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Preliminaries: What is a connectome?

▶ Connectome is a map of the Brain.

▶ Connectomes capture structural or functional connectivity.

1
1[Cabral et al] 10.1016/j.neuroimage.2017.03.045
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Preliminaries: What is a connectome?

▶ Structural connections are often called “wiring diagrams” of the brain
▶ Functional connections measure coherence in neuronal firing at rest or

while performing a task
▶ Our work is focused on functional connectomes

Functional connectome as a regions × regions similarity matrix
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Preliminaries: A note on pre-processing

An overview of a generic functional MRI preprocessing pipeline
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Brain Signatures – Introduction

▶ Brain signatures are signals in the connectome that code for
individual-level uniqueness

▶ Brain signatures can be thought of as fingerprints

▶ Do brain signatures exist?
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Problem Setup
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Brain Signatures – Contributions

▶ Can we find connectomic markers for identifying individuals using
their connectomes?

▶ Can we find markers that identify tasks being performed by subjects?

▶ Can we characterize how well people perform these tasks?

▶ Can we find brain signatures that are encoded exclusively in the
functional connectome? (as opposed to the structural connectome)
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Finding Markers for Identifiability

▶ Existing methods do not prescribe spatially localized markers and lack
anatomical basis

▶ We aim to find localized regions in the brain that code for identity

Our Solution

We use leverage-scores to sample a small-set of discriminating features.

We use leverage-scores of
connectomes on day 1 to select
features that are strongly correlated
in corresponding image on day k
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Our Pipeline to find individual-specific markers
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Basic Principles

Leverage Scores

Given an arbitrary n × d matrix A, with n > d , let U denote the n × d
matrix consisting of the d left singular vectors of A, and let U(i) denote
the i-th row of the matrix U as a row vector. Then, the statistical leverage
scores of the rows of A are given by

li = ||Ui ||22 (1)
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Finding Markers for Identifiability

Row Sampling using Leverage Score

1: function row sample(A,s)
2: Let Ã be an empty matrix
3: for t = 1 to s do
4: Let Ait ,⋆ be the sampled row, with corresponding probability

pi ∝ ||Ui ,⋆||22
5: Set Ãt,⋆ =

1√
spi

Ait,⋆

6: end for
7: return Ã
8: end function

Sampling s rows of A using this algorithm guarantees that 2

E[||ATA− ÃT Ã||F ] ≤
1√
s
||A||2F . (2)

2[Drineas et al.]doi:10.1137/S0097539704442684
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Experimental Validation: HCP Dataset

▶ HCP has structural, functional MRI (rest and 7 tasks), EEGs, MEGs
from 1100 subjects

▶ We use functional MRIs from the “unrelated” subset of subjects

▶ The data acquisition was done over the course of 2 days

▶ On day 1, one resting state fMRI session followed by 4 tasks –
language, emotion, gambling and motor

▶ On day 15, one resting state fMRI session followed by 3 tasks –
relational, social and working memory
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Our Results – Resting state fMRI correspondence

Small number of features code individual identity
▶ We pick increasingly large set of features with high leverage scores

from the Day 1 matrix (of resting state fMRI)
▶ We find that a small number of features (around 60 out of 64k) from

Day 1 are enough to accurately predict the corresponding identities of
connectomes in day k.

Figure: Only 60 out of 64k features are required to accurately identify
connectomes in day k
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Our Results – Resting state fMRI correspondence

Anatomical Mapping of individual-specific signatures
▶ Recall that each feature is an entry of the correlation matrix, i.e., it

represents the similarity between two regions
▶ To find high confidence regions, we find high leverage score features

for different randomly selected subsets of subjects.
▶ We retain the features which occur in a significantly large number of

these subsets (p-value < 10−10)
▶ Regions with high leverage scores are clustered in the parietal and

pre-frontal cortex, which agrees with previous studies3 (validation)

Figure: High Leverage Score Regions are Spatially Localized

3[Finn et al.] DOI: 10.1038/nn.4135
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Our Results – Task fMRI correspondence

Leverage-score features code for individual specific signature in task
fMRI
▶ We repeat the same procedure with task data
▶ For each task, we use first half of session to find features and predict

on second part of each session. This gives us a task specific signature
▶ We find that the prediction accuracy is generally high (apart from

Motor and Working Memory)

Figure: Prediction accuracies for different tasks
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Our Results – Prediction Across Tasks

Markers of a task code for identity even when subjects perform a
different task
▶ We find the markers for a task and use it to predict the identities of

subjects performing a different task
▶ We observe that the resting-state markers are the best at predicting

identities of subjects performing different tasks.

Figure: Prediction accuracies when features are chosen for task i and the test
dataset has subjects performing task k
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Our Results – Efficacy of task

Task Performance can be predicted for fMRIs

▶ In the final result with leverage score, we predict the efficacy with
which subjects perform tasks

▶ Four tasks had performance metrics associated with it

▶ We find the leverage-score features for the train set of each task

▶ We build a regression model using support vectors and predict the
performance metrics of test set

Task Train nRMSE (in %) Test nRMSE (in %)

Language 0.33± 0.11 1.52± 0.20

Emotion 0.28± 0.07 0.60± 0.37

Relational 0.44± 0.04 2.74± 0.34

Working Memory 0.57± 0.12 1.93± 0.41

Table: Task-wise prediction error expressed as normalized root-mean-squared
error.
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Introduction

▶ What are naturalistic stimuli? – Viewing a movie, listening to an
audio book

▶ Inferences drawn from neuronal response to naturalistic stimuli inform
us about cognitive processes

▶ How similar is our neuronal response to the same input?

▶ How similar is our neuronal activity when we recall from memory?

▶ How similar are our responses to the same movie, but in different
languages?

We answer some of these important questions in our study.
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Our Contributions: Predicting Canonical Response

▶ We aim to find a representation for a given fMRI frame that is
consistent across subjects (we assume that all subjects are viewing
the exact same stimulus at each point in time)

▶ We want these representations to also capture frame similarity (we
want two similar frames to have similar representations)

▶ Our approach uses archetypal analysis.

Ravindra & Grama – IJCAI ’20
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Archetypal Analysis

▶ For a given matrix X ∈ Rn×d , archetypal analysis finds the best
minimal convex hull to describe the data-points

min
C,S

||X− XCS||F

s.t. |Cj ,⋆| = 1 ∀j ,
|S⋆,i | = 1 ∀i ,

C ≥ 0 S ≥ 0

(3)

▶ XC represents the hull, or the archetypes

▶ Column j of S represents the fractions of all archetypes which
explains the data-point j .
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Our Approach

▶ Divide the episode into scenes (this is usually done by experts). Each
scene corresponds to a few tens of fMRI frames

▶ Stack all fMRI frames for a scene from all subjects into a matrix, and
do archetyal analysis.

▶ Archetypes are representative snap-shots of brains corresponding to
the scene.

▶ For each fMRI frame of each subject, find the closest archetype

▶ Find the consensus archetype for each time-frame. We call this the
Dominant Archetype for the frame.

▶ The set of dominant archetypes corresponding to each time-frame
forms our canonical representation of the scene

Vikram Ravindra and Ananth Grama Computational Analyses of Connectomes 8 / 31



Our Approach

(a) (b)
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Data

▶ We use a dataset4 with subjects viewing an episode of BBC’s Sherlock
▶ 17 subjects, approximately 50 minutes viewing, 2000 fMRI frames and

50 scenes (expert annotation)
▶ We use ROIs from Hippocampus and the dorsal Default Mode

Network (dDMN)
▶ Hippocampus has been implicated in episodic memory and dDMN is

active for viewing stimuli

4[Chen et al.] doi:10.1038/nn.4450
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Our Results – Frame Similarity

▶ We aim to validate that frames with similar/same archetypes are
actually similar. (e.g., they share annotations)

▶ We find the pairwise archetypal similarity of frames
▶ We calculate pairwise annotation similarity (rated by experts, on the

basis of excitement, emotion, indoor/outdoor, etc)
▶ Note the similarity in block diagonal structure. We find that the

correlation between the values in this block diagonal is high (> 0.9)
whereas correlation elsewhere is low (< 0.2).

(c) Framewise
similarity of dominant
archetypes(i.e., from
fMRI space)

(d) Framewise
similarity of expert
annotations

(e) Framwise
similarity of
archetypes and
annotations
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Our Results – Prediction of response

▶ We hold out 30% subjects and train on the remaining. We use the
framewise dominant archetypes of the train-set to measure how well
we can predict the frame-wise response on test set

▶ Our results show that 77% of the test-set frames are closer to their
corresponding dominant archetypes, as opposed to any other
archetypes.

▶ Moreoever, the nRMSE is 20% with dominant archetypes, and on an
average is 45% with other archetypes
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Our Results – Stable representation of neuronal response

▶ For each scene, we stack the fMRI matrices of all subjects into a
population matrix.

▶ AA on all scene-wise population matrices gives us stable
representation of each frame for a population – 93.32% of all
time-frames in every epoch were consistently closer to the same
archetype across subjects.

Figure: Scene-wise archetypes across subjects for scene 50.
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Conclusion

▶ We show a new approach to deconvolving a population of functional
images, which could lead to novel insights

▶ In particular, we show that AA gives a stable, frame-wise
representation of brain activity

▶ We show that these representations correlate strongly with frame-wise
annotation. They can also predict response in new subjects who are
shown the same stimulus.
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Introduction

▶ Previously, we observed that complex, dynamic neuronal response to
continuous visual inputs can be expressed by low-rank representations.

▶ Now, we show that we can predict visual objects (such as face, car,
etc.).

▶ Further, we reconstruct individual video frames from fMRI.

▶ Our approach uses deep-learning architectures

Ravindra et al. – In Review ’21
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Technical Approach

▶ Divide video (and corresponding fMRI) inputs into train and test.

▶ We train an encoder-decoder neural network on the training video
clips (using cross-validation).

▶ We use the trained encoder to convert video frames into latent
representations.

▶ We train a map from the fMRI response to latent vectors
corresponding to the same visual input frames

▶ We reconstruct video frames from fMRI using previously trained map
and decoder.

Vikram Ravindra and Ananth Grama Computational Analyses of Connectomes 16 / 31



Technical Approach

Figure: Schematic representation of our setup. The solid arrows correspond
to training steps.
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Encoder-Decoder Architecture

Figure: Each input frame is of dimensions 224× 224× 3. The encoder is a
sequence of convoluted neural networks (CNNs) and pooling layers, with
increasing number of channels and reduction in spatial dimensions. Finally, we
flatten out the tensor and input into a Gated Recurrent Unit (GRU). The decoder
is a sequence of upsampling and CNN transpose. The output of the final layer of
decoder is a video frame with dimensions that match the input.
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fMRI-Latent Map

Figure: We have 2 layers of GRU with 1024 dimensions and tanh activation.
Finally, this is followed by a linear dense layer.
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Similarity in Cluster Structure

▶ We show that the cluster structure of predicted latent vectors
computed using fMRIs is similar to latent vectors computed from
video stimulus.

▶ This shows that the output of the map (that inputs fMRI) is a good
approximation to output of the encoder (that inputs video frames),
thereby allowing us to make predictions about video stimuli
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Similarity in Cluster Structure

▶ We train the encoder-decoder and fMRI-Latent Map as described
earlier. This gives us the following:

▶ Latent vectors corresponding to train set within each iteration of
cross-validation (which both the encoder and non-linear map
have previously seen).

▶ Latent vectors in the hold-out set in the training procedure of
the non-linear map (which the encoder has seen, but the map
has not seen in the current iteration).

▶ Latent vectors corresponding to the test video and corresponding
test fMRI (which neither the encoder nor the map have
previously encountered).

▶ In each case, we cluster the outputs of encoder and non-linear map
separately using k-means for k = {3, 4, . . . , 20}.

▶ Then, we compute the adjusted rand index (ARI) between the
clustering obtained.
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Result – Similarity in Cluster Structure

Figure: Visualization of latent representations computed from video frames
processed using a trained encoder (blue) and from corresponding fMRI frames
processed using a trained non-linear map (red) for a sample subject, after
reducing to two dimensions using t-SNE.
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Result – Similarity in Cluster Structure

(a) (b)

Figure: Plots show the relationship between cluster groupings and adjusted
rand-index (ARI) when (a) the encoder has been previously trained on the video
frames; (b) neither neural network has previously seen the video or corresponding
fMRI frame.
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Result – Similarity in Cluster Structure

▶ The high values of both measures show that embeddings obtained
from the two routes are similar.

▶ Therefore, fMRI processed using the trained map can be used to
approximate the video frames and encoder.

▶ We note that the measures plateau for larger values of k.

Vikram Ravindra and Ananth Grama Computational Analyses of Connectomes 24 / 31



Prediction of Visual Features

Figure: Prediction of visual features from latent space. We assume that the
encoder-decoder and the fMRI-latent map are previously trained. First, using the
train video frames, we obtain the (actual) latent vectors. Then, we input the
same video frames into pre-trained ImageNet to classify each of the frames.
Following this, we predict latent vectors by inputting test fMRI through a
pretrained map. We then do k-NN classification between actual and predicted
latent vectors to predict visual features in fMRI frames.
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Result – Prediction of Visual Features

Figure: Prediction accuracy of objects in visual stimulus. This figure shows
the prediction accuracy when matching objects/ classes recognized in visual
stimulus (in latent space) and its corresponding k-closest neighbors among all
train video frames (in latent space). We see that the prediction accuracy is > 70%
when we allow the fMRI frame be matched to one of its ten closest euclidean
neighbours in latent space. We use ImageNet to recognize entities in images.
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Result – Prediction of Visual Features

(a) (b) (c)

(d) (e) (f)

Figure: Examples of visual stimulus reconstructed from latent
representation. The left frame in each of these examples is computed using
latent vectors from visual stimulus, whereas the right frame is the its closest
euclidean neighbour among latent vectors computed from fMRI frames in the
training set. In each of the images, we can see similarity in objects/ faces in the
background or foreground.
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Face Detection

Figure: Schematic Representation of Face Detection. After training the
encoder-decoder and the fMRI-Latent map, we detect faces as follows. First, test
videos are passed through the encoder-decoder, and the output of the decoder is
processed using MTCNN, a pretrained network to detect faces. This output
serves as the ground truth. Then, we pass the corresponding fMRI frames into
the map and the resulting latent vector through the decoder. The output of this
is fed into MTCNN to give our prediction of face/ no-face. Comparing the labels
of ground truth and our prediction, we assess the performance of our framework.
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Result – Face Detection

Figure: Receiver Operating Characteristic (ROC) obtained by varying
confidence thresholds for the three stages of MTCNN. We note excellent
performance of our framework for scenes with significant number of faces.
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Result – Face Reconstruction

(a) (b) (c)

Figure: Examples of reconstructed faces. In each of these cases, the image of
the left is the original image, and the image on the right is reconstructed from
corresponding fMRI frames. We input test fMRI frames into the non-linear map
to obtain predicted latent vectors. We input these vectors into the previously
trained decoder.
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Rigid Graphs and Alignment

▶ Graphs are commonly used to model real-world systems

▶ Many of these systems have fixed relative positions for nodes – we
call such graphs “rigid graphs”

Figure: Examples of Rigid Graphs

Ravindra et al. – ComplexNets ’19
Ravindra et al. – In Review, ’21
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Topological Network Alignment

▶ Let A(VA,EA) and B(VB ,EB) be two graphs

▶ The problem of network alignment is to find correspondence between
nodes of A and B

▶ Example: X ∈ {0, 1}|VA|×|VB | encodes the correspondence between A
and B

A B

X

Xij =

{
1 if i ∈ VA is matched with j ∈ VB

0 otherwise

Vikram Ravindra and Ananth Grama Computational Analyses of Connectomes 31 / 31



Topological Network Alignment: Formulation

▶ Recall: A and B are the adjacency matrices and X encodes the
correspondence

▶ Let L ∈ R|VA|×|VB | denote the prior matrix that provides external
information about the similarity between pairs of nodes in A and B

▶ Let α and β denote the relative importance of prior knowledge and
edge-overlap

max
X

αL • X+ βA • XBXT

s.t.
∑

i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(4)
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Topological Network Alignment

▶ Example

X

A

1

2

3

4

5

B

1'

2'

3'

4'

▶ Nodes 1,2,3,4 can be assigned to any cyclic ordering of 1’,2’,3’,4’

▶ In applications where nodes represent physical entities (say, nodes
represent brain regions), we need to take spatial considerations into
account
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Rigid Graph Alignment (RGA)

X

A

1(2,4)

2(1,3)

3(2,0)

4(3,3)

5(0,-1)

B

1'(2,4)

2'(1,3) 4'(3,3)

3'(2,0)

▶ We have A(VA,EA,CA) and B(VB ,EB ,CB)

▶ Also, edges of rigid graphs have preferred (fixed) lengths. Therefore,
we can perform orthogonal transformations from CA to CB

min
Ω

||CA − CBΩ||2F

s.t. ΩTΩ = I
(5)
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Rigid Graph Alignment – Formulation

▶ We can combine the objectives of network alignment and rigid body
constraints

▶ Note that rows of CB are permuted in accordance with X (which is
given by the topological aligner)

F = max
X,Ω

αL • X︸ ︷︷ ︸
Update Prior

+β

Network Alignment︷ ︸︸ ︷
A • XBXT − γ||CA − XCBΩ||2F︸ ︷︷ ︸

Structural Alignment

s.t.
∑

i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(6)
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Rigid Graph Alignment

▶ We can rewrite the objective function as follows

F = max
X

αL • X︸ ︷︷ ︸
Update Prior

+β

Network Alignment︷ ︸︸ ︷
A • XBXT +γ CAΩ

TCT
B • X︸ ︷︷ ︸

Structural Alignment

s.t.
∑

i Xij = 1 ∀j = 1 . . . |VB |,∑
j Xij = 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(7)

▶ This form of the objective function suggests that the optimal X is one
that maximizes the network alignment and structural alignment, while
respecting the prior.
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Rigid Graph Alignment

▶ The RGA objective suggests that the prior L should be proportional
to the similarity between the coordinates, i.e., CAΩ

TCT
B .

▶ The prior for topological alignment must be sparse

Li ,j =

{
exp(−

∥∥CAi
− CBj

∥∥2
2
)

∥∥CAi
− CBj

∥∥2
2
≤ dk

i

0 otherwise
(8)
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Rigid Graph Alignment – Algorithm

▶ Our algorithm uses alternating procedure: we fix Ω and populate the
prior, which is input to the aligner

▶ The aligner returns the match X, which we use to refine the
structural alignment

Rigid Graph Alignment

1: Input: Graphs A(VA,EA,CA) and B(VB ,EB ,CB), α, β, γ
2: Output: Aligned graphs A and B
3: repeat
4: L = get prior(CA,CB)
5: X = align(A,B,L)
6: B = XBXT

7: Ω = transform coordinates(CA,CB ,X)
8: CB = XCBΩ
9: until converged
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Rigid Graph Alignment – Choice of Aligners

▶ Rigid Graph Alignment can be used in conjunction with network
aligners that require priors

▶ The structural alignment problem, called the Orthogonal Procrustes
Problem can be solved using Kabsch’s algorithm
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Experimental Evaluation

▶ We use both real and synthetic data

▶ Synthetic data is used to explore performance and robustness

▶ Real data is used to characterize accuracy in application settings
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Synthetic Data Generation

▶ We create graphs with 100,500 and 1000 nodes (results shown here
are for 1000 nodes)

▶ We create graphs using Preferential Attachment, and Erdos-Renyi
models (results shown here are for Preferential Attachment)

▶ Step 1: We create a uniform 3D grid. Each point on the grid is given
a node with a biased coin-toss. Then, we add edges according to
Preferential Attachment Model.

▶ Step 2: We create graph B by perturbing graph A as follows

▶ We add and delete edges at random (edge noise)
▶ We move the physical position of nodes (node noise)

▶ Step 3: We run Rigid Graph Alignment with our choice of aligner
(results for netalignmbp5 shown here).

5[Bayati et al.] doi:10.1145/2435209.2435212
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Our Results – Synthetic Experiments

▶ Case 1: We introduce noise in edges only. This decreases the number
of true edges. RGA finds these true edges with high accuracy.

▶ Case 2: we introduce noise to nodes only. RGA corrects for these
errors, whereas a wrong prior adversely affects the performance of
regular topological network alignment algorithms

(a) Rigid Graph Alignment is
robust to added/deleted edges

(b) Rigid Graph Alignment is
robust to shift in physical
positions of nodes
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Our Results – Synthetic Experiments

▶ We introduce noise to both nodes and edges

▶ Rigid graph alignment is robust to noise in terms of edge overlap
(A • XBXT )

(c) Edge overlap drops with noise (d) Rigid Graph Alignment is
robust to noise
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Our Results – Synthetic Experiments

▶ Our graph generation procedure gives us correct node alignments,
which can be used to compute node overlap

▶ Rigid Graph Alignment matches nodes well, even in presence of noise

(e) Node Overlap drops with
noise

(f) Rigid Graph Alignment is
robust to noise
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Our Results – HCP data

▶ We use 2 sessions of 20 resting state fMRI from the HCP data

▶ For each session, we register to first image of the session
(head-motion correction) and register to first image

▶ We don’t register to subject’s own structural MRI or to a
standard MNI coordinate system. This makes our analysis
entirely functional.

▶ Then, we generate a voxel × voxel correlation matrix and threshold
(95th percentile) to create an adjacency matrix

▶ Each node has a physical position (which is the 3D coordinate of the
voxel)
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Our Results - HCP

RGA significantly improves the quality of alignment
▶ We aligned functional connectomes of the same subject, across

sessions
▶ We observe a significant improvement in edge overlap in a small

number of iterations
▶ Regular topological alignment (iteration 1 in plot)

Figure: Rigid Graph Alignment improves alignment between brain networks in a
small number of iterations.
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Our Results – HCP

Selecting suitable metrics for Identification
▶ We align two images of same subject (intra-subject alignment) and

we align two images across subjects (inter-subject alignment)
▶ In terms of edge-overlap, it is difficult to distinguish between

inter-subject and intra-subject alignments
▶ However, if we measure the error in terms of rigidity (i.e.,

||CA − XCBΩ||F ), the inter-subject and intra-subject distributions are
separable.

(a) Edge Overlap is not a
good metric to identify
subjects

(b) Rigidity of edge lengths
is a good metric to identify
subjectsVikram Ravindra and Ananth Grama Computational Analyses of Connectomes 31 / 31



Dynamic Graphs and Motifs

▶ Dynamic graphs are natural abstractions for modeling correlations in
brain activity.

▶ An important problem in the context of these dynamic correlation
graphs is the discovery of sets of regions of the brain, whose activity
level is temporally coherent.

▶ These manifest as temporally persistent sub-graphs that are strongly
connected, referred to as coherent subgraphs.

▶ In this paper, we present a model and method for identifying coherent
subgraphs in dynamic correlation graphs.
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Model

▶ Let M ∈ Rr×t denote a time-series matrix, with r sources (time
series) and t time-points.

▶ We aim to identify vertices that participate in large coherent
subgraphs.

▶ In these nodes, internal connections are stronger than external ones.

M =

[
S
Y

]
=

[
1sb

T + Z
Y

]
=

[
Us

UY

]
ΣVT (9)
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Claims

▶ Claim 1: The expected value of edge weights that are internal to C is
higher than expected value of edge weights that are external to C

▶ Claim 2: Let UΣVT be the rank k thin SVD of M with σk = σmin.
The noise in the SVD coordinates associated with coherent subgraphs
|C| is bounded.

▶ Claim 3: If M is full rank and any spectral coordinate (row j of U) is
close to that of i ∈ C, then j is also in C.

▶ Proofs are in paper.
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Data

▶ We use fMRIs from HCP dataset. We use rest, relational memory,
gambling tasks, emotional processing , language processing, and
social cognition.

▶ Each fMRI time-series data is a regions (n) × time-points (t) matrix
M.

▶ The session is divided into windows of length l (=5,10,20) and a slide
size s (=1,2,5).

▶ We denote the windows as W1, . . . ,Wk , and
Wi ∈ Rn×l∀i ∈ {1, ..., k}.
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Emprical Results

Spectral coordinates have cluster structure similar to that of the
time window matrix

▶ Goal: Show that cluster structure of the rows of a time window
matrix Wi and that of the rows of its left singular matrix Ui , i.e., it’s
spectral coordinates, are similar.

▶ We divide the time-series into windows Wi and compute
corresponding left-singular vector matrices Ui

▶ We cluster the rows of both matrices separately and compute the
Jaccard coefficient by retaining different number of singular vectors
and varying number of clusters
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Empirical Results

# Singular vectors
1 5 10 20

#
cl
u
st
er
s 3 96.26 94.25 94.31 96.22

5 93.52 92.79 92.71 93.57
10 88.12 85.79 86.79 87.89

Table: J (Agreement) (in %age) of clusters obtained by clustering
time-windows (of size 20) and those obtained by clustering the left singular
vectors for EMOTION task in the Human Connectome Project. This table
shows that the agreement does not improve as more singular vectors are used.
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Empirical Results

Coherent subgraphs are reliable indicators of rest activity

▶ For each time-window matrix Wi , we cluster corresponding vectors

U
(1)
i . We use the metadata from the HCP dataset to annotate every

frame as “task” or “rest”.

▶ We perform k-means clustering on the rows of U
(1)
i and predicted rest

correctly for 98.7± 0.3% of all time points.

▶ We use conductance as the metric to assess strength of the coherent
subgraphs
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Empirical Results

Figure: Histogram of conductance when subjects are at rest (blue) and during
activity (red) during EMOTION task fit to Normal Distribution. The separation
reveals that synchronous brain activity increases while performing task, which is
evidenced by increase in similarity on internal edges and decrease in similarity of
border edges. The blue and red vertical lines represent the means and one
standard deviations of the respective distributions.
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Empirical Results

Coherent subgraphs of snapshots predict the task condition

▶ We annotate each time-window with its corresponding task condition
such as win & loss conditions in the GAMBLING task, or face &
shape conditions in EMOTION task using the metadata available
with the HCP dataset.

▶ Then, we divide the time-points into train and test splits to perform a
10-fold cross validation. For each train/ test time-window Wi , we

find the top left-singular vector U
(1)
i and stack the vectors into Ltrain

and Ltest , respectively.

▶ Finally, we restrict the feature space to the clique nodes, as obtained
previously. We then use linear Support Vector Machines (SVM) to
predict the task conditions of test windows using the learning
parameters from the train windows.
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Empirical Results

Figure: Accuracy in prediction of task-condition for 5 tasks in the HCP dataset.
Our results that near-cliques encode the nature of activity in fMRIs. A random
selection of nodes performs poorly in comparison.
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