
Erasure Coded Computations

New Models for Fault Tolerance:

Department of

Computer Science

. Ananth Grama

.
Xuejiao Kang, Yao Zhu, David Gleich, and

Ahmed Sameh

Oct 25, 2019

1Background
and Motivation

2
Distributed Fault Tolerant
Linear System Solver

3
Adaptive Fault Tolerant
Linear System Solver

4
Erasure Coded
Eigensolver

5Concluding Remarks

Faults in Parallel and Distributed System

1 / 751 2 3 4 5 Background and Motivation

As parallel systems scale to millions of cores, faults become one of the most
critical challenges.

As data centers scale to hundreds of thousands of nodes, faults are a prime
consideration for distributed computations.

As networks scale from data center to wide area, network faults and partitions
constitute a major consideration for wide area distributed computations.

Faults in Distributed Systems

6 / 751 2 3 4 5 Background and Motivation

Profile and rate of faults in distributed systems is different.
Disk, network, and system stack contribute significantly.
The nature of faults is different as well – network partitions may render large parts
of the system inaccessible.

Faults and Failure Models

7 / 751 2 3 4 5 Background and Motivation

Types of Faults

(i) Permanent; (ii) Transient; (iii) Intermittent.

Failure Model

Failure model is an abstraction of system behavior in the presence of a fault.

Byzantine: a component can exhibit arbitrary and malicious behavior, perhaps
involving collusion with other faulty components.

Fail-stop: a component changes to a state that permits other components to
detect the failure and then stops.

Fault Tolerance

8 / 751 2 3 4 5 Background and Motivation

Algorithm-based methods and System-supported methods.

Algorithmic methods alter the algorithm to make it robust to faults.

System-supported methods include checkpoint-restart, active replicas, and
deterministic replay.

Checkpoint-restart schemes involve the overhead of consistent checkpointing and
I/O.

Active replicas execute multiple replicas of each task.

Tasks in deterministic replay are scheduled at different execution units and
monitored for successful completion. They are rescheduled at other execution units
if failures are detected.

Fault Tolerant Storage--Replication v.s. Erasure Coding

9 / 751 2 3 4 5 Background and Motivation

Replication based schemes maintain as many copies of data as are needed to
guarantee required tolerance. To tolerate k − 1 disk failures on n data items
(disks), total storage is nk.
Erasure coding schemes transform the data so that the original data can be
reconstructed from (a subset of) the available coded data. To tolerate k − 1 disk
failures (erasures) on n data items, total storage is n + k.

Erasure Coded Storage

10 / 751 2 3 4 5 Background and Motivation

Algebraic view of erasure coding:

Distribution (Coding) Matrix

Data Vector

Distribution (Coding) Matrix

Data Vector

Coded Data Vector

Coded Data Vector

Some Notes on Erasure Coded Storage

11 / 751 2 3 4 5 Background and Motivation

All arithmetic must be performed over a finite field (solvers can become expensive)
Coding and decoding require communication. Codes must consider sparsity and
reconstruction cost.
Several current systems use erasure coding: RAID 4/5 uses parity, RAID 6 uses a
vanDerMonde coding block, CFS uses Reed-Solomon.

Erasure Coded Computation: Basic Kernels

12 / 751 2 3 4 5 Background and Motivation

Coding the result of a sparse matrix-vector product.

Erasure Coded Computation: Basic Kernels

13 / 751 2 3 4 5 Background and Motivation

Multiply the distribution/ coding matrix with the given sparse matrix. This results in
an augmented matrix.

Erasure Coded Computation Basic Kernels

14 / 751 2 3 4 5 Background and Motivation

Example of an alternate distribution matrix, which allows us to control the fill in the
augmentation rows. We also show the augmentation block distribution across
processors.

Goals and Challenges

15 / 751 2 3 4 5 Background and Motivation

Goal

Code the result of a computation in a fault tolerant manner (in storage or
communication, the computation is an identity operator).
Data is not a linear bit string or a block – but rather it is a sparse matrix.
Recovery of result of computation must be easy.

Challenges

Design suitable coding matrices.
Reformulate traditional linear algebraic methods in the erasure coding framework.
Design efficient recovery algorithms.
Analyze parallel performance.
Validate tolerance to different models of fault arrivals and rates.

Fault Oblivious Computation

16 / 751 2 3 4 5 Background and Motivation

The concept of fault oblivious parallel execution, based on Erasure Coding, works as
follows:

Augment the input to a parallel program.

Execute on the augmented input in a faulty environment, oblivious to faults, and
generate an augmented output.

Compute the true output based on the augmented output from the faulty
execution.

1Background
and Motivation

2
Distributed Fault Tolerant
Linear System Solver

3
Adaptive Fault Tolerant
Linear System Solver

4
Erasure Coded
Eigensolver

5Concluding Remarks

Erasure Coded Linear System Solver

17 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Given a linear system Ax = b (An×n is SPD), with true solution x∗, and coding matrix
En×k , we construct the augmented system Ãx̃ = b̃.

[
A AE

ETA ETAE

]

︸ ︷︷ ︸
Ã

[
x
r

]

︸︷︷︸
x̃

=
[

b

ETb

]

︸ ︷︷ ︸
b̃

x̃ =
[
x∗; 0

]
is a solution to the augmented system.

Erasure Coded Linear System Solver

18 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Properties of Ã:

If A is SPD, then Ã is SPSD;

The null space basis of Ã is
[

E
−Ik

]
;

Any solution of the augmented system can be written as
[
y
z

]
=

[
x∗

0

]
+ a

[
E

−Ik

]

Theorem

Based on the properties of Ã, we can recover the true solution as follows:
[
x∗

0

]
= x̃ +

[
E

−Ik

]
r (1)

Erasure Coded Linear System Solver

19 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

In the presence of faults, we can rewrite the augmented system in the following form:



A11 A12 Z1
A12

T A22 Z2
Z1

T Z2
T ET AE






c
f
r


=




b1
b2

ET b




↓
[
A11 Z1
ZT

1 R

] [
c
r

]
=

[
b1

ET b

]
−

[
A12
ZT

2

]
f

Theorem

If
[
c; r

]
is a solution to the reorganized system, then x̃ =

[
c; f ; r

]
is a solution to the

augmented system.

Sufficient Condition on the Encoding Matrix

20 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

THEOREM

Let ET be the k × n encoding matrix. If ET has Kruskal rank k, then for any f such
that card(f) ≤ k there exist c and r such that a solution to the encoded system is
[cT , f T , rT]T . Furthermore, any c and r output by the fault oblivious computation
satisfy recovery conditions.

Kruskal rank k the largest k such that any k columns are linearly independent.

Coding Matrix

21 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Conditions on matrix E :
There is always a solution to the augmented system for faults happening on any
set of rows, as long as total number of faults ≤ k.
Given any solution computed with faulty components, we can extract and recover
a solution for the original system.

Desiderata of E :
Satisfy properties of Kruskal rank, which means every subset of k rows of matrix
E is linearly independent.
Be as sparse as possible to minimize the fill in the augmented matrix.

Coding Matrix

22 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Definition

An n × k matrix E satisfies the
recovery-at-random property if a
random subset of k rows (selected
uniformly with replacement) is
rank k with probability
approaching 1.

Proposed Coding Matrix E


• • • 0 0 0
0 • • • 0 0
0 0 • • • 0
0 0 0 • • •
• 0 0 0 • •
• • 0 0 0 •




Coding Matrix

23 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Proposition

Let p be the number of nonzeros per row in E and Let E ′ be a submatrix of E formed
by selecting any p rows of matrix E . The matrix E ′T has rank p.

All rows have distinct
non-zero structure.




• • •
• • •

• • •




All rows have same
non-zero structure.



• • • 0 0 0
• • • 0 0 0
• • • 0 0 0




Some rows from case1
and some from case2.



• • • 0 0 0
0 • • • 0 0
0 • • • 0 0




Coding Matrix

24 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Theorem

The probability that a randomly chosen set of k rows from the matrix E are linearly

dependent is less than
(

e
p + 1

)p+1
.

Proof: A sufficient condition for k rows to be linearly dependent is that some selection
of p + 1 rows from these k rows have the same non-zero structure. There are k
distinct non-zeros structures for the matrix E .

(
k

p + 1

) (
1
k

)p+1
≤

(
e

p + 1

)p+1
.

As p increases, this probability rapidly approaches 0, which means that the matrix E is
recovery-at-random.

Coding Matrix

25 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

To keep the coding matrix and the associated augmented matrix sparse, p should as
small as possible.

Theorem

The expected number of rows from among k randomly selected rows of matrix E that

have same nonzero structure is O
(

ln k
ln ln k

)
.

Define a random variable M to be the number of rows that have the same non-zero
structure when we select k rows uniformly at random from the matrix E .

Pr(M = t) =
(

k
1

)(
k
t

) (
1
k

)t (
1 − 1

k

)k−t
≤ k

(e
t

)t

Coding Matrix

26 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

The expected number of rows E(M) is given by:

E(M) =
k∑

t=1
t · Pr(M = t)

=
c ln k

ln ln k∑

t=1
t · Pr(M = t) +

k∑

t= c ln k
ln ln k

t · Pr(M = t)

≤
c ln k
ln ln k∑

t=1

c ln k
ln ln k · Pr(M = t) +

k∑

t= c ln k
ln ln k

k · Pr(M = t)

≤ c ln k
ln ln k + k · 1

kc/2−1

= O(ln k
ln ln k)

(2)

Parallel Implementation

27 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Since A is SPD and Ã is SPSD, we can apply CG to Ãx̃ = b̃.

Algorithm 1 Fault Oblivious CG with a Two-term Recurrence
1: Let x0 be the initial guess and r0 = b − Ax0, β0 = 0.
2: for t = 0, 1, . . . until convergence do

3: if Fault detected then βt = 0 else βt = ‖rt‖2
2

‖rt−1‖2
2

4: pt = rt + βtpt−1
5: qt = Apt

6: αt = ‖rt‖2
2

〈qt , pt〉
7: xt+1 = xt + αtpt
8: rt+1 = rt − αtqt

Parallel Implementation

28 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Assume that each viable process can detect the breakdown of its neighbor processes.

Inner products 〈rt , rt〉 and 〈qt , pt〉.

〈rt , rt〉 = 〈(rt)[n+k]\Ft , (rt)[n+k]\Ft 〉 (3)
〈qt ,pt〉 = 〈(qt)[n+k]\Ft , (pt)[n+k]\Ft 〉

Matrix-vector multiplication qt = Apt .

AIi ,:pt = AIi ,[n+k]\Ft (pt)[n+k]\Ft (4)

When a fault is detected, we truncate the update pt = rt + βtpt−1 to be

pt = rt . (5)

This corresponds to a reset of the Krylov process.

Reordering and Partitioning

29 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

Experimental Data

30 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

We select matrices from the University of Florida Matrix Collection for our tests.

Matrix Rows Nonzeros
bcsstk18 11, 948 149, 090
consph 83, 334 6, 010, 480

inline_1 503, 712 36, 816, 170

ldoor 952, 203 42, 493, 817

Experiment Setup

31 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

The right-hand-side vector b is first normalized (which means ‖b‖2 = 1). The

relative error rtol = ‖Ax − b‖2
‖b‖2

equals the residual norm ‖r‖2 = ‖Ax − b‖2.

The termination condition is set to ‖r‖2 < 10−6 for all matrices, and the
maximum number of iterations for CG is set to 10000.

For the instantaneous fault arrival model, faults arrive at the 1000-th iteration.

For the exponential fault arrival model, the fault rate is set as 10−3, which implies
the average number of steps between two consecutive faults is 1000.

Convergence--Fault-Free Mode

32 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

bcsstk18
K=0
K=4
K=8

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
K=0
K=4
K=8

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

inline_1
K=0
K=4
K=8

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
K=0
K=4
K=8

Convergence--Faulty Execution

33 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

bcsstk18
K=0
K=4
K=8

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
K=0
K=4
K=8

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

inline_1
K=0
K=4
K=8

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
K=0
K=4
K=8

Speedup

34 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

1 2 4 81

2

4

8

Sp
ee

du
p

bcsstk18

1 2 4 8 161

2

4

8

16

consph

1 2 4 8 16
Number of Processors

1

2

4

8

16

Sp
ee

du
p

inline_1

1 2 4 8 16
Number of Processors

1

2

4

8

16

ldoor

original system augment system

Time Overhead

35 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

0 4 8 160.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

Ti
m

e
M

ag
ni

fic
at

io
n

bcsstk18

0 4 8 160.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50 consph

0 4 8 16
Number of Faults(K)

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

Ti
m

e
M

ag
ni

fic
at

io
n

inline_1

0 4 8 16
Number of Faults(K)

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50 ldoor

Convergence under Different Fault Rates (K = 8)

36 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

bcsstk18
original
step=100
step=200
step=500
step=1000

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
original
step=100
step=200
step=500
step=1000

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

inline_1
original
step=100
step=200
step=500
step=1000

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
original
step=100
step=200
step=500
step=1000

Different Fault Models

37 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

The exponential distribution is the most commonly used random fault arrival model. It
assumes the time to failure to be exponentially distributed.

The probability distribution function (PDF) of the time (τ) to failure is given by:

Pe(t < τ) = 1 − e−reτ

Here re is the failure rate.

Convergence under Different Fault Arrival Models (K = 8)

38 / 751 2 3 4 5
Distributed Fault Tolerant Linear

System Solver

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

bcsstk18
instant
uniform
random

0 2000 4000 6000 8000 1000010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
instant
uniform
random

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

inline_1
instant
uniform
random

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
instant
uniform
random

1Background
and Motivation

2
Distributed Fault Tolerant
Linear System Solver

3
Adaptive Fault Tolerant
Linear System Solver

4
Erasure Coded
Eigensolver

5Concluding Remarks

Adaptive Fault Tolerant Linear System Solver

39 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

The Distributed Fault Tolerant Linear System Solver runs the augmented system from
the beginning and can tolerate as many faults as the size of augmentation block during
the execution.

System size is augmented (n → n + k).

System property changes (SPD → SPSD).

Computational overhead paid at each iteration.

Adaptive Fault Tolerant Linear System Solver

40 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

Adaptive Fault Tolerant Linear System Solver runs on the original system until a fault
occurs. The erased blocks are compensated for by the addition of an identical number
of rows (and columns) selected from the pre-computed coding blocks [ET A, ET AE].

System size is the same (always n).

System property is maintained (always SPD).

Computational Overhead is negligible.

Adaptive Fault Tolerant Linear System Solver

41 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

The initial solution of the original system can be written as:
[
A11 A12
AT

12 A22

] [
xc
xf

]
=

[
bc
bf

]
(6)

The augmented system can now be written as:



A11 A12 Z1
A12

T A22 Z2
Z1

T Z2
T ET AE






xc
xf
xr


=




bc
bf

ET b


 (7)

After erasures, we solve the new system:
[

A11 Z1
Z1

T ET AE

] [
xc
xr

]
=

[
bc

ET b

]
−

[
A12
Z2

T

]
xf (8)

Adaptive Fault Tolerant Linear System Solver

42 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

Algorithm 2 Adaptive Fault Oblivious CG
1: (Reliably) Compute and save the entries

Z1, Z2, ET AE , ETb for matrix E
2: A(cur) = A
3: b(cur) = b
4: x0 = the initial guess
5: r0 = b(cur) − A(cur)x0
6: β0 = 0
7: for t = 1, . . . until convergence do
8: if Fault detected then
9: pt = rt−1

10: else

11: pt = rt−1 +
‖rt−1‖2

2
‖rt−2‖2

2
· pt−1

12: qt = A(cur)pt

13: αt =
‖rt−1‖2

2
〈qt , pt〉

14: xt = xt−1 + αtpt
15: rt = rt−1 − αtqt
16: if Faults detected then

17: A(cur) =
[

A11 Z̃1

Z̃T
1 ẼT AẼ

]

18: b(cur) =
[

bc − A12xf
ẼT

b − Z̃T
2 xf

]

19: xt =
[
xc
0

]

20: rt = b(cur) − A(cur)xt

Reordering and Partition

43 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

Experimental Data

44 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

We select matrices from the University of Florida Matrix Collection for our tests –
cbuckle and gyro_m are used to validate the convergence of adaptive fault tolerant
linear solver; consph and ldoor are used to validate parallel scalability and robustness
to different fault arrival models.

Matrix Rows Nonzeros
cbuckle 13, 681 676, 515
gyro_m 17, 361 340, 431
consph 83, 334 6, 010, 480

ldoor 952, 203 42, 493, 817

Experiment Setup

45 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

The right hand side b is normalized (||b||2 = 1). The relative residual
rtol = ||Ax−b||2

||b||2
(equals to ||r||2 = ||Ax − b||2) is calculated.

||r||2 is monitored at each iteration and the termination condition is set as
||r||2 < 10−6 and the maximum number of iterations of CG is set to 10000 for all
matrices.

For parallel performance, the matrices are first reordered using Metis.

For exponential fault arrival model, different fault rates(re) ranging from 1
orig_iter

to 3
orig_iter are tested.

In our tests, we set the first fault to happen at orig_iter
1+orig_iter/re

.

Convergence

46 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

0 1000 2000 3000 4000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

cbuckle
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

0 1000 2000 3000 4000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100 gyro_m
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

0 2000 4000 6000 8000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

consph
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

0 2000 4000 6000 8000 10000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

Speedup

47 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

Parallel performance of adaptive linear solver under exponential fault arrival model.

1 2 4 8 16 32 64
Number of Processors

1

2

4

8

16

32

64

Sp
ee

du
p

consph
K=0
K=1
K=2
K=4

1 2 4 8 16 32 64
Number of Processors

1

2

4

8

16

32

64
ldoor

K=0
K=1
K=2
K=4

Speedup

48 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

Performance of adaptive linear solver under instantaneous fault arrival model.

1 2 4 8 16 32 64
Number of Processors

1

2

4

8

16

32

64

Sp
ee

du
p

consph
K=0
K=1
K=2
K=4

1 2 4 8 16 32 64
Number of Processors

1

2

4

8

16

32

64
ldoor

K=0
K=1
K=2
K=4

Overhead

49 / 751 2 3 4 5
Adaptive Fault Tolerant Linear

System Solver

The time overhead of adaptive linear solver.

0 1 2 4
Number of Faults

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m

e
Ov

er
he

ad

Instantaneous model
consph
ldoor

0 1 2 4
Number of Faults

0.8

1.0

1.2

1.4

1.6

1.8

2.0 Exponential model
consph
ldoor

1Background
and Motivation

2
Distributed Fault Tolerant
Linear System Solver

3
Adaptive Fault Tolerant
Linear System Solver

4
Erasure Coded
Eigensolver

5Concluding Remarks

Reformulation

50 / 751 2 3 4 5 Erasure Coded Eigensolver

Theorem

Given an eigenvalue problem
Ax? = λ?x?, (9)

where A ∈ Rn×n. We construct a generalized eigenvalue problem:
[

A AE
ET ET AE

]

︸ ︷︷ ︸
Ã

[
x
r

]

︸︷︷︸
x̃

= λ

[
I E

ET ET E

]

︸ ︷︷ ︸
B̃

[
x
r

]

︸︷︷︸
x̃

, (10)

where E ∈ Rn×k is a coding matrix, then x? = x + Er and λ? = λ.

Equivalence of Eigensystems

51 / 751 2 3 4 5 Erasure Coded Eigensolver

We can write the generalized eigenvalue system as:



A11 A12 Z1
AT

12 A22 Z2
ZT

1 ZT
2 R







c
f
r


 = λ




B11 B12 Q1
BT

12 B22 Q2
QT

1 QT
2 S







c
f
r


 (11)

where
[
Z1
Z2

]
=

[
A11 A12
AT

12 A22

]
E ,

[
Q1
Q2

]
=

[
B11 B12
BT

12 B22

]
E , and

R = ET AE , S = ET BE .

Equivalence of Eigensystems

52 / 751 2 3 4 5 Erasure Coded Eigensolver

The generalized eigenvalue system will become the following purified n × n system
when faults happen:

[
A11 Z1
ZT

1 R

] [
c
r

]
= λ

[
B11 Y1
Y T

1 S

] [
c
r

]
−

[
λB12 − A12
λY T

2 − ZT
2

]
f

Theorem

If
[
c; r

]
is the solution of the purified system, then

[
c; f ; r

]
is the solution of the

generalized eigenvalue system.

Equivalence of Eigensystems

53 / 751 2 3 4 5 Erasure Coded Eigensolver

The purified system gives us

A11c + Z1r − λB11c − λQ1r = λB12f − λA12f (12)
ZT

1 c + Rr − λQT
1 − λSr = λQT

2 f − λZT
2 f (13)

Equation (13) −ET
1 × Equation (12) yields

ET
2 A12c + ET

2 Z2r − λET
2 B12c − λET

2 Q2r = ET
2 (λB22 − A22)f (14)

Premultiplying Equation (14) by E−T
2 gives

A12c + A22f + Z2r = λB12c + λB22f + λQ2r

which is the second equation in the Equation (11).

Perturbation

54 / 751 2 3 4 5 Erasure Coded Eigensolver

Since Ã and B̃ are SPSD, the potential eigenvectors may fall into their null space. We
add a perturbation to the augmented systems to avoid this problem.

Ãp =
[

A AE
ETA εIk + ETAE

]
, B̃p =

[
I E

ET εIk + ETE

]

The perturbation is added to the lower-right k × k block (ε = 10−6 used here).

Ãp and B̃p are SPD and TraceMin can be used to solve the generalized
eigenvalue problem.

Purification (once only) will be done once the trace is small enough.

Purification

55 / 751 2 3 4 5 Erasure Coded Eigensolver

For the system Ãp x̃ = λB̃p x̃, we obtain the approx (µ, u)(approximate true eigenpairs
Av = λv) after TraceMin iterations. Hence, we have:

A(u + δu) = (µ + δµ)(u + δu) (15)

Also,
uT δµ=0 (16)

Combining Equation (15) and Equation (16), we will get the linear system:
[
A − µIn −u

−uT 0

] [
δu
δµ

]
=

[
−(Au − µu)

0

]
(17)

Based on δu and δµ, we can update the approximation of the eigenpairs and continue
the TraceMin procedure.

Fault Oblivious TraceMin

56 / 751 2 3 4 5 Erasure Coded Eigensolver

Algorithm 3 Fault Oblivious Trace Minimization
1: Choose an n × s random matrix V1 of full rank such that V1

T B̃pV1 = I(s = 2p).
2: for t = 0, 1, . . . until convergence do
3: Compute Wt = ÃpVt and the interaction matrix Ht = Vt T Wt
4: Compute the eigenpairs of (Yt , Θt) for Ht .
5: Do the purification if the purification condition is satisfied.
6: Sort the eigenvalue in ascending order and rearrange eigenvectors.
7: Compute the corresponding Ritz Vectors Xt = VtYt .
8: Compute the residue Rt = ÃpXt − B̃pXtΘt .
9: Test for Convergence.

10: Solve the following linear system approximately via the CG to get ∆t .
[

Ãp B̃pXt
Xt T B̃p 0

] [∆t
Lt

]
=

[
ÃpXt

0

]

11: B̃p-orthonormalize Xt − ∆t into Vt+1.
12: return Θ.

Implementation

57 / 751 2 3 4 5 Erasure Coded Eigensolver

The operations affected by faults in a distributed environment are the aggregation
operations – the matrix-matrix and matrix-vector multiplication.

The Matrix-Matrix Operation:

(Ãp , Ṽ t) =
(

(Ãp)[n+k]\Ft , (Ṽ t)[n+k]\Ft

)

(Ãp , X̃ t) =
(

(Ãp)[n+k]\Ft , (Ṽ t)[n+k]\Ft

)

(B̃p , X̃ t) =
(
(B̃p)[n+k]\Ft , (X̃ t)[n+k]\Ft

)

The Matrix-Vector Operation in Step 10:

(Ãp , ∆t) =
(

(Ãp)[n+k]\Ft , (∆t)[n+k]\Ft

)

Experimental Data

58 / 751 2 3 4 5 Erasure Coded Eigensolver

We select two matrices from the University of Florida Matrix Collection.

Matrix Rows Nonzeros Problem Type

minsurfo 40, 806 203, 622 Optimization Problem
s3dkq4m2 90, 449 4, 427, 725 Structural Problem

Experiment Setup

59 / 751 2 3 4 5 Erasure Coded Eigensolver

For validation of convergence, we monitor ||r1||2
λ1

.The stopping criteria is set as
10−08 for all the matrices.

Define ti = augλi −origλi
origλi

and construct t = [t1, t2, · · · , t10]. Then final relative error
rtol = ||t||2.

Augmented blocks with different sizes are added to the original system. K = 0
corresponds to the original system; K = d corresponds to an augmented block
size of d , and d faults happen during the execution (d = 1, 8, 16).

Experiment Setup

60 / 751 2 3 4 5 Erasure Coded Eigensolver

Leverage score is used to sample a large matrix and can measure the importance
of each row of A. For A = UΣV (SVD decomposition), the leverage score for
each row is calculated as follows:

l(i) =
n∑

j=1
U(i , j)

Two different fault arrival models, instantaneous and exponential, were tested.

For exponential fault model, failure rates ranging from 1
orig_iter

to 4
orig_iter

were tested.

Convergence for Random Case (minsurfo)

61 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Convergence for Random Case (s3dkq4m2)

62 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Convergence for Worst Case (minsurfo)

63 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Convergence for Worst Case (s3dkq4m2)

64 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Adapative Coding Scheme

65 / 751 2 3 4 5 Erasure Coded Eigensolver

Coding blocks are periodically updated using estimates of leverage scores from prior
iteration. The coding matrix E is adaptively updated as follows:

E(i , :) = E(i , :) ∗ l(i)
l̄

Here E(i , :) is the i th row of coding matrix E , l(i) is the leverage score of i th row and l̄
is the average leverage score of all rows.

Convergence of Updating Method (minsurfo)

66 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Convergence of Updating Method (s3dkq4m2)

67 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/2

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/3

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

start points=orig_iter/4

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 start points=orig_iter/5

K=0 K=1 K=8 K=16

Benefit of Using Estimated Leverage Scores (minsurfo)

68 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

Basic Method Updated Method

Benefit of Using Estimated Leverage Scores (s3dkq4m2)

69 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

Basic Method Updated Method

Comparison of Results from Exact and Estimated Leverage

Scores (minsurfo)

70 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

Real Leverage Score Estimated Leverage Score

Comparison of Results from Exact and Estimated Leverage

Scores (s3dkq4m2)

71 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 1000 2000 3000 4000 500010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 1000 2000 3000 4000 5000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

Real Leverage Score Estimated Leverage Score

Different Fault Arrival Models (minsurfo)

72 / 751 2 3 4 5 Erasure Coded Eigensolver

0 500 1500 2500 350010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 500 1500 2500 350010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 500 1500 2500 3500
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 500 1500 2500 3500
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

original system K=8 K=16

Different Fault Arrival Models (s3dkq4m2)

73 / 751 2 3 4 5 Erasure Coded Eigensolver

0 1000 2000 300010 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=1/orig_iter

0 1000 2000 300010 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=2/orig_iter

0 1000 2000 3000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

fault rate=3/orig_iter

0 1000 2000 3000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 fault rate=4/orig_iter

original system K=8 K=16

1Background
and Motivation

2
Distributed Fault Tolerant
Linear System Solver

3
Adaptive Fault Tolerant
Linear System Solver

4
Erasure Coded
Eigensolver

5Concluding Remarks

Concluding Remarks

74 / 751 2 3 4 5 Concluding Remarks

Erasure coding presents a compelling new approach to fault tolerance;

These techniques have significantly lower overhead in computation, particularly as
fault rates become high;

They can be implemented at scale with low algorithmic and parallel overhead;

Many new core methods forthcoming.

Thanks!

