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YEAST AGING

Courtesy of Alper Uzan, PhD.

Yeast as a model organism for
aging research:

X Rapid growth
X Ease of manipulation

Replicative life-span (RLS): the
number of buds a mother cell can
produce before senescence
occurs
Chronological life-span (CLS):
duration of viability after entering
the stationary-phase
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YEAST INTERACTOME

Protein Family

Glucose Receptors

Kinase Associated
Kinase Catalytic
Kinase Metabolic/Lipid

Other phosphorylation-related

Phosphatase Associated
Phosphatase Catalytic
Phosphatase Metabolic/Lipid

Transcription Factor

Mixed network: Contains both
directed (biochemical activities)
and undirected (protein-protein
interactions) edges
103,619 (63,395 non-redundant)
physical interactions among
5,691 proteins.
5,791 (5,443 non-redundant)
biochemical activities (mostly
phosphorylation events) among
2,002 kinase-substrate pairs.
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TRANSCRIPTIONAL REGULATORY NETWORK (TRN) OF

YEAST

Directed graph
Downloaded from the Yeast Search for Transcriptional
Regulators And Consensus Tracking (YEASTRACT)
Consists of 48,082 interactions between 183 transcription
factors (TF) and 6,403 target genes (TG).
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RAPAMYCIN-TREATMENT DATASET

Adopted from Fournier et al.,
2010

Rapamycin: A lipophilic macrolide that
directly binds to and inhibits TOR in vivo
Temporal analysis of gene expression
changes for 6,000 ORFs in Baker’s yeast,
Saccharomyces cerevisiae, over 6h of
rapamycin treatment.
366 repressed and 291 induced genes at a
minimum threshold of 2-fold change.
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DIRECTIONAL INFORMATION FLOW
RANDOM WALK

DEFINITION

Random walk on a graph G, initiated from vertex v , is the
sequence of transitions among vertices, starting from v . At
each step, the random walker randomly chooses the next
vertex from among the neighbors of the current node.

It is a Markov chain with the transition matrix P, where
pij = Prob(Sn+1 = vi |Sn = vj) and random variable Sn
represents the state of the random walk at the time step n.
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DIRECTIONAL INFORMATION FLOW
RANDOM WALK WITH RESTART

DEFINITION

Random walk with restart (RWR) is a modified Markov chain in
which, at each step, a random walker has the choice of either
continuing along its path, with probability α, or jump (teleport)
back to the initial vertex, with probability 1− α.

The transition matrix of the modified chain, M, can be
computed as M = αP + (1− α)ev 1T , where ev is a stochastic
vector of size n having zeros everywhere, except at index v ,
and 1 is a vector of all ones.
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DIRECTIONAL INFORMATION FLOW
STATIONARY DISTRIBUTION

The portion of time spent on each node in an infinite random
walk with restart initiated at node v , with parameter α.

DEFINITION

Stationary distribution of the modified chain

πv (α) = Mπv (α)

= (αP + (1− α)ev 1T )πv (α)

Enforcing a unit norm on the dominant eigenvector to ensure its
stochastic property, ‖ πv (α) ‖1= 1T πv = 1, we will have:
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DIRECTIONAL INFORMATION FLOW
STATIONARY DISTRIBUTION–CONTINUE

DEFINITION

Iterative form of the information flow process:

πv (α) = αPπv (α) + (1− α)ev ,

DEFINITION

Explicit (direct) formulation of the information flow process:

πv (α) = (1− α)(I − αP)−1︸ ︷︷ ︸
Q

ev ,

Grama et al. Computational Aging



Phase 1: Constructing a map of aging pathways in yeast
Phase 2: Projecting yeast aging pathways to human tissues

Summary

Overview
Materials and Methods
Results and Discussion

DIRECTIONAL INFORMATION FLOW
INTERPRETATION

DEFINITION

Expansion using the Neumann series:

πv (α) = (1− α)
∞∑

i=0

(αP)iev

Thus, πv (α) is a function of:
Distance to source node (v )
Multiplicity of paths

Grama et al. Computational Aging
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SIDEBAR: FUNCTIONAL PAGERANK (PR)

Computing PageRank (PR)

PageRank as a random surfer process: Start surfing from a
random node and keep following links with probability µ
restarting with probability 1− µ; the node for restarting will be
selected based on a personalization vector v . The ranking value
xi of a node i is the probability of visiting this node during surfing.

PR can also be cast in power series representation as
x = (1− µ)

∑k
j=0 µ

jSjv ; S encodes column-stochastic
adjacencies.

Functional rankings

A general method to assign ranking values to graph nodes as
x =

∑k
j=0 ζjSjv . PR is a functional ranking, ζj = (1− µ)µj .

Terms attenuated by outdegrees in S and damping coefficients
ζj .
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FUNCTIONAL RANKINGS THROUGH MULTIDAMPING

[KOLLIAS, GALLOPOULOS, AG, TKDE’13]

1-µ
1

1-µ
2

1-µκ

µ
1

µ
2

µκ

COMPUTING µj IN MULTIDAMPING

Simulate a functional ranking by random
surfers following emanating links with
probability µj at step j given by :
µj = 1− 1

1+
ρk−j+1
1−µj−1

, j = 1, ..., k ,

where µ0 = 0 and ρk−j+1 =
ζk−j+1
ζk−j

Examples
LinearRank (LR) xLR =

Pk
j=0

2(k+1−j)
(k+1)(k+2)

S jv : µj = j
j+2 , j = 1, ..., k .

TotalRank (TR) xTR =
P∞

j=0
1

(j+1)(j+2)
S jv : µj = k−j+1

k−j+2 , j = 1, ..., k .
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MULTIDAMPING AND COMPUTATIONAL COST

Advantages of multidamping

Interpretability and Design!
Reduced computational cost in approximating functional
rankings using the Monte Carlo approach. A random surfer
terminates with probability 1− µj at step j .
Inherently parallel and synchronization free computation.
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MULTIDAMPING PERFORMANCE
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Personalized LinearRank: Number of shared nodes (max=30) vs microstep (in-2004). 
For the seed node 20% of the nodes has better ranking in the Non-Personalized run.

iterations
surfers

Approximate ranking: Run n surfers to completion for graph size n.
How well does the computed ranking capture the “reference” ordering
for top-k nodes, compared to standard iterations of equivalent
computational cost/number of operations? [Left]
Approximate personalized ranking: Run less than n surfers to
completion (each called a microstep, x-axis), from a selected node
(personalized). How well can we capture the “reference” top-k
nodes, i.e., how many of them are shared (y-axis), compared to the
simple approach? [Right]
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EXPERIMENTAL SETTINGS

We set the preference vector as:

eS(i) =

{
1
|S| if vi ∈ S,

0 O.W.

for S being the subset of vertices in the yeast interactome
corresponding to members of the TORC1 protein complex. The
diameter of the network is computed to be 6 and α parameter is
set to d

d+1 = 6
7 ∼ 0.85 accordingly to give all nodes a fair

chance of being visited.
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DISTRIBUTION OF INFORMATION FLOW SCORES

Distribution of information flow scores across nodes with similar distance from
members of TORC1 are color coded accordingly. The µ parameter is the average of
information flow scores for nodes under each distribution.
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ENRICHMENT MAP OF YEAST GOSLIM TERMS

Enriched terms are identified by mHG p-value, computed for the ranked-list of genes
based on their information flow scores. Each node represents a significant GO term
and edges represent the overlap between genesets of GO terms. Terms in different
branches of GO are color-coded with red, green, and blue. Color intensity of each node
represents the significance of its p-value, while the node size illustrates the size of its
geneset. Thickness of edges is related to the extent of overlap among genesets.
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TOR-DEPENDENT CONTROL OF TRANSCRIPTION

INITIATION

Induced subgraph in the yeast interactome, constructed from the top-ranked genes in
the information flow analysis that are annotated with the transcription initiation GO
term. Different functional subunits are marked and color-coded appropriately.
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ENRICHMENT PLOT FOR RAPAMYCIN-TREATMENT

DATASET

Enrichment score as a function of the score percentage. Computations are based on
the set of differentially expressed genes in response to Rapamycin treatment. The
peak of plot occurs at around top 15% of scores, resulting in the minimum
hypergeometric (mHG) score of ∼ 1e − 22. The exact p-value for this score is
computed, using dynamic programing, to be 3.3e − 19.
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TORC1-DEPENDENT REGULATION OF GAP1

The schematic diagram is based on literature evidence for the interactions. Each node
in the signaling pathway is annotated with the rank of its information flow score from
TORC1. Ranking of nodes based on their information flow scores respect our prior
knowledge on the structure of this pathway.
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COMPARATIVE NETWORK ANALYSIS
TRADITIONAL APPROACH

BASIC IDEA

⇐⇒

To project functional pathways from a well-studied organism,
such as yeast, back to a higher-order organism, such as
humans.
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NEW OUTLOOK
TISSUE-SPECIFIC ANALYSIS

Different human cell types inherit a similar genetic code, but
exhibit unique characteristics and functions.

How does regulation of different
genes contribute to functional
differences in human tissues?
How does a uni-cellular
organism, such as yeast,
contributes to the biological
understanding of higher-order,
multi-cellular organisms, such as
humans?

Grama et al. Computational Aging
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TISSUE-SPECIFIC GENE EXPRESSION

The GNF Gene Atlas dataset:

79 different tissues
44,775 human transcripts
Platforms:

1. Affymetrix HG-U133A.
2. Custom GNF1H array.

Grama et al. Computational Aging
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TISSUE-SPECIFIC INTERACTOMES

Vertex-induced sub-graphs of the human interactome
Based on the GNF Gene Atlas dataset
⇒ A gene is considered as present in a tissue, if its

normalized expression level is > 200 (average
difference between match-mismatch pairs).

Adopted from Bossi et al., 2009
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SEQUENCE SIMILARITY OF PROTEIN PAIRS

Protein sequences are downloaded from Ensembl
database, release 69.
Reference genomes:
. Human: GRCh37
. Yeast: EF4

Number of sequences:
. Human: 101,075
. Yeast: 6,692

Low-complexity regions are masked using pseg
Smith-Waterman algorithm is used to compute local
alignments.

Grama et al. Computational Aging
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GENE EXPRESSION SIGNATURE
A UNIQUE IDENTIFIER FOR SIMILAR TISSUES

Each row corresponds to a unique ORF.
Each col corresponds to a unique tissue.
Coloring is based on the normalized expression of each gene across different
tissues.
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TISSUE-TISSUE SIMILARITY NETWORK (TTSN)

First of its kind
Based on similarity of expression signatures
Differentiates between similar and dissimilar tissues

Temporal Lobe

Pons

Thalamus

Globus Pallidus

Cingulate Cortex

Monocytes

Myeloid Cells

B-Cells

Cytotoxic T-Cells

T-Helper Cells

NK CellsDentritic Cells

Atrioventricular
Node

Superior Cervical
Ganglion

Dorsal Root
Ganglion

Trigeminal
Ganglion

Skin

Ciliary Ganglion

Cerebellum

Parietal Lobe

Spinal Cord

Hypothalamus

Cerebellum
Peduncles

Caudate Nucleus

Testis
Seminiferous

Tubule

Testis

Testis Interstitial Testis Leydig Cell

Testis Germ Cell

Lymph Node

Tonsil

MOLT-4

Smooth Muscle

HL-60

DaudiK-562

Cardiac Myocytes

TTSN with stringent threshold (1.96 < Z-score)
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RECONSTRUCTING THE DIFFERENTIATION TREE OF

IMMUNE CELLS

Adopted from BioLegend

0.450.50.550.60.650.70.750.8

T−Helper Cells

Cytotoxic T−Cells

Hematopoietic Stem Cells

Dentritic Cells

B−Cells

NK Cells

Monocytes

Myeloid Cells

B Lymphoblasts

Grama et al. Computational Aging



Phase 1: Constructing a map of aging pathways in yeast
Phase 2: Projecting yeast aging pathways to human tissues

Summary

Motivation
Datasets
Results

SIMILARITY OF DIFFERENT TISSUES TO YEAST
SUMMARY OF METHODS

Align each tissue-specific network to yeast using Belief
Propagation (BP) algorithm.
For each alignment, compute:

Number of conserved edges.
Sequence similarity of the aligned proteins.

Create and ensemble of random, pseudo tissues seeded
around housekeeping proteins (proteins that are expressed
in all tissues).
Align random tissues with yeast and compute p-values of
original alignment.

Grama et al. Computational Aging
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SIDEBAR: NETWORK ALIGNMENT

Node similarity: Two nodes are
similar if they are linked by other
similar node pairs. By pairing
similar nodes, the two graphs
become aligned.

Let Ã and B̃ be the normalized adjacency matrices of the graphs
(normalized by columns), Hij be the independently known
similarity scores (preferences matrix) of nodes i ∈ VB and j ∈ VA,
and µ be the fractional contribution of topological similarity.

To compute X , IsoRank iterates:

X ← µB̃XÃT + (1− µ)H

Grama et al. Computational Aging
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NETWORK SIMILARITY DECOMPOSITION (NSD)
[KOLLIAS, MOHAMMADI, AG, TKDE’12]

Network Similarity Decomposition (NSD)

In n steps of we reach
X (n) = (1− µ)

∑n−1
k=0 µ

k B̃k H(ÃT )k + µnB̃nH(ÃT )n

Assume that H = uvT (1 component). Two phases for X :

1. u(k) = B̃k u and v (k) = Ãk v (preprocess/compute iterates)
2. X (n) = (1− µ)

∑n−1
k=0 µ

k u(k)v (k)T
+ µnu(n)v (n)T

(construct X)

This idea extends to s components, H ∼
∑s

i=1 wizT
i .

NSD computes matrix-vector iterates and builds X as a sum of
outer products; these are much cheaper than triple matrix
products.

We can then apply Primal-Dual or Greedy Matching (1/2
approximation) to extract the actual node pairs.

Grama et al. Computational Aging
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NSD: PERFORMANCE [KOLLIAS, MADAN,
MOHAMMADI, AG, BMC RN’12]

Species Nodes Edges
celeg (worm) 2805 4572
dmela (fly) 7518 25830
ecoli (bacterium) 1821 6849
hpylo (bacterium) 706 1414
hsapi (human) 9633 36386
mmusc (mouse) 290 254
scere (yeast) 5499 31898

Species pair NSD
(secs)

PDM
(secs)

GM
(secs)

IsoRank
(secs)

celeg-dmela 3.15 152.12 7.29 783.48
celeg-hsapi 3.28 163.05 9.54 1209.28
celeg-scere 1.97 127.70 4.16 949.58
dmela-ecoli 1.86 86.80 4.78 807.93
dmela-hsapi 8.61 590.16 28.10 7840.00
dmela-scere 4.79 182.91 12.97 4905.00
ecoli-hsapi 2.41 79.23 4.76 2029.56
ecoli-scere 1.49 69.88 2.60 1264.24
hsapi-scere 6.09 181.17 15.56 6714.00

We compute similarity matrices X for various pairs of species using
Protein-Protein Interaction (PPI) networks. µ = 0.80, uniform initial
conditions (outer product of suitably normalized 1’s for each pair), 20
iterations, one component.

We then extract node matches using PDM and GM.

Three orders of magnitude speedup from NSD-based approaches
compared to IsoRank.

Grama et al. Computational Aging
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NSD: PARALLELIZATION [KKG JPDC’13, SUBMITTED,
KMSAG PARCO’13 SUBMITTED]

Parallelization: NSD has been ported to parallel and
distributed platforms.

We have aligned up to million-node graph instances using
over 3K cores.
We process graph pairs of over a billion nodes and twenty
billion edges each (!), on MapReduce-based distributed
platforms.

Grama et al. Computational Aging
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SIMILARITY OF DIFFERENT TISSUES TO YEAST
PRELIMINARY P-VALUE RESULTS

CingulateCortex

TemporalLobe

Thalamus
Caudatenucleus

ParietalLobe

MedullaOblongata

Hypothalamus

Leukemialymphoblastic(MOLT-4)Leukemia_chronicMyelogenousK-562

SmoothMuscle CardiacMyocytesTestisIntersitial Lymphnode

CD33+_MyeloidCD4+_Tcells

CD14+_Monocytes

SuperiorCervicalGanglion

Tonsil

CiliaryGanglion

CD8+_TcellsLymphoma_burkitts(Daudi)

Pons

GlobusPallidus

Cerebellum

Leukemia_promyelocytic-HL-60

Testis

TestisLeydigCell

Spinalcord

TestisGermCell

TestisSeminiferousTubule

AtrioventricularNode

CD56+_NKCells

BDCA4+_DentriticCells

TrigeminalGanglion

Skin

CD19+_BCells(neg._sel.)

Green nodes show tissues with significant similarity to
yeast, while red nodes show dissimilar tissues.
Similar tissues tend to have consistent p-values.
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SIMILARITY OF DIFFERENT TISSUES TO YEAST
ALIGNMENT CONSISTENCY OF HOUSEKEEPING PROTEINS

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Number of consistent tissues

P
e
rc

e
n
t 
o
f 
h
o
u
s
e
k
e
e
p
in

g
 p

ro
te

in
s

Approximately 75% of housekeeping proteins are aligned
with yeast proteins.
Among aligned HK proteins, 25% of them consistently
aligned across all 79 tissues.
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SUMMARY

Aging is the primary risk factor for a number of human diseases.

Emerging evidence supports the hypothesis that large classes of age-related
pathologies share their underlying biology

Constructing a comprehensive map of aging pathways is a critical step towards
deciphering key lifespan mediators, their crosstalk, and systems-level
organization.

Tissue-specificity analysis is needed to precisely model aging in both
proliferating and post-mitotic cells.

Future works:
Construction of comprehensive, yet reliable tissue-specific networks by
integrating various available high-throughput datasets.
Devising a biased information flow method for targeting specific subsets of
TOR effectors.
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