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1- Fundamentals of Graph theory

• Network: Collection of nodes, logically connected to 
each other by edges, thus giving some information 
about the nodes’ relationships. 

Eg: Social n/w, protein interaction n/w, metabolic 
reactions n/w, neuronal connectivity n/w,…

• Nodes: Individuals, proteins, metabolites, neurons,…

• Edges: Social Interaction, Protein-protein interaction,  
reaction between metabolites, axons,…



2- Community structures in networks

• Definition

“The division of network nodes into groups 
within which the network connections are 
dense, but between which they are sparser”



Community structures in networks

• Necessity for definition: Really complex biological 

graphs- a typical human metabolic reaction graphs have about 
88K edges!



Community structures in networks

• Advantages: Such a simple ‘moduled’ representation of 

any graph would be easy to analyze and handle.



Hierarchical Clustering
“These techniques are aimed at discovering natural divisions of 

networks into groups, based on various metrics of similarity or 

strength of connection between vertices”

HC

Agglomerative
-Addition of edges
-Similarity calculated between vertex 
pairs
-Disadvantage: Peripheral nodes are 
neglected- core nodes retained due to 
strong similarity

Divisive
-Removal of edges

-Least similar connected pair of 
vertices removed

-Authors approach is different: 
edges that are most “between” 
other vertices removed!



3- Existing betweenness algorithms

[1] Random-walk betweenness:

- A random walk from Source node to 
Destination node is considered.

- Expected net number of times a random walk 
between a particular pair of vertices will pass 
down a particular edge is calculated

- sum over all vertex pairs will give the RW 
betweenness value for that edge.



Existing betweenness algorithms
[2] Current-flow betweenness:

• Circuit created by placing a unit resistance on each 
edge, unit current source and sink at a particular pair 
of vertices. 

• The resulting current chooses the least resistance path.

• The current-flow betweenness for an edge = the 
absolute value of the current along the edge summed 
over all source/sink pairs (calculated using Kirchoff’s 
laws)

The current-flow betweenness is exactly the same as the 
random walk betweenness!



4- Insight into Edge-betweenness algorithm 

Existing betweenness algorithms
[3] Edge-betweenness:

- All paths between inter-community vertices must pass 
through the relatively fewer edges that connect the 2 
communities.

- Betweenness is some measure that favors edges that lie 
between communities and disfavors those that lie inside 
communities.

- Method used: the shortest paths between all pairs of 
vertices is found and the count of how many run along each 
edge        betweenness measure       ‘rush’ ‘edge-
betweenness’       ‘shortest path betweenness’!



Work Performed
(Girvan and Newman)

Two step algorithm for modularity

(1) Iterative removal of edges to split into 
communities (driven by betweenness values)

(2) Crucial step: The betweenness measures 
recalculated after each removal! 



5- Modularity factor

• Note that never-ending iterative removal of edges would lead 
to a stage where all edges are removed and we have just the 
nodes- which are after all individual modules themselves.

• Do we want such a division of a given network? 

• ‘Modularity ’ is a factor Q defined to control the limit up to 
which the algorithm should run so as to give a logically sound 
and informative output.

Q FACTOR:

1. Consider a particular division of a network into k communities. 

2. k×k symmetric matrix e: with element eij -> fraction of edges 
that link vertices in community i to vertices in community j. 



3. Tr e = Σi eii : fraction of edges that connect vertices in same community
4. A good division into communities should have a high value of this trace. 
5. row (or column) sums: ai = Σj eij -> represent fraction of edges that 

connect to vertices in community i.
6. eij = aiaj -> when edges fall between vertices without regard for the 

communities they belong to

modularity measure defined as: 

||x|| =  the sum of elements of matrix x. 

- Q = fraction of within-community edges – E[same quantity in a network with 
the same  community divisions], but random connections between the 
vertices.

- typically values: 0.3 < Q < 0.7



Advantages



Parallel Implementation
(Yang and Lonardi)

 Girvan and Newman’s edge betweenness algorithm –
computationally  very intensive [time and memory issues]

 Yang and Lonardi came up with parallelized version: decreases 
time complexity. [s/w publicly available]

PROCEDURE: 

1. Vertices evenly assigned to all processors (each processor has its 
own copy of the graph).

2. Procedure initiated by host processor; each processor performs 
BFS from all the vertices assigned to it and sums up partial pair-
dependencies obtained from each BFS. 

3. Partial pair-dependencies are sent to host processor, which is 
responsible for summing them up, thus obtaining the global 
betweenness values for every edge.



4. Edge with the highest betweenness value is then broadcast by 
the host processor to all the processors in the communication 
world. 

5. All processors delete the edge received in their own graph copy 

6. Next iteration is started. Process is continued until no edges are 
left in the graph.

7. The output is the order of removal of edges, which implicitly 
defines a hierarchical tree on the nodes of the graph. 

8. The graph is then reconstructed by these when Q factor is 
calculated for every edge removal.

9. Clusters with maximum Q factor is declared as final answer.



Gmean Proposal

 Computational time issues addresses by parallel implementation

 Our proposal addresses memory issues by introducing an earlier 
stopping point. [Gmean algo in parallel thus saves time and 
memory]

 Gives only one set of final clusters unlike original algorithm which 
gives >1 possible sets of clusters (corresponding to Qmax) as final 
output.



OBJECTIVE: To find an earlier stopping point

STEPS:

1. Calculate the betweenness for all edges in the 
original network

2. Calculate the mean (gmean) after only the first 
iteration

3. Remove the edge with the highest betweenness

4. Recalculate the betweenness for all edges

5. Repeat steps 3->4 till the value of edgebetweenness 
of edge to be removed is < the calculated gmean.



Results







Comparison with number of processors







Execution times 
[20 processors]



Q factor comparison

Though we do not calculate Q factor, the comparison of Q factors for 

the modules produced by gmean algorithm, with that of the original 

algorithms, proved consistency.



Applications
The definition and identification of modular graphs from really 

large complex real life networks help largely in the analysis of:

• Protein interaction n/w 

• Metabolic reactions n/w

• Neuronal connectivity n/w 

[and many such complex biological networks]

• Visual Segmentation 

• Data analysis

[and other applications in the field of Machine Learning!]

• Social n/w [and other networks of interest to statisticians]


