there exists an arbitrarily small constant α (0 < α ≤ 0.5), such
that ψw > αw and (1 − ψ)w > αw.

• The costant α sets a lower bound on the load imbalance from
work splitting.
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Analyzing DFS

• If processor Pi initially had work wi, after a single request by
processor Pj and split, neither Pi nor Pj have more than (1−α)wi

work.

• For each load balancing strategy, we define V (P ) as the total
number of work requests after which each processor receives
at least one work request (note that V (p) ≥ p.

• Assume that the largest piece of work at any point is W .

• After V (p) requests, the maximum work remaining at any
processor is less than (1 − α)W ; after 2V (p) requests, it is less
than (1 − α)2W .

• After (log1/(1−α)(W/ε))V (p) requests, the maximum work
remaining at any processor is below a threshold value ε.

• The total number of work requests is O(V (p) logW ).
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Analyzing DFS

If tcomm is the time required to communicate a piece of work,
then the communication overhead To is given by

To = tcommV (p) logW (1)

The corresponding efficiency E is given by

E =
1

1 + To/W

=
1

1 + (tcommV (p) logW )/W
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Analyzing DFS: V (P ) for Various Schemes

• Asynchronous Round Robin: V (p) = O(p2) in the worst case.

• Global Round Robin: V (p) = p.

• Random Polling: Worst case V (p) is unbounded. We do
average case analysis.
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V (P ) for Random Polling

• Let F (i, p) represent a state in which i of the p processors have
been requested, and p− i have not.

• Let f(i, p) denote the average number of trials needed to
change from state F (i, p) to F (p, p) (V (p) = f(0, p)).

•

f(i, p) =
i

p
(1 + f(i, p)) +

p− i

p
(1 + f(i+ 1, p)),

p− i

p
f(i, p) = 1 +

p− i

p
f(i+ 1, p),

f(i, p) =
p

p− i
+ f(i+ 1, p).
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V (P ) for Random Polling

• We have:

f(0, p) = p×

p−1∑

i=0

1

p− i
,

= p×

p∑

i=1

1

i
,

= p×Hp,

• As p becomes large, Hp ' 1.69 ln p (where ln p denotes the
natural logarithm of p). Thus, V (p) = O(p log p).
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Analysis of Load-Balancing Schemes

If tcomm = O(1), we have,

To = O(V (p) logW ). (2)

• Asynchronous Round Robin: Since V (p) = O(p2), To =
O(p2 logW ). It follows that:

W = O(p2 log(p2 logW )),

= O(p2 log p+ p2 log logW )

= O(p2 log p)

– Typeset by FoilTEX – 41



Analysis of Load-Balancing Schemes

• Global Round Robin: Since V (p) = O(p), To = O(p logW ). It
follows that W = O(p log p).

However, there is contention here! The global counter must be
incremented O(p logW ) times in O(W/p) time.

From this, we have:
W

p
= O(p logW ) (3)

and W = O(p2 log p).

The worse of these two expressions, W = O(p2 log p) is the
isoefficiency.

– Typeset by FoilTEX – 42



Analysis of Load-Balancing Schemes

• Random Polling: We have V (p) = O(p log p), To = O(p log p logW )

Therefore W = O(p log2 p).
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Analysis of Load-Balancing Schemes: Conclusions

• Asynchronous round robin has poor performance because it
makes a large number of work requests.

• Global round robin has poor performance because of
contention at counter, although it makes the least number of
requests.

• Random polling strikes a desirable compromise.
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Experimental Validation: Satisfiability Problem
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Experimental Validation: Satisfiability Problem
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Experimental Validation: Satisfiability Problem
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Termination Detection

• How do you know when everyone’s done?

• A number of algorithms have been proposed.
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Dijkstra’s Token Termination Detection

• Assume that all processors are organized in a logical ring.

• Assume, for now that work transfers can only happen from Pi

to Pj if j > i.

• Processor P0 initiates a token on the ring when it goes idle.

• Each intermediate processor receives this token and forwards
it when it becomes idle.

• When the token reaches processor P0, all processors are done.

– Typeset by FoilTEX – 49



Dijkstra’s Token Termination Detection

Now, let us do away with the restriction on work transfers.

• When processor P0 goes idle, it colors itself green and initiates
a green token.

• If processor Pj sends work to processor Pi and j > i then
processor Pj becomes red.

• If processor Pi has the token and Pi is idle, it passes the token to
Pi+1. If Pi is red , then the color of the token is set to red before
it is sent to Pi+1. If Pi is green, the token is passed unchanged.

• After Pi passes the token to Pi+1, Pi becomes green .

• The algorithm terminates when processor P0 receives a green
token and is itself idle.

– Typeset by FoilTEX – 50



Tree-Based Termination Detection

• Associate weights with individual workpieces. Initially,
processor P0 has all the work and a weight of one.

• Whenever work is partitioned, the weight is split into half and
sent with the work.

• When a processor gets done with its work, it sends its parent the
weight back.

• Termination is signaled when the weight at processor P0

becomes 1 again.

• Note that underflow and finite precision are important factors
associated with this scheme.
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Tree-Based Termination Detection
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Parallel Formulations of Depth-First Branch-and-Bound

• Parallel formulations of depth-first branch-and-bound search
(DFBB) are similar to those of DFS.

• Each processor has a copy of the current best solution. This is
used as a local bound.

• If a processor detects another solution, it compares the cost
with current best solution. If the cost is better, it broadcasts this
cost to all processors.

• If a processor’s current best solution path is worse than the
globally best solution path, only the efficiency of the search
is affected, not its correctness.
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Parallel Formulations of IDA*

Two formulations are intuitive.

• Common Cost Bound: Each processor is given the same cost
bound. Processors use parallel DFS on the tree within the cost
bound. The drawback of this scheme is that there might not be
enough concurrency.

• Variable Cost Bound: Each processor works on a different cost
bound. The major drawback here is that a solution is not
guaranteed to be optimal until all lower cost bounds have
been exhausted.

In each case, parallel DFS is the search kernel.
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Parallel Best-First Search

• The core data structure is the Open list (typically implemented
as a priority queue).

• Each processor locks this queue, extracts the best node,
unlocks it.

• Successors of the node are generated, their heuristic functions
estimated, and the nodes inserted into the open list as
necessary after appropriate locking.

• Termination signaled when we find a solution whose cost is
better than the best heuristic value in the open list.

• Since we expand more than one node at a time, we may
expand nodes that would not be expanded by a sequential
algorithm.
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Parallel Best-First Search
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A general schematic for parallel best-first search using a
centralized strategy. The locking operation is used here to

serialize queue access by various processors.
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Parallel Best-First Search

• The open list is a point of contention.

• Let texp be the average time to expand a single node, and
taccess be the average time to access the open list for a single-
node expansion.

• If there are n nodes to be expanded by both the sequential
and parallel formulations (assuming that they do an equal
amount of work), then the sequential run time is given by
n(taccess + texp).

• The parallel run time will be at least ntaccess.

• Upper bound on the speedup is (taccess + texp)/taccess.
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Parallel Best-First Search

• Avoid contention by having multiple open lists.

• Initially, the search space is statically divided across these open
lists.

• Processors concurrently operate on these open lists.

• Since the heuristic values of nodes in these lists may diverge
significantly, we must periodically balance the quality of nodes
in each list.

• A number of balancing strategies based on ring, blackboard,
or random communications are possible.
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Parallel Best-First Search
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A message-passing implementation of parallel best-first search
using the ring communication strategy.
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Parallel Best-First Search
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An implementation of parallel best-first search using the
blackboard communication strategy.
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Parallel Best-First Graph Search

• Graph search involves a closed list, where the major operation
is a lookup (on a key corresponding to the state).

• The classic data structure is a hash.

• Hashing can be parallelized by using two functions – the first
one hashes each node to a processor, and the second one
hashes within the processor.

• This strategy can be combined with the idea of multiple open
lists.

• If a node does not exist in a closed list, it is inserted into the
open list at the target of the first hash function.

• In addition to facilitating lookup, randomization also equalizes
quality of nodes in various open lists.
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Speedup Anomalies in Parallel Search

• Since the search space explored by processors is determined
dynamically at runtime, the actual work might vary significantly.

• Executions yielding speedups greater than p by using
p processors are referred to as acceleration anomalies.
Speedups of less than p using p processors are called
deceleration anomalies.

• Speedup anomalies also manifest themselves in best-first
search algorithms.

• If the heuristic function is good, the work done in parallel best-
first search is typically more than that in its serial counterpart.
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Speedup Anomalies in Parallel Search
Start node   SStart node   S
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The difference in number of nodes searched by sequential and
parallel formulations of DFS. For this example, parallel DFS
reaches a goal node after searching fewer nodes than

sequential DFS.
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Speedup Anomalies in Parallel Search
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sequential DFS = 7 two-processor formulation of DFS  = 12

A parallel DFS formulation that searches more nodes than its
sequential counterpart.
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