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Outline
• Can we identify individual specific markers in 

connectomes?


• Can we identify tasks using connectomes?


• Can we characterize how well people perform tasks?


• Is identity encoded in functional network?


• Ongoing work: can the algorithmic machinery be 
generalized to pathologies to identify connectomic 
markers?



Identifying Individual 
Specific Markers

• Find compact anatomical markers that characterize identities from 
neuroimages


• Images acquired in multiple sessions over periods of time may be 
susceptible to a range of variations.


 Natural variations in brain states


Technical variations in instrumentation


Mapping stable invariants to anatomical regions


Anatomical markers must be robust across populations


[Ravindra et al 2018] arXiv:1805.08649 
[Ravindra et al 2019] arXiv:1908.03260



Identifying Individual 
Specific Markers



Statistical Leverage Scores 
of Matrices

• Definition: Given an arbitrary matrix � , with 
� . Let �  consisting of �  left singular 
vectors of � , and let �  denote the � -th row of � . 
Then, the statistical leverage scores of rows of A is 
given by 
 
                �  
   for �  

A ∈ ℝm×n

n > d U ∈ ℝm×n d
A Ui,⋆ i U

li = | |Ui,⋆ | |2
2

i ∈ {1,…, n}



• Approach: Use concepts from matrix sampling — leverage 
score sampling to select critical row sets that best represent 
the feature space.


• Definition: Given a matrix � with � , let 
�  be an orthonormal matrix that spans the column 
space of �  ( �  and �   — a projection matrix 
that spans the column-space of � ). 
We sample rows in proportion to their leverage scores, i.e., 

�

A ∈ ℝm×n m ≫ n
U ∈ ℝm×n

A UTU = I UUT = PA
A

pi =
| |Ui,⋆ | |2

2

∑i | |Ui,⋆ | |2
2

=
1
n

(PA)i,i ∀i ∈ {1…m} .

Identifying Individual 
Specific Markers



Identifying Individual 
Specific Markers

Features selected by leverage 
score sampling accurately 

predicts identities for a range of 
tasks

High diagonal values show that 
images of same subjects on 

different days are more similar 
than images drawn from 

different subjects

We need only 60 features to  
accurately predict 

Identities of subjects



Identifying Individual 
Specific Markers

Training/
Test Split

Training 
Accuracy(%)

Testing 
Accuracy(%)

80/20 96.23 ± 2.24 93.11 ± 3.61
50/50 96.30 ± 2.59 92.94 ± 3.82
30/70 96.81 ± 3.07 90.23 ± 4.30
20/80 97.01 ± 3.22 87.60 ± 5.27
10/90 97.72 ± 2.65 81.86 ± 7.15

Principal 
Component

s

Training 
Accuracy(%

)

Testing 
Accuracy(%

)All 88.65 ± 1.76 88.98 ± 1.72
2:end 94.30 ± 1.35 71.76 ± 8.76
11:end 96.74 ± 1.00 69.61 ± 8.94
21:end 95.03 ± 1.90 69.44 ± 8.99
31:end 71.97 ± 6.08 68.95 ± 9.07
41:end 72.77 ±  1.74 65.70 ± 9.59

Leverage 
Score 96.23 ± 2.24 93.11 ± 3.61

A 50/50 split suffices for the 
 markers to generalize to the test set

Comparison of Leverage Score  
sampling with low-rank approximations



Anatomical Markers of 
Identity

• We retain features in the original matrix. Hence, they are 
directly interpretable (thus making them applicable to 
identifying markers with various neurodegenerative 
diseases)


• We require fewer than 100 markers from over 64k 
candidates demonstrating high sensitivity.



Identifying Tasks from 
Connectomes

• A t-distribution stochastic neighbor embedding (t-SNE) of 
all connectomes show that tasks are separable into 
clusters.


• We used leverage-score sampling to find markers that 
distinguish the tasks performed by the same subject.



Identifying tasks from 
Connectomes

Task prediction accuracy on Day 1 Task prediction accuracy on Day 2



Predicting Task Efficacy

Task Train Error % Test Error %
Language 0.33 ±0.11 1.52 ± 0.20
Emotion 0.28 ±0.07 0.60 ± 0.37

Relational 0.44 ± 0.04 2.74 ± 0.34
Working Mem 0.57 ± 0.12 1.93 ± 0.41

• We use markers selected by our leverage-score sampling 
to predict the efficiency with which subjects perform 
tasks.


• We use support vector regression to learn performance 
metrics



Individual Specific Markers 
in Functional Connectomes
• Functional network pipelines align (by registering to a 

common coordinate) and normalize (by registering to high 
resolution image of same subject) using structure  


• Previously identified signatures may be coded in function 
or structure


• Can we identify markers in the functional connectomes 
that characterize identity to similarly high accuracy?

Fig. Courtesy: David Gleich



Individual Specific Markers 
in Functional Connectomes
• Register each session to the first image (do not align to common 

coordinate)


• Restrict to the cortex and compute voxel level correlations across 
time steps to identify statistically significant co-firing regions


• This results in a sparse representation of the functional 
connectomes as a weighted graph with edge weights 
representing preferred distances


• Identifying markers translates to node correspondences across 
graphs modeled as a rigid graph alignment problem


[Ravindra et al. 2019] arXiv:1908.03201



Rigid Graph Alignment

•
�  

            �  

            � 


• Approach: Use functional and structural information 
alternately in an Expectation-Maximization (EM) framework

F = max
X

αL ∙ X + βA ∙ XBXT

network alignment

+
structral alignment

γCAΩTCT
B ∙ X

∑
i

Xij ≤ 1 ∀j = 1,..., |VB |

∑
j

Xij ≤ 1 ∀i = 1,..., |VA | Xij ∈ {0,1}



Rigid Graph Alignment
• E - step 

       � 


• M-step 
    � 


• Repeat 
    �  
    �  
    �  
    �  
    �  
until converged

X(t) = argmaxΩF(X, Ω(t))

Ω(t+1) = argmaxXF(X(t), Ω)

L = get_prior(CA, CB)
X = align(A, B, L)
B = XBXT

Ω = transform_coordinates(CA, CB, X)
CB = XCBΩ

Exact Alignment is NP hard!

�Li, j = {exp( − | |CAi
− CBj

| |2
2 ) | |CAi

− CBj
| |2

2 ≤ dk
i

0 otherwise

Use Kabsch’s algorithm



Network Alignment 
algorithms cannot separate 

inter-subject and intra-
subject alignments

Individual Specific Markers 
in Functional Connectomes

The number of corresponding 
edges increase when we use 
both function and structural 

information 

Rigid Graph Alignment can 
separate inter-subject and 
intra-subject alignments



• We create synthetic graphs using a preferential-
attachment model


• Nodes are assigned random coordinates


• We perturb positions of nodes and add/remove edges

Stability of Rigid Graph 
Alignment



Stability of Rigid Graph 
Alignment

Edge-overlap decreases with 
node and edge noise in regular 
network alignment algorithms

Rigid graph alignment is robust 
to edge and node noises, as 

evidenced by high edge-overlap 
values for substantial value of 

noise 



Stability of Rigid Graph 
Alignment

Number of correct node 
matches decrease for modest 

noise with regular network 
alignment

Number of correct node 
matches remains unaffected for 

substantial noise



Future Questions
• What features are actually discriminating? Are Leverage score 

features the best features or are there other feature sets that are more discriminating and 
compact?


• What are markers of neurodegenerative disorders?


• How do markers evolve with progression of diseases?


• Can we map image phenotypes to genotypic markers and 
to drug targets?


• Can we functionally align able bodied and injured brain to 
reason about how we re-learn tasks after injury?



Thank You!


