
Graph Theoretic Algorithms for Modularity Detection
in Biological Networks

Tejaswini Narayanan

5 Mar 2010

Agenda
• Overview

– Fundamentals of Graph theory

– Community structures in networks

– Existing betweenness algorithms

– Insight into Edge-betweenness algorithm

– Modularity factor

– Parallel Implementation

• Work Performed
– Proposal

– Results

• Applications

• Over to Merril

1- Fundamentals of Graph theory

• Network: Collection of nodes, logically connected to
each other by edges, thus giving some information
about the nodes’ relationships.

Eg: Social n/w, protein interaction n/w, metabolic
reactions n/w, neuronal connectivity n/w,…

• Nodes: Individuals, proteins, metabolites, neurons,…

• Edges: Social Interaction, Protein-protein interaction,
reaction between metabolites, axons,…

2- Community structures in networks

• Definition

“The division of network nodes into groups
within which the network connections are
dense, but between which they are sparser”

Community structures in networks

• Necessity for definition: Really complex biological

graphs- a typical human metabolic reaction graphs have about
88K edges!

Community structures in networks

• Advantages: Such a simple ‘moduled’ representation of

any graph would be easy to analyze and handle.

Hierarchical Clustering
“These techniques are aimed at discovering natural divisions of

networks into groups, based on various metrics of similarity or

strength of connection between vertices”

HC

Agglomerative
-Addition of edges
-Similarity calculated between vertex
pairs
-Disadvantage: Peripheral nodes are
neglected- core nodes retained due to
strong similarity

Divisive
-Removal of edges

-Least similar connected pair of
vertices removed

-Authors approach is different:
edges that are most “between”
other vertices removed!

3- Existing betweenness algorithms

[1] Random-walk betweenness:

- A random walk from Source node to
Destination node is considered.

- Expected net number of times a random walk
between a particular pair of vertices will pass
down a particular edge is calculated

- sum over all vertex pairs will give the RW
betweenness value for that edge.

Existing betweenness algorithms
[2] Current-flow betweenness:

• Circuit created by placing a unit resistance on each
edge, unit current source and sink at a particular pair
of vertices.

• The resulting current chooses the least resistance path.

• The current-flow betweenness for an edge = the
absolute value of the current along the edge summed
over all source/sink pairs (calculated using Kirchoff’s
laws)

The current-flow betweenness is exactly the same as the
random walk betweenness!

4- Insight into Edge-betweenness algorithm

Existing betweenness algorithms
[3] Edge-betweenness:

- All paths between inter-community vertices must pass
through the relatively fewer edges that connect the 2
communities.

- Betweenness is some measure that favors edges that lie
between communities and disfavors those that lie inside
communities.

- Method used: the shortest paths between all pairs of
vertices is found and the count of how many run along each
edge betweenness measure ‘rush’ ‘edge-
betweenness’ ‘shortest path betweenness’!

Work Performed
(Girvan and Newman)

Two step algorithm for modularity

(1) Iterative removal of edges to split into
communities (driven by betweenness values)

(2) Crucial step: The betweenness measures
recalculated after each removal!

5- Modularity factor

• Note that never-ending iterative removal of edges would lead
to a stage where all edges are removed and we have just the
nodes- which are after all individual modules themselves.

• Do we want such a division of a given network?

• ‘Modularity ’ is a factor Q defined to control the limit up to
which the algorithm should run so as to give a logically sound
and informative output.

Q FACTOR:

1. Consider a particular division of a network into k communities.

2. k×k symmetric matrix e: with element eij -> fraction of edges
that link vertices in community i to vertices in community j.

3. Tr e = Σi eii : fraction of edges that connect vertices in same community
4. A good division into communities should have a high value of this trace.
5. row (or column) sums: ai = Σj eij -> represent fraction of edges that

connect to vertices in community i.
6. eij = aiaj -> when edges fall between vertices without regard for the

communities they belong to

modularity measure defined as:

||x|| = the sum of elements of matrix x.

- Q = fraction of within-community edges – E[same quantity in a network with
the same community divisions], but random connections between the
vertices.

- typically values: 0.3 < Q < 0.7

Advantages

Parallel Implementation
(Yang and Lonardi)

 Girvan and Newman’s edge betweenness algorithm –
computationally very intensive [time and memory issues]

 Yang and Lonardi came up with parallelized version: decreases
time complexity. [s/w publicly available]

PROCEDURE:

1. Vertices evenly assigned to all processors (each processor has its
own copy of the graph).

2. Procedure initiated by host processor; each processor performs
BFS from all the vertices assigned to it and sums up partial pair-
dependencies obtained from each BFS.

3. Partial pair-dependencies are sent to host processor, which is
responsible for summing them up, thus obtaining the global
betweenness values for every edge.

4. Edge with the highest betweenness value is then broadcast by
the host processor to all the processors in the communication
world.

5. All processors delete the edge received in their own graph copy

6. Next iteration is started. Process is continued until no edges are
left in the graph.

7. The output is the order of removal of edges, which implicitly
defines a hierarchical tree on the nodes of the graph.

8. The graph is then reconstructed by these when Q factor is
calculated for every edge removal.

9. Clusters with maximum Q factor is declared as final answer.

Gmean Proposal

 Computational time issues addresses by parallel implementation

 Our proposal addresses memory issues by introducing an earlier
stopping point. [Gmean algo in parallel thus saves time and
memory]

 Gives only one set of final clusters unlike original algorithm which
gives >1 possible sets of clusters (corresponding to Qmax) as final
output.

OBJECTIVE: To find an earlier stopping point

STEPS:

1. Calculate the betweenness for all edges in the
original network

2. Calculate the mean (gmean) after only the first
iteration

3. Remove the edge with the highest betweenness

4. Recalculate the betweenness for all edges

5. Repeat steps 3->4 till the value of edgebetweenness
of edge to be removed is < the calculated gmean.

Results

Comparison with number of processors

Execution times
[20 processors]

Q factor comparison

Though we do not calculate Q factor, the comparison of Q factors for

the modules produced by gmean algorithm, with that of the original

algorithms, proved consistency.

Applications
The definition and identification of modular graphs from really

large complex real life networks help largely in the analysis of:

• Protein interaction n/w

• Metabolic reactions n/w

• Neuronal connectivity n/w

[and many such complex biological networks]

• Visual Segmentation

• Data analysis

[and other applications in the field of Machine Learning!]

• Social n/w [and other networks of interest to statisticians]

