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Establishing functional identity of cells

1 Establishing functional identity of cells

2 Constructing tissue/cell type-specific networks

3 Deconvolving expression profiles of complex tissues
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Establishing functional identity of cells
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Component 1: New measures for cell-cell similarity
Motivation

Underlying hypothesis

Transcriptional profile of cells is dominated by housekeeping genes,
whereas their functional identity is determined by a combination of weak
but preferentially expressed genes.

(Purdue) Broad Fellow’s Talk June17 4 / 69



Component 1: New measures for cell-cell similarity
Supporting evidence
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Component 1: New measures for cell-cell similarity
Supporting evidence
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Component 1: New measures for cell-cell similarity
Cell similarity kernel in aACTION
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I The main steps involved in identifying similarity between cells
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Component 1: New measures for cell-cell similarity
Reducing the noise contributed by highly expressed but uninformative genes

Goal: Identify the shared subspace of genes

Low-rank decomposition

A = UrΣrVr =
r∑

i=1

σiuivi
T ,

Example decomposition choices:

I Mean vector

I Optimal in a least-square sense when the chance of observing a
gene is uniform across all cells.

I Singular Value Decomposition (SVD)

I Nonnegative Matrix Underapproximation (NMU)

I Sparse NMU
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Component 1: New measures for cell-cell similarity
Reducing the noise contributed by highly expressed but uninformative genes

Goal: Remove the effect of common subspace

I x i and x j : tissues/cell types i and j

I z-score normalize x i to compute z i

I βh: the common signature

I z-score normalize βh to compute zh

I Project to the orthogonal subspace:

z⊥i =
(

I− zhzT
h

‖zh‖2
2

)
z i .

Similar in nature to the partial Pearson’s correlation
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Component 1: New measures for cell-cell similarity
Enhancing the signal from preferentially-expressed genes

Goal: Estimate expression-specificity of genes across different cells

I Entropy as a measure of expression
uniformity: H(i) = −

∑
j pij log(pij)

I How informative is observing a gene with
respect to the cell type that it came from

I Maximum entropy when probability of a
gene coming from all cell types is equal

I For each gene i , compute a specificity
factor wi .

Similar formulations have been previously used for marker detection.
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Component 1: New measures for cell-cell similarity
Putting the pieces together

ACTION-adjusted cell signatures

Y = diag(w)Z⊥

ACTION metric (kernel)

KACTION = YTY

=
(
Z⊥
)Tdiag(w2)

(
Z⊥
)
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Component 1
Cell similarity kernel – revisited

o
il

w
a
te
r

Single-cell RNASeq

(DropSeq)

Control for the 

effect of house-

keeping genes

cell-cell

similarity metric

Measure

gene 

uniformity

single-cell gene 

expression matrix

housekeeping-adjusted

expression matrix

specificty

vector

I Now we have computed the ACTION kernel
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Benchmark datasets

I Immune: 1,522 immune cells from mouse hematopoietic system (30
different types of stem, progenitor, and fully differentiated cells)

I Melanoma: 4,645 malignant, immune, and stromal cells isolated from 19
freshly procured human melanoma tumors (7 major types, including T, B,
NK, CAF, Endo, Macro, and Tumor)

I MouseBrain: 3005 cells from the mouse cortex and hippocampus (7 major
types, including astrocytes-ependymal, endothelial-mural, interneurons,
microglia, oligodendrocytes, pyramidal CA1, and pyramidal SS).

I Pollen: Small set of 301 cells spanning 11 different cell types in developing
cerebral cortex
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Performance of ACTION Kernel

0.6

0.53

0.53

0.88

0.54

0.35

0.44

0.75

0.6

0.5

0.37

0.74

0.6

0.46

0.44

0.72

ACTION Isomap MDS SIMLR

Immune

Melanoma

MouseBrain

Pollen

0.29

0.4

0.42

0.77

0.25

0.33

0.3

0.62

0.29

0.37

0.22

0.55

0.28

0.4

0.3

0.57

ACTION Isomap MDS SIMLR

Immune

Melanoma

MouseBrain

Pollen

I Benchmarks:

I SIMLR: Specifically designed for single-cell
data

I IsoMap,MDS: General purpose dimension
reduction

I Tested a range of parameters (5:5:50). Reported
best case for each method.

I Ties:
I Immune (NMI: ACTION/MDS/SMLR, ARI: ACTON/MDS)
I Melanoma (ARI: ACTION/SIML)

I In all other cases, ACTION metric significantly
outperforms all other methods.

I Overall, ACTION metric performs better than other methods
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Overall Workflow
Component 2
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Component 2: Characterizing principal functional profiles
Motivation

General framework

argmin
C,H

‖ Y − YC︸︷︷︸
W

H ‖

subject to: ‖ C(:, i) ‖1= 1.

‖ H(:, i) ‖1= 1.

0 ≤ C, 0 ≤ H

Various algorithms can be cast using this formulation

I K-means: C ∈ R+,H ∈ {0, 1}
I K-medoids: C ∈ {0, 1},H ∈ {0, 1}
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Component 2: Characterizing principal functional profiles
Motivation

There are fundamental problems with K-means/medoids:

I They use hard assignment, whereas many cell types are believed to
form a continuum.

I They are sensitive to initialization.

I They are dependent on k .
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Component 2: Characterizing principal functional profiles
Convex Nonnegative Matrix Factorization (NMF)

Convex NMF

argmin
K,H

‖ Y − Y(:,S)H ‖

subject to: ‖ H(:, i) ‖1= 1,H ∈ R+.

I It uses the same formulation as k-medoid, but relaxes the hard
assignment of cells: C ∈ {0, 1},H ∈ Rn

I Unlike k-medoid and k-means, it has an optimal global solution.

I Under near-separability assumption: there exists, for each cell
type, an ideal example in the population.

I A modification of the Gram Schmidt process.
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Component 2: Characterizing principal functional profiles
Convex NMF– Geometric interpretation

Geometry of functional space:
each point is a cell and red
points are the “pure cells”

I Picking k corner points/archetypes
from the convex hull of the cells, such
that they optimally “contain” the rest
of cells.

I Each archetype is an ideal example of a
cell type with a distinct set of principal
functions.
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Component 2: Characterizing principal functional profiles
Preconditioning – theorems

Goal: Understand the behavior of near-separable NMF

Performance guarantee

max
1≤j≤r

min
s∈S
‖ Y(:, s)−W(:, j) ‖≤ O

(
εκ2(W)

)
I For any near-separable matrix, multiplying it by any nonsingular

matrix Q preserves separability, where matrix W is replaced with QW.

I In this case, we have the following modified upper bound:

O
(
εκ(W)κ3(QW)

)
.
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Component 2: Characterizing principal functional profiles
Archetypal Analysis (AA)

I AA further relaxes matrix C: C,H ∈ R+.

I It can handle cases where pure pixel assumption is violated.

I But it no longer has global convergence guarantee → it is also
dependent on the initialization

I To address this, we use the solution of convex NMF for
initializing AA.

I In essence, this allows local adjustment of the Convex NMF solution.

I This is a variant of block-coordinate descent for optimization.
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Component 2: Characterizing principal functional profiles
Finding the number of archetypes (k)

Goal: To identify when we should stop adding new archetypes.

I Underlying concept: add archetypes until we sense ”oversampling.”

I Oversampling happens when we start adding archetypes that are “too close”
to each other.

I Each archetype is a cell → we can compute their similarity of using the
ACTION metric.
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Component 2: Characterizing principal functional profiles
Statistical significance of oversampling

I We build and threshold an archetype-archetype similarity
graph.

I For each connected component in this graph, we assess its
statistical significance using an Erdos Renyi graph model.

I Probability that there exists in G a subgraph of density δ(Z)
and size at least |Z |:

Pr[∃H ⊆ G , |H| ≥ |Z | : δ(H) = δ(Z)].
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Component 2: Characterizing principal functional profiles
Test 1: Identifying cell types using closest archetype

I ACTION excels at identifying underlying cell types in all cases
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Component 2: Characterizing principal functional profiles
Visualizing the functional space

I Use matrix H instead of Y in visualization:

I We are interested in the relationship between cells and their
surrounding archetypes.

I Initialize using Fiedler embedding

I Position according to the dominant eigenvectors of the Laplacian
matrix: L = diag(∆Y)− Y.

I Update using t-SNE

(Purdue) Broad Fellow’s Talk June17 25 / 69



A continuous view of transcriptional profiles
Case study in the Melanoma dataset

I T-cells reside in a continuum of
states (Thogerson et al.).

I Tumor cells form compact groups.

I Two subclasses of MITF-associated
tumors significantly differ in terms
of their survival.

I ACTION highlights the underlying topology of cell types
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Overall Workflow
Component 3: Identifying the interactions underlying architypes
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Component 3: Identifying the interactions underlying architypes
Constructing TRN
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Component 3: Identifying the interactions underlying architypes
Constructing TRN

Goal: Identifying key regulatory elements that drive each cell type

1. Archetype Orthogonalization (→ Only over positive projection)

a⊥i =
(

I− A−i (AT
−iA−i )

−1AT
−i

)
ai

2. Assessing significance of TFs/TGs

p-value(Z = bl(λ)) = Prob(bl(λ) ≤ Z )

=

min(T ,l)∑
x=bl (λ)

(T
x

)(m−T
l−x
)(m

l

)
Use Dynamic Programming to compute exact p-value.
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Functional activity of transcription factors (TFs)

Key point!

We identify “functional activity” of transcription factors (TFs) by
aggregating transcriptional activity of their downstream targets, not the
transcriptional level of TFs themselves. TFs can, and typically do, get
regulated through post-translational mechanisms.

(Purdue) Broad Fellow’s Talk June17 30 / 69



Identifying transcriptional controls of Melanoma subtypes
Proliferative versus invasive status

I Both Subtype A and Subtype C exhibit high activity of MITF and Sox10
transcription factors, which are canonical markers for melanoma cells in the
“proliferative” (as opposed to “invasive”) state (Verfaiilie et al.).

I These two subtypes are significantly enriched for marker genes in the
proliferative state:

I Subtype A: 9.3× 10−14

I Subtype B: 7.9× 10−11

I Subtype A has higher MITF activity (according to its activated targets):

I GPNMB, M1ANA, PMEL, and TYR are shared between two subtypes.
I ACP5, CDK2, CTSK, DCT, KIT, and TRPM1/P1 are uniquely

upregulated in subtype A.
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Dissecting transcriptional controls of Melanoma subclasses
Case study in MITF�/MYC↑ subtype
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I 19 “functionally” active transcription factors in subtype A (p-value ≤ 0.05)

I We focus on the five most significant TFs and their targets (p-value ≤ 10−3)
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Case study in MITF�/MYC↑ subtype
Core transcription factors

I MITF is among the best-known markers for classifying melanoma patients
(Hartman et al.: MITF in melanoma: mechanisms behind its expression and
activity).

I Overexpression of the E2F1 is common in high-grade tumors that are associated
with poor survival in melanoma patients (Alla et al.: E2F1 in melanoma
progression and metastasis).

I Melanoma cell phenotype switching, between proliferative an invasive states, is
regulated by differential expression of LEF1/TCF4 (Eichhoff et al.:Differential
LEF1 and TCF4 expression is involved in melanoma cell phenotype switching).

I Amplification and overexpression of the c-myc have been associated with poor
outcome (Kraehn et al.: Extra c-myc oncogene copies in high risk cutaneous
malignant melanoma and melanoma metastases).
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Inferring transcriptional controls of Melanoma subtypes
Survival analysis
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Subtype C: p-value = 0.31

I OncoLnc (Jordan Anaya)

I Multivariate Cox regressions

I Gene expression, sex, age, and grade or
histology as factors

I Genes associated with Subclass A have
significantly worse outcome, compare to
the background of all genes
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Case study in MITF�/MYC↑ subtype
Survival analysis revisited – Kaplan-Meier plots
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Contributions
Recap

1. Developed a novel cell similarity metric that is robust to biological
noise, while at the same time is sensitive enough to identify weak cell
type-specific signals

2. Characterized the functional identity of cells

I Under the pure cell assumption, this metric induces a convex
topology that embeds functional identity of cells

3. Utilized functional identity of cells to identify both discrete cell types
and continuous cell states

4. Identified driving transcriptional controls that mediate the functional
identity of cells

Clinical significance: Characterization of two MITF-associated subclasses
of Melanoma patients, one of which has substantially worse outcomes,

along with their underlying regulatory elements.
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Future Directions
Mystery of inflated zeros: a curse or a blessing?

I Use ACTION to infer cell types.

I Use inferred cell types to distinguish true zeros from missing values

I There is a significant biological signal embedded merely within
the sparsity pattern of the single-cell profiles.

I Use SVR to impute missing values.
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Future Directions
Use ACTION to infer lineage paths within the functional space of the cells

I Identify stable attractor states within the continuous functional space
of cells.

I Trace the most likely transition paths between the states.

I Identify regulatory factors that stimulate these transitions/fate
decisions
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Future Directions
Applications

I Use ACTION to identify cell types in human brain, construct cell
type-specific region-region gene correlation networks, and compare
them with the networks constructed from the resting state fMRI
(joint project with Vikram Ravindra, Purdue University)

I Impact of exposing RAW 264.7 macrophage cell line to exosomes
from: (i) non-metastatic PEDF expressing A375 cells, and (ii)
metastatic A375 melanoma cells (Joint project with Anindita Basu,
University of Chicago).
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Constructing tissue-specific interactome

1 Establishing functional identity of cells

2 Constructing tissue/cell type-specific networks

3 Deconvolving expression profiles of complex tissues
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Motivation
Global interactome is not context-specific

Global human interactome is a superset of all possible physical interactions
that can take place in the cell. It does not provide any information as to
which one of these interactions do take place in a given tissue/cell-type
context.
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Big Question

Can we predict which links/edge are active in a given context?
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Roadmap
Exemplar Networks

(a) Original (b) Diffusion

(c) Projection (d) Pruning
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Genotype-Tissue Expression (GTEx) Project

Adopted from: NIH CommonFund

I RNA-Seq dataset v4.0

I 2,916 samples

I 30 different tissues

I Processed each sample
individually using
UPC/SCAN
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Activity Propagation (ActPro)
From transcriptional activity to functional activity

Goal: Estimate functional activity of genes

Convex program

x∗ = argmin
x

{
(1− α)xTLx + α ‖ x − z ‖1

}
Subject to:

{
1Tx = 1

0 ≤ x

I Vector z encodes transcriptional activity of genes, estimated by UPC

I Matrix L is the Laplacian matrix, defined as A−D, where dii is the
weighted degree of i th vertex in the global interactome.

I Parameter α controls the relative importance of regularization
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Activity Propagation (ActPro)
Interpretation – Loss function

Convex program

x∗ = argmin
x

{
(1− α)xTLx + α ‖ x − z ‖1

}
I The Laplacian operator L acts on a given function defined over

vertices of a graph, such as x , and computes the smoothness of x
over adjacent vertices.

I We can expand it as
∑

i ,j wi ,j(xi − xj)
2, which is the accumulated

difference of values between adjacent nodes scaled by the weight of
the edge connecting them.

I First term is a diffusion kernel. It propagates activity of genes through
network links.
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Activity Propagation (ActPro)
Interpretation – Regularizer

Convex program

x∗ = argmin
x

{
(1− α)xTLx + α ‖ x − z ‖1

}
I The second term is a regularizer which penalizes changes or deviations

I We can expand it as
∑

i |xi − zi |, where xi and zi are the (inferred)
functional and the transcriptional activity of gene i , respectively.

I It enforces sparsity over the vector of differences between
transcriptional and functional activities.
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Results

What do we gain?

Tissue-specific networks have higher power/accuracy in predicting
tissue-specific biology and pathobiology
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Tissue-specific Pathology
Predicting disease-related genes

global ActPro 0.15 ActPro 0.50 ActPro 0.85 ERW NR
Alzheimer’s disease 4.12E-3 6.96E-3 5.98E-3 5.44E-3 5.32E-3 9.60E-2
breast carcinoma 1.83E-3 1.11E-3 8.40E-4 8.30E-4 4.09E-3 8.15E-2
chronic lymphocytic leukemia 8.20E-4 7.40E-4 4.80E-4 5.10E-4 8.50E-4 2.94E-2
coronary artery disease 3.95E-1 1.58E-1 1.09E-1 1.03E-1 1.33E-1 1.93E-2
Crohn’s disease 2.56E-2 1.93E-2 1.50E-2 1.44E-2 8.54E-2 4.14E-1
metabolic syndrome X 1.11E-2 1.09E-2 1.07E-2 1.12E-2 1.02E-1 7.39E-1
Parkinson’s disease 1.59E-2 1.25E-2 9.89E-3 9.50E-3 1.34E-2 9.62E-2
primary biliary cirrhosis 7.20E-4 1.32E-3 3.16E-3 3.40E-3 2.80E-2 6.86E-1
psoriasis 2.10E-4 1.10E-3 1.16E-3 9.50E-4 4.67E-3 3.24E-1
rheumatoid arthritis 1.70E-2 9.28E-3 1.06E-2 1.10E-2 6.39E-2 3.61E-1
systemic lupus erythematosus 4.98E-2 1.19E-2 7.56E-3 7.22E-3 2.55E-3 1.60E-4
type 1 diabetes mellitus 2.64E-2 3.01E-2 2.38E-2 2.40E-2 2.64E-1 9.39E-1
type 2 diabetes mellitus 1.57E-3 2.90E-4 2.40E-4 1.80E-4 5.60E-4 7.90E-3
vitiligo 1.17E-3 2.13E-3 3.04E-3 3.54E-3 1.84E-2 5.69E-1
schizophrenia 3.47E-1 2.13E-1 1.93E-1 1.84E-1 1.40E-1 4.10E-2
combined 1.53E-13 1.24E-17 6.62E-19 3.70E-19 9.03E-14 2.43E-03

1. Symmetric random-walk as a measure of distance

2. Empirical p-value for each tissue

3. p-value combination using Edgington method

I ActPro excels in prioritizing disease-related genes
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Tissue-specific Biology
Predicting tissue-specific interactions in known pathways – Average performance

I Edge Set Enrichment Analysis (ESEA).

I Differential correlation score:

EdgeScore = MI all(i , j)−MI control(i , j)

I Gain of Correlation (GoC) edges
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Novel Insights
Identifying disease-related pathways in brain

Alzheimer’s Disease

Parkinson’s Disease

I Prize Collecting Steiner Tree (PCST)

argmin
<v ,e>∈T

{∑
e

ce − λ
∑
v

bv
}

I ce = 1
we

and bv =

{
∞; v ∈ markers

1;O.W .

I Red nodes are novel factors

I ActPro identifies novel disease-related pathways
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Future directions
Differential network analysis

Goal: Identify driver network perturbations that mediate drug resistance.

I Use single-cell profiles to construct an
ensemble of cell type-specific networks, one
for before and one for after treatment.

I Combine individual networks within each
ensemble to construct a meta-network with
a distribution over each edge.

I Identify differential edges that are
significantly rewired across conditions.

Key idea: A majority of perturbations do not disable proteins, but they
affect individual interactions.
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Future Directions
Identify intercellular signaling pathways between cells

I Traditional computational approach is to merely look at the expression
of known interacting ligands/receptors pairs in adjacent cells.

I There is significant potential for an experimental technology to
directly capture these transient interactions.

(Purdue) Broad Fellow’s Talk June17 53 / 69



Constructing tissue-specific interactome

1 Establishing functional identity of cells

2 Constructing tissue/cell type-specific networks

3 Deconvolving expression profiles of complex tissues

(Purdue) Broad Fellow’s Talk June17 54 / 69



Motivation

Tumor heterogeneity, including its internal diversity, as well as interaction
with surrounding microenvironment, is one of the most fundamental
determinants of treatment response, drug resistance, and patient relapse.

Adopted from Moffitt et al., 2015
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Deconvolution: Formal Definition
Notation

Goal: To decompose a heterogeneous expression profile into its purified
cell types

I M ∈ Rn×p: Expression
matrix of mixed samples

I G ∈ Rn×q: Reference
signature matrix of primary
cell types.

I C ∈ Rq×p: Relative
proportions of each cell-type
in mixture samples.
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Deconvolution: Formal Definition
Problem definition

Given an observed mixture matrix M, find optimal G and C that
approximate mixture matrix as closely as possible, according to a distance
function δ, while satisfying a set of desired constraints:

Objective

min
G,C∈feasible region

δ(GC,M)
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Deconvolution: Formal Definition
Scope of this study

Goal: To systematically evaluate different configurations and their
performance in gene expression deconvolution

I Different loss functions for evaluating estimation error

I Constraints on solutions

I Preprocessing and data filtering

I Feature selection

I Regularization
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Loss functions

1. L2(ri ) = r2
i = (yi −wTx i )

2

2. L1(ri ) = |ri | = |yi −wTx i |
3. L(M)

Huber (ri ) ={
r2
i , if |ri | ≤ M

M(2|ri | −M), otherwise

4. L(ε)
ε (ri ) ={
0, if |ri | ≤ ε
|ri | − ε, otherwise
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Regularizers

I Shrinking/smoothing regression coefficients w :

R2(w) =‖ w ‖2
2=

k∑
i=1

w2
i .

I Sparsifying solutions :

R1(w) =‖ w ‖1=
k∑

i=1

|wi |.
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Examples
Some of existing combinations

I Ordinary Least Squares (OLS):

minw{
m∑
i=1

L2(ri )} = minw{
m∑
i=1

(yi −wTx i )
2}

= minw ‖ y − Xw ‖2
2

I Least Absolute Selection and Shrinkage Operator (LASSO)
Regression:

minw{
m∑
i=1

L2(ri ) + λR1(w)}

= minw ‖ y − Xw ‖2
2 +λ ‖ w ‖1

I Support Vector Regression (SVR):

minw{
m∑
i=1

Lε(yi −wTx i ) + λR2(w)} (1)
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Constraints

I Non-negativity (NN)

I Sum-to-one (STO)

I Similar cell quantity (SCQ)
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Selecting genes to include in basis matrix

Updating C is highly over-determined. We try to select genes to
simultaneously minimize noise and enhance conditioning of the basis
matrix G:

I Range filtering

I Marker selection

New criteria: Sum-To-One (STO) violations

I Violating reference gene:

m(i) ≤ Gmin(i);∀1 ≤ i ≤ n

I Violating mixture gene:

Gmax(i) ≤ m(i);∀1 ≤ i ≤ n
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Summary of results

We performed comprehensive, unbiased evaluation for all combinations of
these factors on the following datasets:

Dataset # features # samples # references

BreastBlood 54675 9 2
CellLines 54675 12 4
LiverBrainLung 31099 33 3
PERT Cultured 22215 2 11
PERT Uncultured 22215 4 11
RatBrain 31099 10 4
Retina 22347 24 2
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Summary of results
Take home message

I With the right choice of preprocessing and objective function, we can
limit error levels in all test datasets
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Summary of results
Key observation

Selecting the ”right” set of genes for deconvolution has one of the
strongest effects on the overall deconvolution performance.

I Selecting genes that are not:

I Time-dependent, such as cell cycle genes.
I Microenvironment-dependent factors, such as genes involved in

cell signaling pathways.
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Future directions
Use single-cell profiles as basis for deconvolution

Motivation

I Bulk-tissue RNA-seq profiling is still more cost effective and the
preferred choice for large population studies.

I Fresh specimens needed for single-cell profiling is not always available
(for example in archived formalin fixed paraffin embedded (FFPE)
tissue samples).

I There is a significant body of knowledge in existing databases using
bulk-tissue profiling.
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Future directions
Use single-cell profiles as basis for deconvolution– Sketch of the method

Joint project with Yu Li @MIT.

I Bulk and single-cell each have their own unique signatures in their
measurements.

I Unlike BSEQ-sc, we first aim to develop a deep-learning technique to
map expression profiles from single-cell space to their corresponding
bulk, purified projection.

I We use projected profiles as an initial estimate of G and jointly
estimate C and update G.
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Future directions
Hierarchical deconvolution

Challenge: Emergence of complex underlying structure as we increase the
total number cell types.

I Infer a hierarchy for cell types, first.

I Use parent(s) of each node as a prior.

I Orthogonalize cell types w.r.t. the prior of all ancestor cells.

I Deconvolve each layer with the residual subspace.
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