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: Collection of nodes, logically connected to
other by edges, thus giving some information

out the nodes’ relationships.

entals of Graph theory

Eg: Social n/w, protein interaction n/w, metabolic
reactions n/w, neuronal connectivity n/w,...

* Nodes: Individuals, proteins, metabolites, neurons,...

* Edges: Social Interaction, Protein-protein interaction,
reaction between metabolites, axons,...



: v\i
ctures in networl«UCSD

of network nodes into groups
hich the network connections are
se, but between which they are sparser”
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| Clustering ucsh

ed at discovering natural divisions of
ps, based on various metrics of similarity or

nnection between vertices”

PN,

Agglomerative Divisive

ition of edges -Removal of edges
-Similarity calculated between vertex

s . -Least similar connected pair of
-Disadvantage: Peripheral r?odes are vertices removed
neglected- core nodes retained due to

strong similarit
p d -Authors approach is different:

G : edges that are most “between”

i o i@ Z | other vertices removed!
' E e 5
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etweenness algorithms X
UCSD

| Random-walk betweenness:

andom walk from Source node to
Destination node is considered.

- Expected net number of times a random walk
between a particular pair of vertices will pass
down a particular edge is calculated

- sum over all vertex pairs will give the RW
betweenness value for that edge.
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eenness algorithms UCSD

[2] Current-flow betweenness:

Circuit created by placing a unit resistance on each
edge, unit current source and sink at a particular pair
of vertices.

* The resulting current chooses the least resistance path.

* The current-flow betweenness for an edge = the
absolute value of the current along the edge summed
over all source/sink pairs (calculated using Kirchoff’s
laws)

The current-flow betweenness is exactly the same as the
random walk betweenness!
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Into Edge-betweenness algorithm, ;-5
tweenness algorithms

|3] Edge-betweenness:

- All paths between inter-community vertices must pass
through the relatively fewer edges that connect the 2
communities.

- Betweenness is some measure that favors edges that lie
between communities and disfavors those that lie inside
communities.

- Method used: the shortest paths between all pairs of
vertices is found and the count of how many run along each
edge be&ttveenness measure  ‘ruslh’ ‘edge-
betweenness”  ‘shortesépath betweenness’!



an and Newman)

thm for modularity

rative removal of edges to split into
communities (driven by betweenness values)

(2) Crucial step: The betweenness measures
recalculated after each removal!



5- Modularity factor =
UcCcsbD

ote that never-ending iterative removal of edges would lead
to a stage where all edges are removed and we have just the
nodes- which are after all individual modules themselves.

* Do we want such a division of a given network?

e ‘Modularity’ is a factor Q defined to control the limit up to
which the algorithm should run so as to give a logically sound
and informative output.

Q FACTOR:
1. Consider a particular division of a network into k communities.

2. kxk symmetric matrix e: with element eij -> fraction of edges
that link vertices in community i to vertices in community j.



connect vertices in same community
ies should have a high value of this trace.

= Jj eij -> represent fraction of edges that
community i.

ges fall between vertices without regard for the
ey belong to

arity measure defined as:

) =Z[f.'h- —a;)=Tre— || e?| .

| |x|| = the sum of elements of matrix x.

- Q = fraction of within-community edges — E[same quantity in a network with
the same community divisions], but random connections between the
vertices.

- typically values: 0.3 < Q< 0.7



random walk

wpds jo smupood

shortest path
without recalculation

shortest path
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Parallel Implementation UCSD

(Yang and Lonardi)

v Girvan and Newman’s edge betweenness algorithm —
computationally very intensive [time and memory issues]

v Yang and Lonardi came up with parallelized version: decreases
time complexity. [s/w publicly available]

PROCEDURE:

1. Vertices evenly assigned to all processors (each processor has its
own copy of the graph).

2. Procedure initiated by host processor; each processor performs
BFS from all the vertices assigned to it and sums up partial pair-
dependencies obtained from each BFS.

3. Partial pair-dependencies are sent to host processor, which is
responsible for summing them up, thus obtaining the global
betweenness values for every edge.



the highest betweenness value is then broadcast by
ost processor to all the processors in the communication

5. All processors delete the edge received in their own graph copy

6. Next iteration is started. Process is continued until no edges are
left in the graph.

/. The output is the order of removal of edges, which implicitly
defines a hierarchical tree on the nodes of the graph.

8. The graph is then reconstructed by these when Q factor is
calculated for every edge removal.

9. Clusters with maximum Q factor is declared as final answer.



ssues addresses by parallel implementation

al addresses memory issues by introducing an earlier
g point. [Gmean algo in parallel thus saves time and

ory]

+*»* Gives only one set of final clusters unlike original algorithm which
gives >1 possible sets of clusters (corresponding to Qmax) as final
output.



find an earlier stopping point

alculate the betweenness for all edges in the
original network

. Calculate the mean (gmean) after only the first
iteration

. Remove the edge with the highest betweenness
4. Recalculate the betweenness for all edges

. Repeat steps 3->4 till the value of edgebetweenness
of edge to be removed is < the calculated gmean.



The following are the results for the Yeast network:

Comparison of Modules from the Yeast network
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Hist 1: Comparison of overall resuts (in terms of modules) over all heuristics
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Comparison of Module Distributions from the Yeast network
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Hist 2: Comparison of module distribution over all heuristics




Comparison of Execution-times for the Yeast network
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Hist 3: Comparison of time of execution over all heuristics
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Comparison of Execution-times for the Yeast network

esSSors
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Comparison of Execution-times for the Drosophila network
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Target
Girvan and Newman edge-betweenness edge-betweenness modularity heuristic

Algorithm Target = G{e)

Yeast 394 96 sec 260.34 sec
T=3256%

Drosophila 7800.07 sec 0347.13 sec
T=1563 %
H. Sapiens 6920010 sec 24611.80 sec
T=21087%




parison

Omax Gmean ebarget Otarga
beprecnness

Yeast 0625419 1780 .33 1792 52 0605765

Drosophila 0355212 3667 32 368779 0336284

Human 04358003 1121.65 1121.77 0371623

Though we do not calculate Q factor, the comparison of Q factors for
the modules produced by gmean algorithm, with that of the original
algorithms, proved consistency.
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plications UCSD

entification of modular graphs from really
real life networks help largely in the analysis of:

ein interaction n/w

Metabolic reactions n/w

* Neuronal connectivity n/w

[and many such complex biological networks]

* Visual Segmentation
e Data analysis

[and other applications in the field of Machine Learning!]

* Social n/w [and other networks of interest to statisticians]



