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YEAST AGING

@ Yeast as a model organism for
aging research:
v Rapid growth
v Ease of manipulation

@ Replicative life-span (RLS): the
number of buds a mother cell can
produce before senescence
occurs

" Alper Usan, PhD. @ Chronological life-span (CLS):

duration of viability after entering
the stationary-phase
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YEAST INTERACTOME

@ Mixed network: Contains both
directed (biochemical activities)
and undirected (protein-protein
interactions) edges

@ 103,619 (63,395 non-redundant)
physical interactions among
5,691 proteins.

@ 5,791 (5,443 non-redundant)
biochemical activities (mostly
phosphorylation events) among
2,002 kinase-substrate pairs.
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TRANSCRIPTIONAL REGULATORY NETWORK (TRN) OF
YEAST

@ Directed graph

@ Downloaded from the Yeast Search for Transcriptional
Regulators And Consensus Tracking (YEASTRACT)

@ Consists of 48,082 interactions between 183 transcription
factors (TF) and 6,403 target genes (TG).
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RAPAMYCIN-TREATMENT DATASET

* Rapamycin treatment

(min) protein
© e O

@ Rapamycin: A lipophilic macrolide that
directly binds to and inhibits TOR in vivo

@ Temporal analysis of gene expression
changes for 6,000 ORFs in Baker’s yeast,
Saccharomyces cerevisiae, over 6h of
rapamycin treatment.

@ 366 repressed and 291 induced genes at a
minimum threshold of 2-fold change.

30 00 +3.0
Signal-to-Noise ratio

Adopted from Fournier et al., PURDUE
2010
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DIRECTIONAL INFORMATION FLOW

RANDOM WALK

Random walk on a graph G, initiated from vertex v, is the
sequence of transitions among vertices, starting from v. At
each step, the random walker randomly chooses the next
vertex from among the neighbors of the current node.

It is a Markov chain with the transition matrix P, where
pj = Prob(Sn1 = vi|Sp = v;) and random variable S,
represents the state of the random walk at the time step n.
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DIRECTIONAL INFORMATION FLOW

RANDOM WALK WITH RESTART

Random walk with restart (RWR) is a modified Markov chain in
which, at each step, a random walker has the choice of either
continuing along its path, with probability «, or jump (teleport)
back to the initial vertex, with probability 1 — «.

The transition matrix of the modified chain, M, can be
computed as M = aP + (1 — a)ey1 T where e, is a stochastic
vector of size n having zeros everywhere, except at index v,
and 1 is a vector of all ones.
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DIRECTIONAL INFORMATION FLOW

STATIONARY DISTRIBUTION

The portion of time spent on each node in an infinite random
walk with restart initiated at node v, with parameter «.

Stationary distribution of the modified chain

my(a) = Mmy(a)
= (aP+(1—a)e, 1), (a)

Enforcing a unit norm on the dominant eigenvector to ensure its
stochastic property, || wy(a) |y= 177, = 1, we will have:
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DIRECTIONAL INFORMATION FLOW

STATIONARY DISTRIBUTION—CONTINUE

lterative form of the information flow process:

(o) = aPmy(a)+ (1 —a)ey,

Explicit (direct) formulation of the information flow process:

wy(a) = (1—04)(/V—ozl°)‘1 ev,

Q
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DIRECTIONAL INFORMATION FLOW

INTERPRETATION

Expansion using the Neumann series:

m(a) = (1-0a)) (aP)e,
i=0

Thus, ,(«) is a function of:
@ Distance to source node (v)
@ Multiplicity of paths

PURDUE

Grama et al. Computational Aging



Phase 1: Constructing a map of aging pathways in yeast Overview
Materials and Methods
Results and Discussion

SIDEBAR: FUNCTIONAL PAGERANK (PR)

Computing PageRank (PR)

@ PageRank as a random surfer process: Start surfing from a
random node and keep following links with probability s
restarting with probability 1 — 1; the node for restarting will be
selected based on a personalization vector v. The ranking value
x; of a node i is the probability of visiting this node during surfing.

@ PR can also be cast in power series representation as
x=(1-p) Z/;'(:o W Sv; S encodes column-stochastic
adjacencies.

Functional rankings

@ A general method to assign ranking values to graph nodes as
X = Z/;'(:o ¢;S'v. PRis a functional ranking, ¢; = (1 — ).

@ Terms attenuated by outdegrees in S and damping coefficients
g. PURDUE
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FUNCTIONAL RANKINGS THROUGH MULTIDAMPING
[KOLLIAS, GALLOPOULOS, AG, TKDE’13]

COMPUTING fj IN MULTIDAMPING

Simulate a functional ranking by random
surfers following emanating links with
probability 1; at step j given by :

,u’j =1- ﬁaj: 17"'7ka

— Sk—jrt

where 1o = 0 and px_j 1 = G

Examples
: k 2(k+1 i\, - i
LinearRank (LR) x'* = =1 o 2K Sy -y = - +?,/ =1,.. k.
TR [oe] + B
TOta/Rank(TR)X :Z/ OWSJV ,U,j j+27j:17...,k.
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Phase 1: Constructing a map of aging pathways in yeast

MULTIDAMPING AND COMPUTATIONAL COST

Advantages of multidamping

@ Interpretability and Design!

@ Reduced computational cost in approximating functional
rankings using the Monte Carlo approach. A random surfer
terminates with probability 1 — x; at step j.

@ Inherently parallel and synchronization free computation.
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MULTIDAMPING PERFORMANCE

TotalRank: Kendall tau v step for TopK=1000 nodes (uk-2005)

hared nodes (max=30)

~~~~~

Apprommate ranklng Run n surfers to complet|on for graph size n.

How well does the computed ranking capture the “reference” ordering

for top—k nodes, compared to standard iterations of equivalent
computational cost/number of operations? [Left]

Approximate personalized ranking: Run less than n surfers to
completion (each called a microstep, x-axis), from a selected node
(personalized). How well can we capture the “reference” top—k

nodes, i.e., how many of them are shared (y-axis), compared to thyrpur
simple approach? [Right]
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EXPERIMENTAL SETTINGS

We set the preference vector as:

1oifvies
N |S‘ I ’
esll) =
s(7) {o O.W.

for S being the subset of vertices in the yeast interactome
corresponding to members of the TORC1 protein complex. The
diameter of the network is computed to be 6 and « parameter is
set to d%1 = % ~ 0.85 accordingly to give all nodes a fair
chance of being visited.
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DISTRIBUTION OF INFORMATION FLOW SCORES

Distribution of information flow scores across nodes with similar distance from
members of TORC1 are color coded accordingly. The p parameter is the average of
information flow scores for nodes under each distribution.
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ENRICHMENT MAP OF YEAST GOSLIM TERMS

Enriched terms are identified by mHG p-value, computed for the ranked-list of genes
based on their information flow scores. Each node represents a significant GO term
and edges represent the overlap between genesets of GO terms. Terms in different
branches of GO are color-coded with red, green, and blue. Color intensity of each node
represents the significance of its p-value, while the node size illustrates the size of its
geneset. Thickness of edges is related to the extent of overlap among genesets.
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TOR-DEPENDENT CONTROL OF TRANSCRIPTION
INITIATION

Induced subgraph in the yeast interactome, constructed from the top-ranked genes in
the information flow analysis that are annotated with the transcription initiation GO
term. Different functional subunits are marked and color-coded appropriately.

TFIID

RNAP III

RPC3L

L \RPCI7

.

)
S rEms
(S TFIB
ssur2

ey MED

°
RTFL

PURDUE

Grama et al. Computational Ag!



Phase 1: Constructing a map of aging pathways in yeast Overview
Materials and Methods

Results and Discussion

ENRICHMENT PLOT FOR RAPAMYCIN-TREATMENT
DATASET

Enrichment score as a function of the score percentage. Computations are based on
the set of differentially expressed genes in response to Rapamycin treatment. The
peak of plot occurs at around top 15% of scores, resulting in the minimum
hypergeometric (mHG) score of ~ 1e — 22. The exact p-value for this score is
computed, using dynamic programing, to be 3.3e — 19.
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TORCI1-DEPENDENT REGULATION OF GAP1

The schematic diagram is based on literature evidence for the interactions. Each node
in the signaling pathway is annotated with the rank of its information flow score from
TORC1. Ranking of nodes based on their information flow scores respect our prior
knowledge on the structure of this pathway.

Tapa2-PPase|
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COMPARATIVE NETWORK ANALYSIS

TRADITIONAL APPROACH

BASIC IDEA

To project functional pathways from a well-studied organism,

such as yeast, back to a higher-order organism, such as
humans. PURDUE

Grama et al. Computational Aging



Motivation
Phase 2: Projecting yeast aging pathways to human tissues Datasets
Results

NEW OUTLOOK

TISSUE-SPECIFIC ANALYSIS

Different human cell types inherit a similar genetic code, but
exhibit unique characteristics and functions.

@ How does regulation of different
genes contribute to functional
differences in human tissues?

@ How does a uni-cellular
organism, such as yeast,
contributes to the biological
understanding of higher-order,
multi-cellular organisms, such as
humans?
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TISSUE-SPECIFIC GENE EXPRESSION

The GNF Gene Atlas dataset:

Yarioo! .
——

@ 79 different tissues
@ 44,775 human transcripts
@ Platforms:

1. Affymetrix HG-U133A.
2. Custom GNF1H array.

PURDUE
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Phase 2: Projecting yeast aging pathways to human tissues
Results

TISSUE-SPECIFIC INTERACTOMES

@ Vertex-induced sub-graphs of the human interactome

@ Based on the GNF Gene Atlas dataset
= A gene is considered as present in a tissue, if its
normalized expression level is > 200 (average
difference between match-mismatch pairs).

20 25 {— Ancestral proteins

‘Global' human protein interactome
— Metazoan-specific

80,922 interactions, 10,229 proteins — Al proteins

Expression profiles for 79 human cells and tissues

Skeletal muscle  B-cell  Pancreatic islet
interactome  interactome  interactome.

Protein interaction degree

S DS OSSO SR NI

A 5 5 AH OB S ® S A8

oo N & N g
Number of tissues in which

Number of tissues in which
protein is expressed

protein is expressed

Adopted from Bossi et al., 2009
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SEQUENCE SIMILARITY OF PROTEIN PAIRS

@ Protein sequences are downloaded from Ensembl
database, release 69.
@ Reference genomes:
> Human: GRCh37
> Yeast: EF4
@ Number of sequences:
> Human: 101,075
> Yeast: 6,692
@ Low-complexity regions are masked using pseg
@ Smith-Waterman algorithm is used to compute local

alignments.
PURDUE
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GENE EXPRESSION SIGNATURE

A UNIQUE IDENTIFIER FOR SIMILAR TISSUES

@ Each row corresponds to a unique ORF.

@ Each col corresponds to a unique tissue.

@ Coloring is based on the normalized expression of each gene across different
tissues.
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TISSUE-TISSUE SIMILARITY NETWORK (TTSN)

@ First of its kind
@ Based on similarity of expression signatures
@ Differentiates between similar and dissimilar tissues

Spinal Cord

Hypothalamus Dorsal Root

Superior Cervical ~ Ganglion
Ganglion

Cerebellum -
o
Cerebellum Skin
Peduncles
Trigeminal Atrioventricular
Ganglion Node )
Testis
MOLT-4
Globus Pallidus
0. Testis Germ Cell
HL6
Mongcytes  T-Helper Cells K-562 Daudi

Cardiac Myocytes Lymph Node

Myeloid Cells Cytotoxic T-Cels serhifelus
5D oot eais  Smoomhusce Ty Tests e st Leydg ol BT
TTSN with stringent threshold (1.96 < Z-score) 0) 18)
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RECONSTRUCTING THE DIFFERENTIATION TREE OF
IMMUNE CELLS

Hematopoiesis from
Multipotent Stem C

JUE

Adopted from BioLegend
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SIMILARITY OF DIFFERENT TISSUES TO YEAST

SUMMARY OF METHODS

@ Align each tissue-specific network to yeast using Belief
Propagation (BP) algorithm.
@ For each alignment, compute:

@ Number of conserved edges.
@ Sequence similarity of the aligned proteins.

@ Create and ensemble of random, pseudo tissues seeded
around housekeeping proteins (proteins that are expressed
in all tissues).

@ Align random tissues with yeast and compute p-values of
original alignment.

PURDUE
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SIDEBAR: NETWORK ALIGNMENT

@ Node similarity: Two nodes are
similar if they are linked by other
similar node pairs. By pairing
similar nodes, the two graphs
become aligned.

@ Let A and B be the normalized adjacency matrices of the graphs
(normalized by columns), H;; be the independently known
similarity scores (preferences matrix) of nodes i € Vg andj € Vj,
and p be the fractional contribution of topological similarity.

@ To compute X, IsoRank iterates:

X — uBXAT + (1 — p)H
PURDUE
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NETWORK SIMILARITY DECOMPOSITION (NSD)
[KOLLIAS, MOHAMMADI, AG, TKDE’12]

Network Similarity Decomposition (NSD)

@ In n steps of we reach
X = (1 — 1) Y323 ukBEH(AT )k + " BT H(AT)"
@ Assume that H = uv’ (1 component). Two phases for X:

1. u® = Bfy and vk = Aky (preprocess/compute iterates)
2. X0 = (1= ) S0 kw0 4y (construct X)

This idea extends to s components, H ~ 37, w;z/.

@ NSD computes matrix-vector iterates and builds X as a sum of
outer products; these are much cheaper than triple matrix
products.

We can then apply Primal-Dual or Greedy Matching (1/2
approximation) to extract the actual node pairs.

Grama et al. Computational Aging
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NSD: PERFORMANCE [KOLLIAS, MADAN,
MOHAMMADI, AG, BMC RN’12]

Species pair NSD PDM GM IsoRank

(secs) | (secs) (secs) (secs)

Species Nodes Edges celeg-dmela 3.15 15212 | 7.29 783.48
celeg (worm) 2805 4572 celeg-hsapi 3.28 163.05 | 9.54 1209.28

dmela (fly) 7518 25830 celeg-scere 1.97 127.70 4.16 949.58

ecoli (bacterium) 1821 6849 dmela-ecoli 1.86 86.80 4.78 807.93
hpylo (bacterium) 706 1414 dmela-hsapi 8.61 590.16 | 28.10 7840.00
hsapi (human) 9633 36386 dmela-scere 4.79 182.91 12.97 4905.00
mmusc (mouse) 290 254 ecoli-hsapi 2.41 79.23 4.76 2029.56
scere (yeast) 5499 31898 ecoli-scere 1.49 69.88 2.60 1264.24
hsapi-scere 6.09 181.17 | 15.56 6714.00

@ We compute similarity matrices X for various pairs of species using
Protein-Protein Interaction (PPI1) networks. . = 0.80, uniform initial
conditions (outer product of suitably normalized 1’s for each pair), 20
iterations, one component.

@ We then extract node matches using PDM and GM.

@ Three orders of magnitude speedup from NSD-based approaches
compared to IsoRank. PURDUE
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NSD: PARALLELIZATION [KKG JPDC’13, SUBMITTED,
KMSAG PARCO’13 SUBMITTED]

Parallelization: NSD has been ported to parallel and
distributed platforms.

@ We have aligned up to million-node graph instances using
over 3K cores.

@ We process graph pairs of over a billion nodes and twenty
billion edges each (!), on MapReduce-based distributed
platforms.

PURDUE
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SIMILARITY OF DIFFERENT TISSUES TO YEAST

PRELIMINARY P-VALUE RESULTS
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@ Green nodes show tissues with significant similarity to
yeast, while red nodes show dissimilar tissues.

@ Similar tissues tend to have consistent p-values. PURDUE
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SIMILARITY OF DIFFERENT TISSUES TO YEAST

ALIGNMENT CONSISTENCY OF HOUSEKEEPING PROTEINS

@ Approximately 75% of housekeeping proteins are aligned
with yeast proteins.

@ Among aligned HK proteins, 25% of them consistently
aligned across all 79 tissues. PURDUE
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Summary

SUMMARY

@ Aging is the primary risk factor for a number of human diseases.

@ Emerging evidence supports the hypothesis that large classes of age-related
pathologies share their underlying biology

@ Constructing a comprehensive map of aging pathways is a critical step towards
deciphering key lifespan mediators, their crosstalk, and systems-level
organization.

@ Tissue-specificity analysis is needed to precisely model aging in both
proliferating and post-mitotic cells.

@ Future works:

@ Construction of comprehensive, yet reliable tissue-specific networks by
integrating various available high-throughput datasets.

@ Devising a biased information flow method for targeting specific subsets of
TOR effectors.

PURDUE
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Appendix For Further Reading

FOR FURTHER READING I

[§ SC. Johnson et al.
mTOR is a key modulator of ageing and age-related
disease
Nature, 493(7432):338—-45, 2013.

[ RM. Naylor et al.
Senescent cells: a novel therapeutic target for aging and
age-related diseases
linical pharmacology and therapeutics, 93:105-116, 2013.

[§ J Campisi et al.
Cellular senescence: a link between cancer and
age-related degenerative disease?

Seminars in cancer biology, 21: 354—-359, 2012.
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