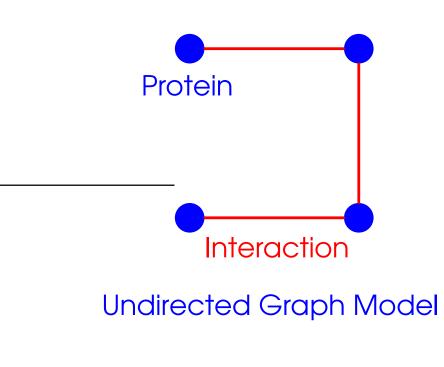
Comparative Analysis of Molecular Interaction Networks

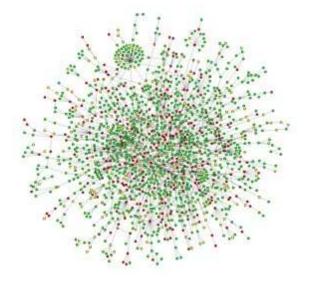
Mehmet Koyutürk Purdue University

August 17, 2006

Acknowledgment: Funding for this work was provided by the National Institutes of Health Grant # R01 GM068959-01.

Outline

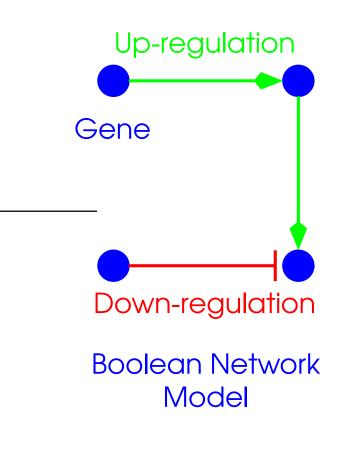

- Molecular Interaction Networks
 - Modeling, evolution, problems
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for conserved interaction patterns
 - Alignment of protein-protein interaction networks
 - Probabilistic models/analyses for assessing statistical significance of connectivity & conservation
- Conclusion & Future Work

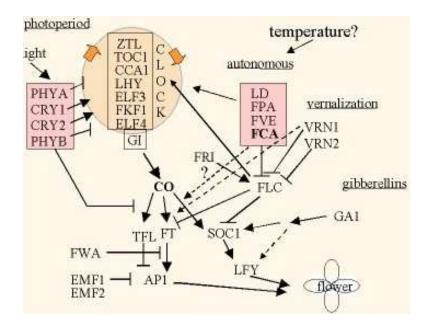

Outline

- Molecular Interaction Networks
 - Modeling, evolution, problems
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for conserved interaction patterns
 - Alignment of protein-protein interaction networks
 - Probabilistic models/analyses for assessing statistical significance of connectivity & conservation
- Conclusion & Future Work

Protein-Protein Interaction (PPI) Networks

- Interacting proteins can be identified via high-throughput screening
 - Two-hybrid
 - Mass spectrometry (MS)
 - Tandem affinity purification (TAP)
- There are also many computational techniques for predicting functionally associated proteins





S. Cerevisiae PPI network (Jeong et al., *Nature*, 2001)

Gene Regulatory Networks

- Expression of genes is dynamically orchestrated through genes controlling each other's transcription, translation, modification
 - Computationally induced from gene expression data and/or sequence level analysis



Genetic network that controls flowering time in *A. Thaliania* (Blazquez et al, *EMBO Reports*, 2001)

Metabolic Pathways

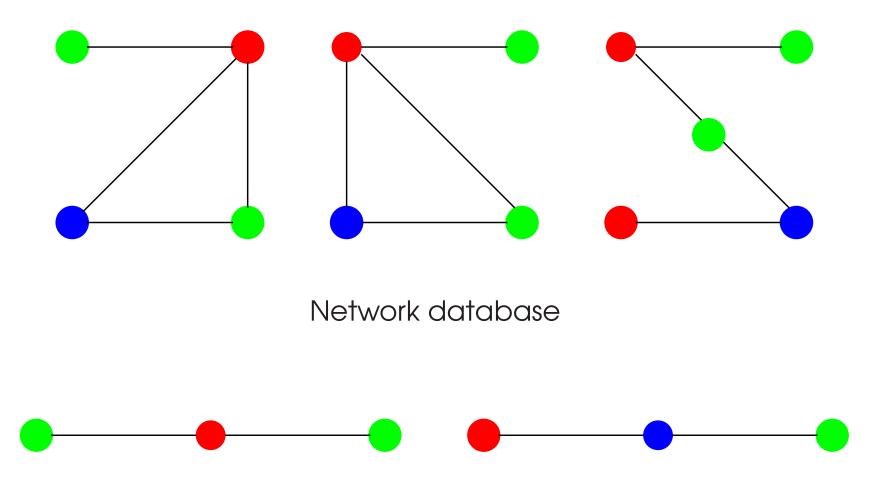
- Chains of reactions that perform a particular metabolic function
 - Reactions are linked to each other through substrate-product relationships
 - Experimentally derived & computationally extended

Directed Hypergraph Model

Glycolysis pathway in *S. Cerevisiae* (Hynne et al., *Biophys. Chem.*, 2001)

Evolution of Molecular Interactions

- "Evolution thinks modular" (Vespignani, Nature Gen., 2003)
- Cooperative tasks require all participating units
 - Selective pressure on preserving interactions & interacting proteins
 - Interacting proteins follow similar evolutionary trajectories (Pellegrini et al., *PNAS*, 1999)
- Orthologs of interacting proteins are likely to interact (Wagner, *Mol. Bio. Evol.*, 2001)
 - Conservation of interactions may provide clues relating to conservation of function
- Modular conservation and aligment hold the key to critical structural, functional, and evolutionary concepts in systems biology


Outline

- Molecular Interaction Networks
 - Modeling, evolution, problems
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for conserved interaction patterns
 - Alignment of protein-protein interaction networks
 - Probabilistic models/analyses for assessing statistical significance of connectivity & conservation
- Conclusions & Future Work

Conserved Interaction Patterns

- Given a collection of interaction networks (belonging to different species), find sub-networks that are common to an interesting subset of these networks (Koyutürk, Grama, & Szpankowski, ISMB, 2004)
 - A sub-network is a group of interactions that are tied to each other (connected)
 - Frequency: The number of networks that contain a sub-network, is a coarse measure of statistical significance
 - Computational problem is known as graph mining
- Computational challenges
 - How to relate molecules (proteins) in different organisms?
 - Requires solution of the intractable subgraph isomorphism problem
 - Must be scalable to potentially large number of networks
 - Networks are large (in the range of 10K edges)

Graph Mining

Interaction patterns that are common to all networks

Relating Proteins in Different Species

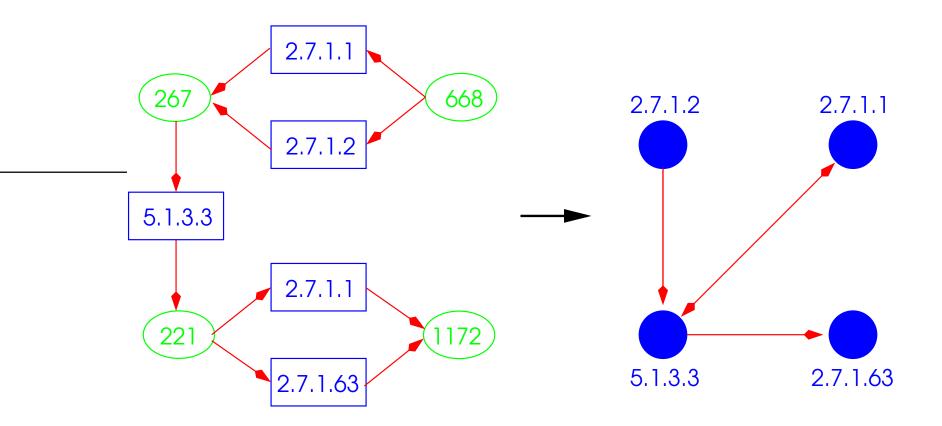
- Ortholog Databases
 - PPI networks: COG, Homologene, Pfam, ADDA
 - Metabolic pathways: Enzyme nomenclature
 - Reliable, but conservative
- Sequence Clustering
 - Cluster protein sequences and label proteins according to this clustering
 Flexible, but expensive and noisy
- Labels may span a large range of functional relationships, from protein families to ortholog groups
 - Without loss of generality, we call identically labeled proteins as orthologs
 - Multiple domains \Rightarrow Multiple node labels

Problem Setting

- Given a set of proteins V, a set of interactions E, and a manyto-many mapping from V to a set of ortholog groups $\mathcal{L} = \{l_1, l_2, ..., l_n\}$, the corresponding interaction network is a labeled graph $G = (V, E, \mathcal{L})$.
 - $v \in V(G)$ is associated with a set of ortholog groups $L(v) \subseteq \mathcal{L}$.
 - $uv \in E(G)$ represents an interaction between u and v.
- S is a sub-network of G, i.e., $S \sqsubseteq G$ if there is an injective mapping $\phi : V(S) \rightarrow V(G)$ such that for all $v \in V(S)$, $L(v) \subseteq L(\phi(v))$ and for all $uv \in E(S)$, $\phi(u)\phi(v) \in E(G)$.

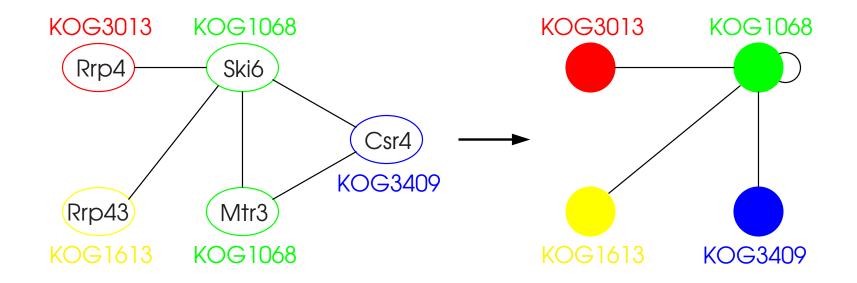
Computational Problem

• Conserved sub-network discovery


- Instance: A set of interaction networks $\mathcal{G} = \{G_1 = (V_1, E_1, \mathcal{L}), G_2 = (V_2, E_2, \mathcal{L}), ..., G_m = (V_m, E_m, \mathcal{L})\}$, each belonging to a different organism, and a frequency threshold σ^* .
- Problem: Let $H(S) = \{G_i : S \sqsubseteq G_i\}$ be the occurrence set of graph S. Find all connected subgraphs S such that $|H(S)| \ge \sigma^*$, *i.e.*, S is a frequent subgraph in \mathcal{G} and for all $S' \sqsupset S$, $H(S) \ne H(S')$, *i.e.*, S is maximal.

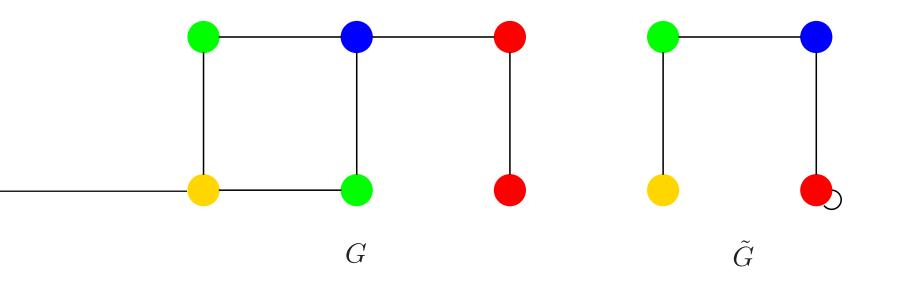
Algorithmic Insight: Ortholog Contraction

- Contract orthologous nodes into a single node
- No subgraph isomorphism
 - Graphs are uniquely identified by their edge sets
- Key observation: Frequent sub-networks are preserved \Rightarrow No information loss
 - Sub-networks that are frequent in general graphs are also frequent in their ortholog-contracted representation
 - Ortholog contraction is a powerful pruning heuristic
- Discovered frequent sub-networks are still biologically interpretable!
 - Interaction between proteins becomes interaction between ortholog groups

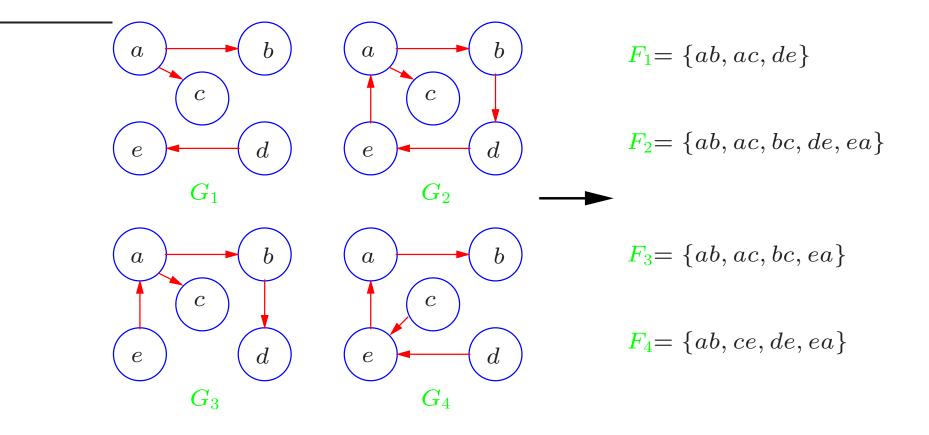

Ortholog Contraction in Metabolic Pathways

- Directed hypergraph \rightarrow uniquely-labeled directed graph
 - Nodes represent enzymes
 - Global labeling by enzyme nomenclature (EC numbers)
 - A directed edge from one enzyme to the other implies that the second consumes a product of the first

Ortholog Contraction in PPI Networks

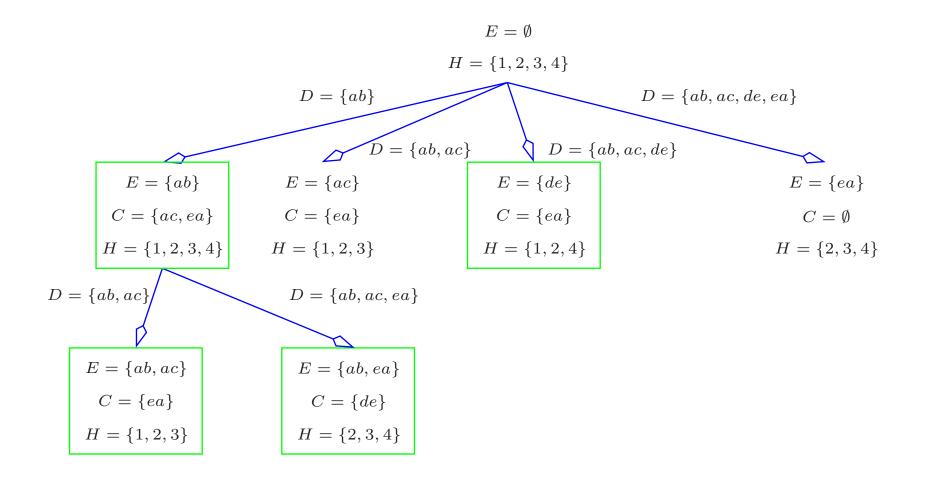

• Interaction between proteins \rightarrow Interaction between ortholog groups or protein families

Preservation of Sub-networks


Theorem: Let \tilde{G} be the ortholog-contracted graph obtained by contracting the orthologous nodes of network G. Then, if S is a subgraph of G, \tilde{S} is a subgraph of \tilde{G} .

Corollary: The ortholog-contracted representation of any frequent sub-network is also frequent in the set of ortholog-contracted graphs.

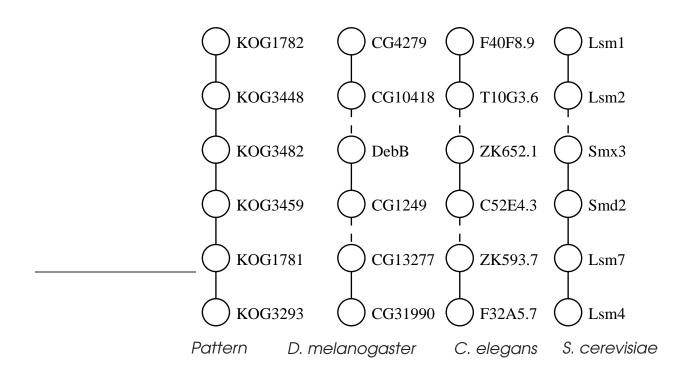
Simplifying the Graph Mining Problem


- Observation: An ortholog-contracted graph is uniquely determined by the set of its edges.
 - Conserved Sub-network Discovery Problem \rightarrow Frequent Edge set Discovery Problem

Extending Frequent Itemset Mining to Graph Mining

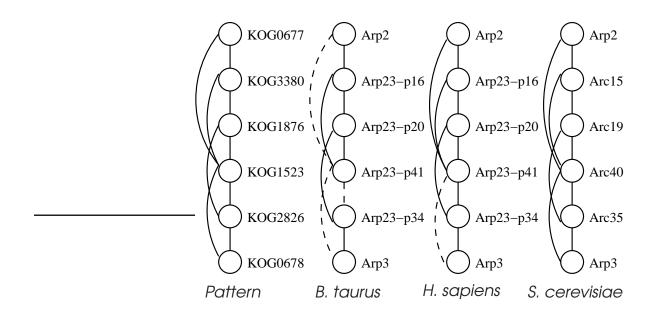
- Given a set of transactions, find sets of items that are frequent in these transactions
 - Extensively studied in data mining literature
- Algorithms exploit downward closure property
 - An edge set is frequent only if all of its subsets are frequent
 - Generate edge sets (sub-networks) from small to large, pruning supersets of infrequent sets
- No redundancy
- No subgraph enumeration

MULE: Mining Ortholog-Contracted Networks

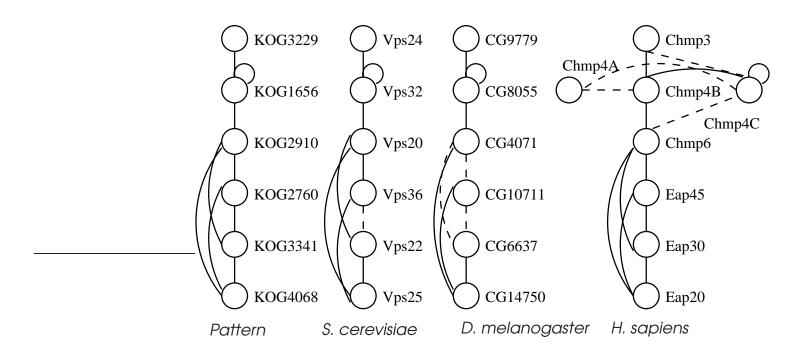

Sample run of MULE for identifying maximal sub-networks that are common to at least 3 organisms

Results: Mining PPI Networks

- PPI networks for 9 eukaryotic organisms derived from BIND and DIP
 - A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H. sapiens, B. taurus, M. musculus, R. norvegicus
 - # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)
 - # of interactions ranges from 340 (*rice*) to 28829 (*fruit fly*)
- Ortholog contraction
 - Group proteins according to existing COG ortholog clusters
 - Merge Homologene groups into COG clusters
 - Cluster remaining proteins via **BLASTCLUST**
 - Ortholog-contracted *fruit fly* network contains 11088 interactions between 2849 ortholog groups
- MULE is available at


http://www.cs.purdue.edu/homes/koyuturk/mule/

Frequent Protein Interaction Patterns


Small nuclear ribonucleoprotein complex (p < 2e - 43)

Frequent Protein Interaction Patterns

Actin-related protein Arp2/3 complex (p < 9e - 11)

Frequent Protein Interaction Patterns

Endosomal sorting (p < 1e - 78)

Runtime Characteristics

FSG (Kuramochi & Karypis, IEEE TKDE, 2004), gSpan (Yan & Han, KDD, 2003)								
	Minimum	FSG Runtime Largest Number of			Runtime	Mule Largest	Number of	
Dataset	Support (%)	(secs.)	pattern	patterns	(secs.)	pattern	patterns	
	20	0.2	9	12	0.01	9	12	
	16	0.7	10	14	0.01	10	14	
Glutamate	12	5.1	13	39	0.10	13	39	
	10	22.7	16	34	0.29	15	34	
	8	138.9	16	56	0.99	15	56	
	24	0.1	8	11	0.01	8	11	
	20	1.5	11	15	0.02	11	15	
Alanine	16	4.0	12	21	0.06	12	21	
	12	112.7	17	25	1.06	16	25	
	10	215.1	17	34	1.72	16	34	

Comparison with isomorphism-based algorithms

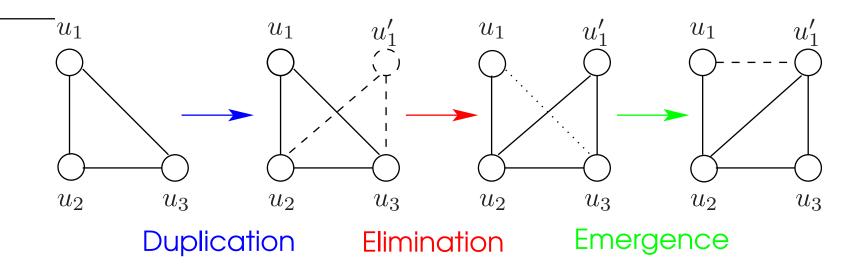
Extraction of contracted patterns

Glutarr	nate met	abolism, σ	= 8%	Alanine metabolism, $\sigma = 10\%$				
Size of	Extraction time		Size of	Size of	Extraction time		Size of	
contracted	(secs.)		extracted	contracted	(secs.)		extracted	
pattern	FSG	gSpan	pattern	pattern	FSG	gSpan	pattern	
15	10.8	1.12	16	16	54.1	10.13	17	
14	12.8	2.42	16	16	24.1	3.92	16	
13	1.7	0.31	13	12	0.9	0.27	12	
12	0.9	0.30	12	11	0.4	0.13	11	
11	0.5	0.08	11	8	0.1	0.01	8	
Total number	of patte	erns: 56		Total number of patterns: 34				
Total runtime	of FSG o	Ilone: 138.9	Secs.	Total runtime of FSG alone :215.1 secs.				
Total runtime of MULE+FSG: 0.99+100.5 secs.				Total runtime of MULE+FSG: 1.72+160.6 secs.				
Total runtime of MULE+gSpan: 0.99+16.8 secs.				Total runtime of MULE+gSpan: 1.72+31.0 secs.				

Discussion

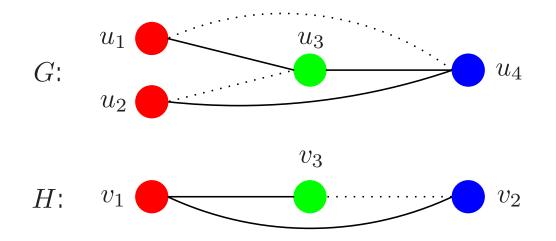
- Ortholog contraction is fast & scalable
 - Graph cartesian product based methods (Sharan et al., PNAS, 2004), (Koyutürk et al., RECOMB, 2005) create m^n product nodes for an ortholog group that has m proteins in each of n organisms
 - Ortholog contraction represents the same group with only n contracted nodes
 - Isomorphism-based graph mining algorithms do not scale to large networks
- Frequency-based approach is **not** easily extendible to weighted graphs (Zhou et al., *ISMB*, 2005)

Outline


- Molecular Interaction Networks
 - Modeling, evolution, problems
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for conserved interaction patterns
 - Alignment of protein-protein interaction networks
 - Probabilistic models/analyses for assessing statistical significance of connectivity & conservation
- Conclusions & Future Work

Alignment of PPI Networks

- Given two PPI networks that belong to two different organisms, identify sub-networks that are similar to each other
 - Biological meaning
 - Mathematical modeling
- Existing algorithms
 - PathBLAST aligns pathways (linear chains) to simplify the problem while maintaining biological meaning (Kelley et al., *PNAS*, 2004)
 - NetworkBLAST compares conserved complex model with null model to identify significantly conserved subnets (Sharan et al., J. Comp. Biol., 2005)
- Our approach (Koyutürk et al., *RECOMB*, 2005) (Koyutürk et al., *J. Comp. Biol.*, 2006)
 - Guided by models of evolution
 - Scores evolutionary events
 - Identifies sets of proteins that induce high-scoring sub-network pairs

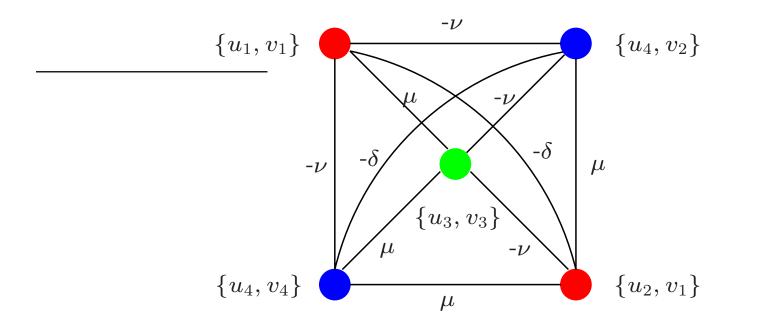

Evolution of PPI Networks

- Duplication/divergence models for the evolution of protein interaction networks
 - Interactions of duplicated proteins are also duplicated
 - Duplicated proteins rapidly lose interactions through mutations
- Allows defining and scoring evolutionary events as graphtheoretical concepts

Match, Mismatch, and Duplication

- Evolutionary events as graph-theoretic concepts
 - A match $\in \mathcal{M}$ corresponds to two pairs of homolog proteins from each organism such that both pairs interact in both PPIs. A match is associated with score μ .
 - A mismatch $\in \mathcal{N}$ corresponds to two pairs of homolog proteins from each organism such that only one pair is interacting. A mismatch is associated with penalty ν .
 - A duplication $\in D$ corresponds to a pair of homolog proteins that are in the same organism. A duplication is associated with score δ .

Scoring Matches, Mismatches and Duplications


- Quantizing similarity between two proteins
 - Confidence in two proteins being orthologous
 - BLAST E-value: $S(u, v) = log_{10} \frac{p(u, v)}{p_{random}}$
 - Ortholog clustering: S(u, v) = c(u)c(v)
- Match score
 - $\mu(uu', vv') = \bar{\mu} \min\{S(u, v), S(u', v')\}$
- Mismatch penalty
 - $\nu(uu', vv') = \bar{\nu} \min\{S(u, v), S(u', v')\}$
- Duplication score
 - $\delta(u, u') = \overline{\delta}(\hat{\delta} S(u, u'))$
 - $\hat{\delta}$ specifies threshold for sequence similarity to be considered functionally conserved

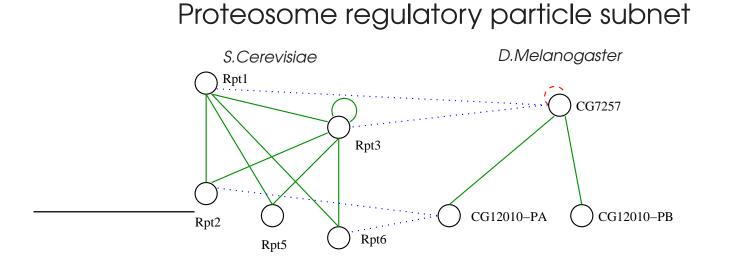
Pairwise Alignment of PPIs as an Optimization Problem

- Alignment score: $\sigma(\mathcal{A}(P)) = \sum_{M \in \mathcal{M}} \mu(M) - \sum_{N \in \mathcal{N}} \nu(N) + \sum_{D \in \mathcal{D}} \delta(D)$
 - Matches are rewarded for conservation of interactions
 - Duplications are rewarded/penalized for functional conservation/differentiation after split
 - Mismatches are penalized for functional divergence (what about experimental error?)
- Scores are functions of similarity between associated proteins
- Problem: Find all protein subset pairs with significant alignment score
 - High scoring protein subsets are likely to correspond to conserved modules
- A graph equivalent to BLAST

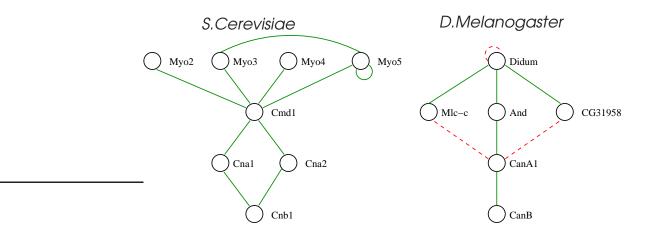
Weighted Alignment Graph

- G(V, E) : V consists of all pairs of homolog proteins $v = \{u \in U, v \in V\}$
- An edge $\mathbf{vv'} = \{uv\}\{u'v'\}$ in \mathbf{E} is a
 - match edge if $uu' \in E$ and $vv' \in V$, with weight $w(\mathbf{vv}') = \mu(uv, u'v')$
 - mismatch edge if $uu' \in E$ and $vv' \notin V$ or vice versa, with weight $w(\mathbf{vv}') = -\nu(uv, u'v')$
 - duplication edge if S(u, u') > 0 or S(v, v') > 0, with weight $w(\mathbf{vv}') = \delta(u, u')$ or $w(\mathbf{vv}') = \delta(v, v')$

Maximum Weight Induced Subgraph Problem


• Definition: (MAWISH)

- Given graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and a constant ϵ , find $\tilde{\mathcal{V}} \in \mathcal{V}$ such that $\sum_{\mathbf{v}, \mathbf{u} \in \tilde{\mathcal{V}}} w(\mathbf{vu}) \geq \epsilon$.
- NP-complete by reduction from Maximum-Clique
- Theorem: (MAWISH \equiv Pairwise alignment)
 - If $\tilde{\mathcal{V}}$ is a solution for the MAWISH problem on $\mathcal{G}(\mathcal{V}, \mathcal{E})$, then $P = \{\tilde{U}, \tilde{V}\}$ induces an alignment $\mathcal{A}(P)$ with $\sigma(\mathcal{A}) \geq \epsilon$, where $\tilde{\mathcal{V}} = \tilde{U} \times \tilde{V}$.
- Solution: Local graph partitioning
 - Greedy graph growing + iterative refinement
 - Linear-time heuristic
- Source code available at http://www.cs.purdue.edu/homes/koyuturk/mawish/


Alignment of Yeast and Fruit Fly PPI Networks

Rank	Score	z-score	# Proteins	# Matches	# Mismatches	# Dups.				
]	15.97	6.6	18 (16, 5)	28	6	(4,0)				
	protein amino acid phosphorylation (69%)									
	JAK-STA	JAK-STAT cascade (40%)								
2	13.93	3.7	13 (8, 7)	25	7	(3, 1)				
	endocytosis (50%) / calcium-mediated signaling (50%)									
5	8.22	13.5	9 (5, 3)	19	11	(1,0)				
	invasive growth (sensu Saccharomyces) (100%)									
	oxygen and reactive oxygen species metabolism (33%)									
6	8.05	7.6	8 (5, 3)	12	2	(0, 1)				
	ubiquitin-dependent protein catabolism (100%)									
	mitosis (67%)									
21	4.36	6.2	9 (5, 4)	18	13	(0, 5)				
	cytokinesis (100%, 50%)									
30	3.76	39.6	6 (3, 5)	5]	(0, 6)				
	DNA replication initiation (100%, 80%)									

Subnets Conserved in Yeast and Fruit Fly

Calcium-dependent stress-activated signaling pathway

Discussion

- Comparison to other approaches: NetworkBlast (Sharan et al., *PNAS*, 2005), NUKE (Novak et al., *Genome Informatics*, 2005)
 - Much faster than NetworkBLAST, but provides less coverage
 - Comparable to NUKE depending on speed vs coverage trade-off
- Scores evolutionary events
 - Flexible, allows incorporation of different evolutionary models, experimental bases, target structures
 - Somewhat ad-hoc, what is a good weighting of scores?
- Acknowledged as the single work in network alignment that incorporates evolutionary models and shown as the network counterpart of evolutionarily-motivated scoring matrices (*e.g.*, PAM, BLOSUM) in sequence alignment. (Sharan & Ideker, Nat. Biotech., 2006)

Outline

- Molecular Interaction Networks
 - Modeling, evolution, problems
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for conserved interaction patterns
 - Alignment of protein-protein interaction networks
 - Probabilistic models/analyses for assessing statistical significance of connectivity & conservation
- Conclusions & Future Work

Analytical Assessment of Statistical Significance

- What is the significance of a dense component in a network?
- What is the significance of a conserved component in multiple networks?
- Existing techniques
 - Mostly computational (*e.g.*, Monte-Carlo simulations)
 - Compute probability that the pattern exists rather than a pattern with the property (*e.g.*, size, density) exists
 - Overestimation of significance

Random Graph Models

- Interaction networks generally exhibit power-law property (or exponential, geometric, etc.)
- Analysis simplified through independence assumption (Itzkovitz et al., *Physical Review*, 2003)
- Independence assumption may cause problems for networks with arbitrary degree distribution
- $P(uv \in E) = d_u d_v / |E|$, where d_u is expected degree of u, but generally $d_{\max}^2 > |E|$ for PPI networks
- Analytical techniques based on simplified models (Koyutürk, Grama, Szpankowski, RECOMB, 2006)
 - Rigorous analysis on G(n, p) model
 - Extension to piecewise G(n,p) to capture network characteristics more accurately

Significance of Dense Subgraphs

- A subnet of r proteins is said to be ρ -dense if $F(r) \ge \rho r^2$, where F(r) is the number of interactions between these r proteins
- What is the expected size of the largest ρ-dense subgraph in a random graph?
 - Any ρ -dense subgraph with larger size is statistically significant!
- G(n,p) model
 - n proteins, each interaction occurs with probability p
 - Simple enough to facilitate rigorous analysis
 - If we let $p = d_{\max}/n$, largest ρ -dense subgraph in G(n, p) stochastically dominates that in a graph with arbitrary degree distribution
- Piecewise G(n,p) model
 - Few proteins with many interacting partners, many proteins with few interacting partners
 - Captures the basic characteristics of PPI networks
 - Analysis of G(n, p) model immediately generalized to this model

Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every edge exists with probability p, then

$$\lim_{n \to \infty} \frac{R_{\rho}}{\log n} = \frac{1}{\kappa(p,\rho)} \qquad (pr.), \qquad (1)$$

where

$$\kappa(p,\rho) = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}.$$
(2)

More precisely,

$$P(R_{\rho} \ge r_0) \le O\left(\frac{\log n}{n^{1/\kappa(p,\rho)}}\right),\tag{3}$$

where

$$r_0 = \frac{\log n - \log \log n + \log \kappa(p, \rho)}{\kappa(p, \rho)}$$
(4)

for large n.

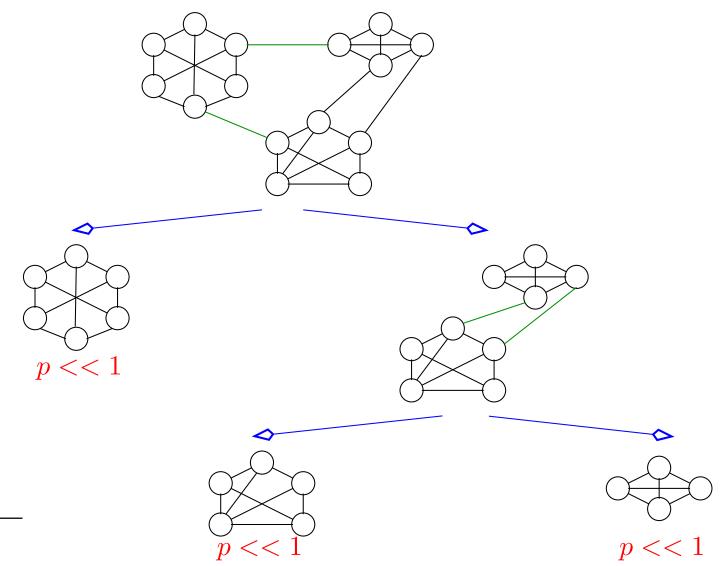
Piecewise G(n, p) model

- The size of largest dense subgraph is still proportional to $\log n/\kappa$ with a constant factor depending on number of hubs
- Model:

$$P(uv \in E(G)) = \begin{cases} p_h & \text{if } u, v \in V_h \\ p_l & \text{if } u, v \in V_l \\ p_b & \text{if } u \in V_h, v \in V_l \text{ or } u \in V_l, v \in V_h \end{cases}$$

• Result:

Let $n_h = |V_h|$. If $n_h = O(1)$, then $P(R_n(\rho) \ge r_1) \le O\left(\frac{\log n}{n^{1/\kappa(p_l,\rho)}}\right)$, where


$$r_1 = \frac{\log n - \log \log n + 2n_h \log B + \log \kappa(p_l, \rho) - \log e + 1}{\kappa(p_l, \rho)}$$

and $B = \frac{p_b q_l}{p_l} + q_b$, where $q_b = 1 - p_b$ and $q_l = 1 - p_l$.

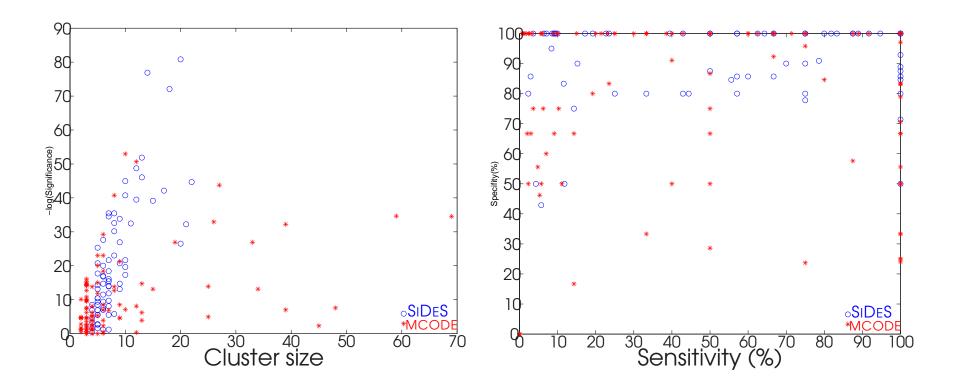
Algorithms Based on Statistical Significance

- Identification of topological modules
- Use statistical significance as a stopping criterion for graph clustering heuristics
- HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)
 - Find a minimum-cut bipartitioning of the network
 - If any of the parts is dense enough, record it as a dense cluster of proteins
 - Else, further partition them recursively
- SIDES: Use statistical significance to determine whether a subgraph is sufficiently dense
 - For given number of proteins and interactions between them, we can determine whether those proteins induce a significantly dense subnet

SIDES Algorithm

SIDES is available at

http://www.cs.purdue.edu/homes/koyuturk/sides

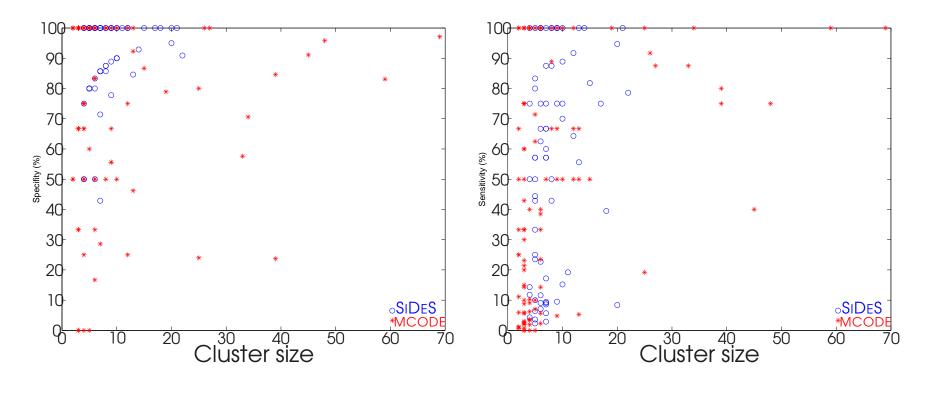

Performance of SIDES

- Biological relevance of identified clusters is assessed with respect to Gene Ontology (GO)
 - Estimate the statistical significance of the enrichment of each GO term in the cluster
- Quality of the clusters with respect to GO annotations
 - Assume cluster C containing n_C genes is associated with term T that is attached to n_T genes and n_{CT} of genes in C are attached to T
 - specificity = $100 \times n_{CT}/n_C$
 - sensitivity = $100 \times n_{CT}/n_T$

	SIDES				MCODE		
	Min.	Max.	Avg.	-	Min.	Max.	Avg.
Specificity (%)	43.0	100.0	91.2		0.0	100.0	77.8
Sensitivity (%)	2.0	100.0	55.8		0.0	100.0	47.6

Comparison of SIDES with MCODE (Bader & Hogue, BMC Bioinformatics, 2003)

Performance of SIDES



Size vs Significance

Sensitivity vs Specifity

Correlation SIDES: 0.76 MCODE: 0.43

Performance of SIDES

Size vs Specificity

Size vs Sensitivity

SIDES: 0.22 MCODE: -0.02 SIDES: 0.27 MCODE: 0.36

Conclusions

- Proposed algorithms illustrate the importance of incorporating domain-specific semantic information in design of algorithms
 - Computational performance
 - Biological relevance
 - Real-time analysis
- The tools presented here are publicly available and find widespread application in various areas of research in molecular biology
 - Fast, reliable, and accessible computational network analysis tools are necessary, as more interaction data becomes available

Avenues for Future Research

- Accessibility of algorithmic tools
 - Elegant visualization & user interface
 - Standardization of data
- Consequent research
 - Frequent subgraph discovery in a phylogenetic setting
 - Phylogenetic analysis of computationally identified modules
 - Regression of evolutionary models to adjust and tune parameters for network alignment

Thanks...

- For their guidance, support, & friendship
 - Ananth Grama
 - Wojciech Szpankowski
 - Shankar Subramaniam
- For constructive feedback
 - Alberto Apostolico
 - Daisuke Kihara
 - Robert Skeel
- For valuable collaboration
 - Yohan Kim
 - Umut Topkara
- For fruitful discussions
 - Parallel & Distributed Systems Lab
- For money
 - NIH & NSF