Models, Methods, and Software for Emerging Problems in Single Cell Data Analysis

Shahin Mohammadi, Vikram Ravindra, David Gleich, Ananth Grama

Center for Science of Information and Department of Computer Science
Purdue University

Feb 20, 2018

Introduction and Overview

- ► Recent advances in single cell technologies enable us to probe dynamic states of individual cells.
- ► Single cell technologies are also redefining basic understanding of cell types, tissue organization, pathology, and response.
- ► Single cell technologies result in datasets, models, and information that are orders of magnitude larger than conventional genomic/transcriptomic/interactomic repositories.

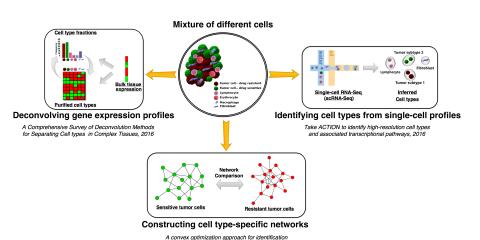
Introduction: Some Basic Terminology

- ▶ DNA is the basic code that governs living systems.
- DNA is transcribed into RNA. This process of transcription is controlled by a number of transcriptional control mechanisms (Transcription Regulation, Post Transcriptional Regulation).
- ▶ RNA is translated into proteins the workhorses of living cells. The process of translation is controlled by a number of control mechanisms (Translational Controls).
- ► The activity of proteins is controlled by various post translational modifications (phosphorylation, methylation).

Introduction: Some Basic Terminology

- ► Each cell in an organism (with some noted exceptions) inherits the same genetic code (its genome).
- ▶ Different cells exhibit different behavior (and function) as a result of different activity levels of genes and controls.
- ► Cells exhibiting the same profile of genetic activity are generally believed to be of the same type.
- Within the set of genes, some genes are generally active across all cell types (housekeeping genes), other are selective to sets of cell types (tissue selective), others are specific to cell types (tissue specific).
- Genes whose activity is unique to cell types are called markers.
- ► The activity of genes in a cell is impacted by its state, stressors (external stimuli), disease, etc.
- ▶ One of the common tools to interrogate the state of a cell is to study gene expression using microarrays or RNA Sequencing (RNASeq).
- Among the most common single cell technologies is single cell RNA Seq (scRNASeq).

Overview of Presentation

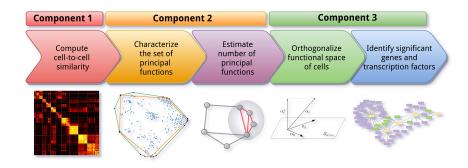


of human tissue-specific interactomes, 2016

Establishing functional identity of cells

- 1 Establishing functional identity of cells
- Part II: Constructing tissue/cell type-specific networks
- 3 Part III: Deconvolving expression profiles of complex tissues

Establishing functional identity of cells

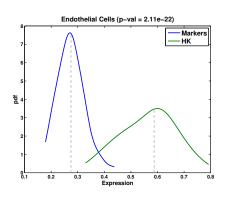


Component 1: New measures for cell-cell similarity Motivation

Underlying hypothesis

Transcriptional profile of cells is dominated by housekeeping genes, whereas their functional identity is determined by a combination of weak but preferentially expressed genes.

Component 1: New measures for cell-cell similarity Supporting evidence



B-Cells (p-val = 6.71e-123) Markers -HK ₽ď 0.3 0.4 0.5 0.6 0.7 0.8 Expression

Figure: Endothelial Cells

Figure: B-Cells

Component 1: New measures for cell-cell similarity Supporting evidence

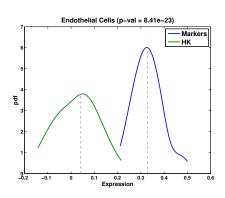
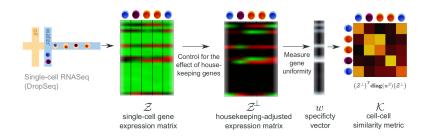


Figure: Endothelial Cells

Figure: B-Cells

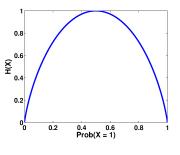
Component 1: New measures for cell-cell similarity Cell similarity kernel in ACTION



▶ The main steps involved in identifying similarity between cells

Component 1: New measures for cell-cell similarity Enhancing the signal from preferentially-expressed genes

Goal: Estimate expression-specificity of genes across different cells



- Entropy as a measure of expression uniformity: $H(i) = -\sum_{i} p_{ij} log(p_{ij})$
- ► How informative is observing a gene with respect to the cell type that it came from
 - Maximum entropy when probability of a gene coming from all cell types is equal
- For each gene i, compute a specificity factor w_i.

Similar formulations have been previously used for marker detection.

Component 1: New measures for cell-cell similarity Putting the pieces together

ACTION-adjusted cell signatures

$$\mathbf{Y} = diag(\mathbf{w})\mathcal{Z}^{\perp}$$

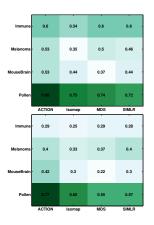
ACTION metric (kernel)

$$\begin{array}{rcl} \mathbf{K}_{ACTION} & = & \mathbf{Y}^{T}\mathbf{Y} \\ & = & \left(\mathcal{Z}^{\perp}\right)^{T} \textit{diag}(\mathbf{w}^{2}) \left(\mathcal{Z}^{\perp}\right) \end{array}$$

Benchmark datasets

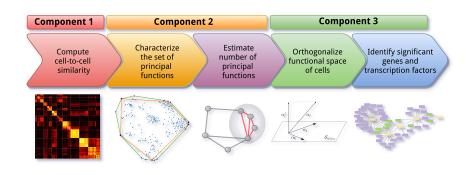
- ► Immune: 1,522 immune cells from mouse hematopoietic system (30 different types of stem, progenitor, and fully differentiated cells)
- ▶ Melanoma: 4,645 malignant, immune, and stromal cells isolated from 19 freshly procured human melanoma tumors (7 major types, including T, B, NK, CAF, Endo, Macro, and Tumor)
- ▶ MouseBrain: 3005 cells from the mouse cortex and hippocampus (7 major types, including astrocytes-ependymal, endothelial-mural, interneurons, microglia, oligodendrocytes, pyramidal CA1, and pyramidal SS).
- ▶ **Pollen:** Small set of 301 cells spanning 11 different cell types in developing cerebral cortex

Performance of ACTION Kernel



- Benchmarks:
 - SIMLR: Specifically designed for single-cell data
 - IsoMap,MDS: General purpose dimension reduction
- ► Tested a range of parameters (5:5:50). Reported best case for each method.
- Ties:
 - Immune (NMI: ACTION/MDS/SMLR, ARI: ACTON/MDS)Melanoma (ARI: ACTION/SIML)
- ▶ In all other cases, ACTION metric significantly outperforms all other methods.
- Overall, ACTION metric performs better than other methods

Overall Workflow Component 2



Component 2: Characterizing principal functional profiles Motivation

General framework

argmin
$$\|\mathbf{Y} - \underbrace{\mathbf{YC}}_{\mathbf{W}} \mathbf{H} \|$$
 subject to: $\|\mathbf{C}(:,i)\|_1 = 1$. $\|\mathbf{H}(:,i)\|_1 = 1$. $0 \le \mathbf{C}, 0 \le \mathbf{H}$

Various algorithms can be cast using this formulation

- ightharpoonup K-means: $\mathbf{C} \in \mathbb{R}^+, \mathbf{H} \in \{0,1\}$
- ▶ K-medoids: $\mathbf{C} \in \{0,1\}, \mathbf{H} \in \{0,1\}$

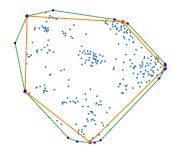
Component 2: Characterizing principal functional profiles Convex Nonnegative Matrix Factorization (NMF)

Convex NMF

$$\label{eq:continuous_problem} \begin{array}{ll} \operatorname{argmin} & \parallel \mathbf{Y} - \mathbf{Y}(:,\mathcal{S})\mathbf{H} \parallel \\ \mathcal{K},\mathbf{H} & \text{subject to:} & \parallel \mathbf{H}(:,i) \parallel_1 = 1, \mathbf{H} \in \mathbb{R}^+. \end{array}$$

- It uses the same formulation as k-medoid, but relaxes the hard assignment of cells: $\mathbf{C} \in \{0,1\}, \mathbf{H} \in \mathbb{R}^n$
- ▶ Unlike k-medoid and k-means, it has an optimal global solution.
 - Under near-separability assumption: there exists, for each cell type, an ideal example in the population.
- A modification of the *Gram Schmidt* process.

Component 2: Characterizing principal functional profiles Convex NMF- Geometric interpretation



Geometry of functional space: each point is a cell and red points are the "pure cells"

- Picking k corner points/archetypes from the convex hull of the cells, such that they optimally "contain" the rest of cells.
- Each archetype is an ideal example of a cell type with a distinct set of principal functions.

Component 2: Characterizing principal functional profiles Archetypal Analysis (AA)

- ▶ AA further relaxes matrix \mathbf{C} : \mathbf{C} , $\mathbf{H} \in \mathbb{R}^+$.
- ▶ It can handle cases where pure pixel assumption is violated.
- ightharpoonup But it no longer has global convergence guarantee ightarrow it is also dependent on the initialization
 - ➤ To address this, we use the solution of convex NMF for initializing AA.
- ▶ In essence, this allows local adjustment of the Convex NMF solution.
- This can be thought of as a variant of block-coordinate descent for optimization.

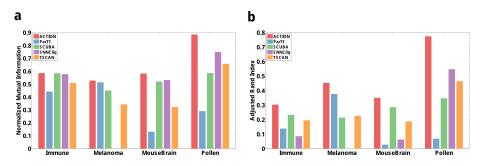
Component 2: Characterizing principal functional profiles Finding the number of archetypes (k)

Goal: To identify when we should stop adding new archetypes.

- Underlying concept: add archetypes until we sense "oversampling."
- Oversampling happens when we start adding archetypes that are "too close" to each other.
- \blacktriangleright Each archetype is a cell \rightarrow we can compute their similarity of using the ACTION metric.

Component 2: Characterizing principal functional profiles

Test 1: Identifying cell types using closest archetype

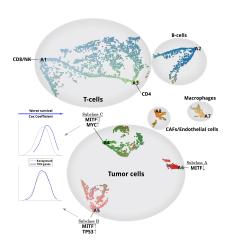


ACTION excels at identifying underlying cell types in all cases

Component 2: Characterizing principal functional profiles Visualizing the functional space

- ▶ Use matrix **H** instead of **Y** in visualization:
 - We are interested in the relationship between cells and their surrounding archetypes.
- Initialize using Fiedler embedding
 - Position according to the dominant eigenvectors of the Laplacian matrix: $\mathbf{L} = \mathbf{diag}(\Delta_{\mathbf{Y}}) \mathbf{Y}$.
- Update using t-SNE

A continuous view of transcriptional profiles Case study in the Melanoma dataset

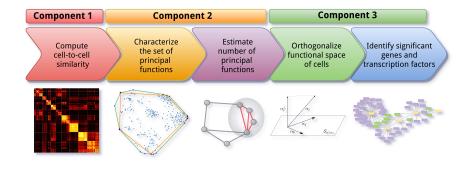


- T-cells reside in a continuum of states (Thogerson et al.).
- Tumor cells form compact groups.
- Two subclasses of MITF-associated tumors significantly differ in terms of their survival.

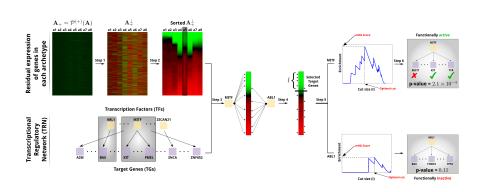
► ACTION highlights the underlying topology of cell types

Overall Workflow

Component 3: Identifying the interactions underlying architypes



Component 3: Identifying the interactions underlying architypes Constructing TRN



Component 3: Identifying the interactions underlying architypes Constructing TRN

Goal: Identifying key regulatory elements that drive each cell type

1. Archetype Orthogonalization (→ Only over positive projection)

$$oldsymbol{a}_i^\perp = \left(\mathbf{I} - \mathbf{A}_{-i} (\mathbf{A}_{-i}^T \mathbf{A}_{-i})^{-1} \mathbf{A}_{-i}^T \right) oldsymbol{a}_i$$

2. Assessing significance of TFs/TGs

$$p ext{-value}(Z = b_l(\lambda)) = \operatorname{Prob}(b_l(\lambda) \leq Z)$$

$$= \sum_{x=b_l(\lambda)}^{\min(T,l)} \frac{\binom{T}{x}\binom{m-T}{l-x}}{\binom{m}{l}}$$

Use Dynamic Programming to compute exact p-value.

Functional activity of transcription factors (TFs)

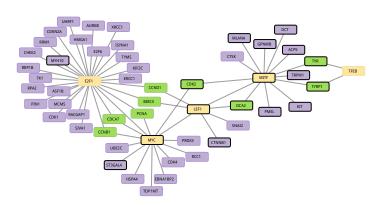
Key point!

We identify "functional activity" of transcription factors (TFs) by aggregating transcriptional activity of their downstream targets, not the transcriptional level of TFs themselves. TFs can, and typically do, get regulated through post-translational mechanisms.

Identifying transcriptional controls of Melanoma subtypes Proliferative versus invasive status

- ▶ Both Subtype A and Subtype C exhibit high activity of MITF and Sox10 transcription factors, which are canonical markers for melanoma cells in the "proliferative" (as opposed to "invasive") state (Verfailie et al.).
- ► These two subtypes are significantly enriched for marker genes in the proliferative state:
 - ► *Subtype A*: 9.3×10^{-14}
 - Subtype B: 7.9×10^{-11}
- Subtype A has higher MITF activity (according to its activated targets):
 - ▶ GPNMB, M1ANA, PMEL, and TYR are shared between two subtypes.
 - ► ACP5, CDK2, CTSK, DCT, KIT, and TRPM1/P1 are uniquely upregulated in subtype A.

Dissecting transcriptional controls of Melanoma subclasses Case study in MITF $\uparrow \uparrow / MYC \uparrow$ subtype



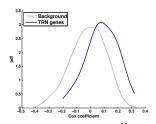
- ▶ 19 "functionally" active transcription factors in subtype A (p-value ≤ 0.05)
- ightharpoonup We focus on the five most significant TFs and their targets (p-value $\leq 10^{-3}$)

PURDUE

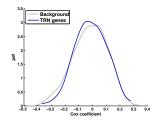
Case study in MITF \(\cap / MYC \cap \) subtype Core transcription factors

- MITF is among the best-known markers for classifying melanoma patients (Hartman et al.: MITF in melanoma: mechanisms behind its expression and activity).
- Overexpression of the E2F1 is common in high-grade tumors that are associated with poor survival in melanoma patients (Alla et al.: E2F1 in melanoma progression and metastasis).
- Melanoma cell phenotype switching, between proliferative an invasive states, is regulated by differential expression of LEF1/TCF4 (Eichhoff et al.:Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching).
- ▶ Amplification and overexpression of the c-myc have been associated with poor outcome (Kraehn *et al.*: Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases).

Inferring transcriptional controls of Melanoma subtypes Survival analysis



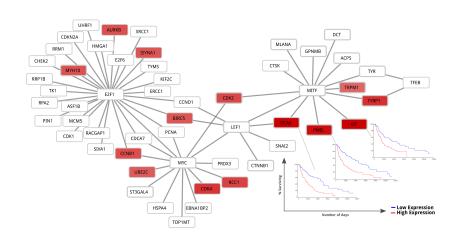
Subtype A: p-value = 5.4×10^{-10}



Subtype C: p-value = 0.31

- OncoLnc (Jordan Anaya)
- Multivariate Cox regressions
- Gene expression, sex, age, and grade or histology as factors
- Genes associated with Subclass A have significantly worse outcome, compare to the background of all genes

Case study in MITF \(\cdot\) / MYC \(\chi\) subtype Survival analysis revisited – Kaplan-Meier plots



Recap

- A novel cell similarity metric that is robust to biological noise, while
 at the same time is sensitive enough to identify weak cell type-specific
 signals
- 2. New notion of functional identity of cells
 - Under the pure cell assumption, this metric induces a convex topology that embeds functional identity of cells
- Use functional identity of cells to identify both discrete cell types and continuous cell states
- Identify driving transcriptional controls that mediate the functional identity of cells

Clinical significance: Characterization of two MITF-associated subclasses of Melanoma patients, one of which has substantially worse outcomes, along with their underlying regulatory elements.

Forthcoming Results

Mystery of inflated zeros: a curse or a blessing?

- Use ACTION to infer cell types.
- Use inferred cell types to distinguish true zeros from missing values in scRNASeq profiles
 - ► There is a significant biological signal embedded merely within the sparsity pattern of the single-cell profiles.
- Use SVR to impute missing values.

Forthcoming Results Use ACTION to infer lineage paths within the functional space of the cells

- Identify stable attractor states within the continuous functional space of cells.
- ▶ Trace the most likely transition paths between the states.
- Identify regulatory factors that stimulate these transitions/fate decisions

Thank you all!

Forthcoming Results Applications

- Use ACTION to identify cell types in human brain, construct cell type-specific region-region gene correlation networks, and compare them with the networks constructed from the resting state fMRI (joint project with Vikram Ravindra, Purdue University)
- ▶ Impact of exposing RAW 264.7 macrophage cell line to exosomes from: (i) non-metastatic PEDF expressing A375 cells, and (ii) metastatic A375 melanoma cells (Joint project with Anindita Basu, University of Chicago).

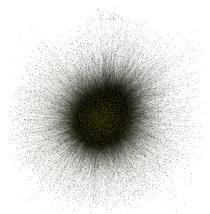
Constructing tissue-specific interactome

- Establishing functional identity of cells
- 2 Part II: Constructing tissue/cell type-specific networks
- 3 Part III: Deconvolving expression profiles of complex tissues

Motivation

Global interactome is not context-specific

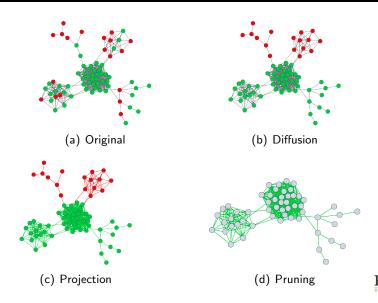
Global human interactome is a superset of all possible physical interactions that can take place in the cell. It does not provide any information as to which one of these interactions do take place in a given tissue/cell-type context.



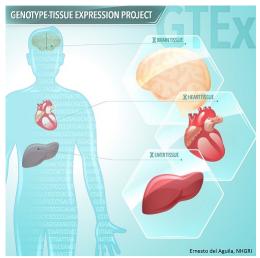
Key Question

Can we predict which links/edge are active in a given context?

Roadmap Exemplar Networks



Genotype-Tissue Expression (GTEx) Project



Adopted from: NIH CommonFund

- RNA-Seq dataset v4.0
- 2,916 samples
- 30 different tissues
- Processed each sample individually using UPC/SCAN

Activity Propagation (ActPro) From transcriptional activity to functional activity

Goal: Estimate functional activity of genes

Convex program

$$\begin{aligned} \mathbf{x}^* &= \operatorname*{argmin}_{\mathbf{x}} \bigg\{ (1-\alpha) \mathbf{x}^T \mathbf{L} \mathbf{x} + \alpha \parallel \mathbf{x} - \mathbf{z} \parallel_1 \bigg\} \\ \text{Subject to:} & \begin{cases} \mathbf{1}^T \mathbf{x} = 1 \\ 0 \leq \mathbf{x} \end{cases} \end{aligned}$$

- Vector z encodes transcriptional activity of genes, estimated by UPC
- Matrix **L** is the *Laplacian* matrix, defined as $\mathbf{A} \mathbf{D}$, where d_{ii} is the weighted degree of i^{th} vertex in the global interactome.
- lacktriangle Parameter lpha controls the relative importance of regularization

PURDUE

Activity Propagation (ActPro) Interpretation – Loss function

Convex program

$$m{x}^* = \operatorname*{argmin}_{m{x}} \left\{ (1 - lpha) m{x}^T m{\mathsf{L}} m{x} + lpha \parallel m{x} - m{z} \parallel_1
ight.$$

- ► The Laplacian operator **L** acts on a given function defined over vertices of a graph, such as **x**, and computes the smoothness of **x** over adjacent vertices.
- We can expand it as $\sum_{i,j} w_{i,j} (x_i x_j)^2$, which is the accumulated difference of values between adjacent nodes scaled by the weight of the edge connecting them.
- ► First term is a diffusion kernel. It propagates activity of genes through network links.

PURDUE

Activity Propagation (ActPro) Interpretation – Regularizer

Convex program

$$oldsymbol{x}^* = \operatorname*{argmin}_{oldsymbol{x}} \left\{ (1 - lpha) oldsymbol{x}^T oldsymbol{\mathsf{L}} oldsymbol{x} + lpha \parallel oldsymbol{x} - oldsymbol{z} \parallel_1
ight\}$$

- ▶ The second term is a regularizer which penalizes changes or deviations
- We can expand it as $\sum_i |x_i z_i|$, where x_i and z_i are the (inferred) functional and the transcriptional activity of gene i, respectively.
- ▶ It enforces sparsity over the vector of differences between *transcriptional* and *functional* activities.

Results

What do we gain?

Tissue-specific networks have higher power/accuracy in predicting tissue-specific biology and pathobiology

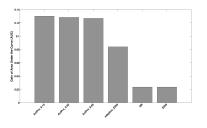
Tissue-specific Pathology Predicting disease-related genes

	global	ActPro_0.15	ActPro_0.50	ActPro_0.85	ERW	NR
Alzheimer's disease	4.12E-3	6.96E-3	5.98E-3	5.44E-3	5.32E-3	9.60E-2
breast carcinoma	1.83E-3	1.11E-3	8.40E-4	8.30E-4	4.09E-3	8.15E-2
chronic lymphocytic leukemia	8.20E-4	7.40E-4	4.80E-4	5.10E-4	8.50E-4	2.94E-2
coronary artery disease	3.95E-1	1.58E-1	1.09E-1	1.03E-1	1.33E-1	1.93E-2
Crohn's disease	2.56E-2	1.93E-2	1.50E-2	1.44E-2	8.54E-2	4.14E-1
metabolic syndrome X	1.11E-2	1.09E-2	1.07E-2	1.12E-2	1.02E-1	7.39E-1
Parkinson's disease	1.59E-2	1.25E-2	9.89E-3	9.50E-3	1.34E-2	9.62E-2
primary biliary cirrhosis	7.20E-4	1.32E-3	3.16E-3	3.40E-3	2.80E-2	6.86E-1
psoriasis	2.10E-4	1.10E-3	1.16E-3	9.50E-4	4.67E-3	3.24E-1
rheumatoid arthritis	1.70E-2	9.28E-3	1.06E-2	1.10E-2	6.39E-2	3.61E-1
systemic lupus erythematosus	4.98E-2	1.19E-2	7.56E-3	7.22E-3	2.55E-3	1.60E-4
type 1 diabetes mellitus	2.64E-2	3.01E-2	2.38E-2	2.40E-2	2.64E-1	9.39E-1
type 2 diabetes mellitus	1.57E-3	2.90E-4	2.40E-4	1.80E-4	5.60E-4	7.90E-3
vitiligo	1.17E-3	2.13E-3	3.04E-3	3.54E-3	1.84E-2	5.69E-1
schizophrenia	3.47E-1	2.13E-1	1.93E-1	1.84E-1	1.40E-1	4.10E-2
combined	1.53E-13	1.24E-17	6.62E-19	3.70E-19	9.03E-14	2.43E-03

- 1. Symmetric random-walk as a measure of distance
- 2. Empirical *p*-value for each tissue
- 3. p-value combination using Edgington method
- ► ActPro excels in prioritizing disease-related genes

Tissue-specific Biology

Predicting tissue-specific interactions in known pathways - Average performance



- ► Edge Set Enrichment Analysis (ESEA).
- Differential correlation score:

$$EdgeScore = MI_{all}(i,j) - MI_{control}(i,j)$$

Gain of Correlation (GoC) edges

Novel Insights

Identifying disease-related pathways in brain

Prize Collecting Steiner Tree (PCST)

$$\underset{\in\mathcal{T}}{\operatorname{argmin}}\left\{\sum_{e}c_{e}-\lambda\sum_{v}b_{v}\right\}$$

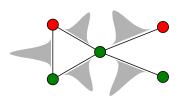
- $c_e = \frac{1}{w_e} \text{ and } b_v = \begin{cases} \infty; v \in \textit{markers} \\ 1; O.W. \end{cases}$
- Red nodes are novel factors

ActPro identifies novel disease-related pathways

Parkinson's Disease

Forthcoming Results Differential network analysis

Goal: Identify driver network perturbations that mediate drug resistance.



- ► Use single-cell profiles to construct an ensemble of cell type-specific networks, one for before and one for after treatment.
- Combine individual networks within each ensemble to construct a meta-network with a distribution over each edge.
- Identify differential edges that are significantly rewired across conditions.

Key idea: A majority of perturbations do not disable proteins, but they affect individual interactions.

Forthcoming Results

Identify intercellular signaling pathways between cells

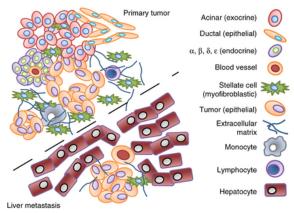
- ► Traditional computational approach is to merely look at the expression of known interacting ligands/receptors pairs in adjacent cells.
- ► There is significant potential for an experimental technology to directly capture these transient interactions.

Constructing tissue-specific interactome

- Establishing functional identity of cells
- 2 Part II: Constructing tissue/cell type-specific networks
- 3 Part III: Deconvolving expression profiles of complex tissues

Motivation

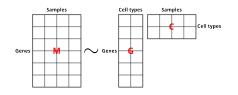
Tumor heterogeneity, including its internal diversity, as well as interaction with surrounding microenvironment, is one of the most fundamental determinants of treatment response, drug resistance, and patient relapse.



Adopted from Moffitt et al., 2015

Deconvolution: Formal Definition Notation

Goal: To decompose a heterogeneous expression profile into its purified cell types



- ▶ $\mathbf{M} \in \mathbb{R}^{n \times p}$: Expression matrix of mixed samples
- ▶ $\mathbf{G} \in \mathbb{R}^{n \times q}$: Reference signature matrix of primary cell types.
- ▶ $\mathbf{C} \in \mathbb{R}^{q \times p}$: Relative proportions of each cell-type in mixture samples.

Deconvolution: Formal Definition Problem definition

Given an observed mixture matrix M, find optimal G and C that approximate mixture matrix as closely as possible, according to a distance function δ , while satisfying a set of desired constraints:

Objective

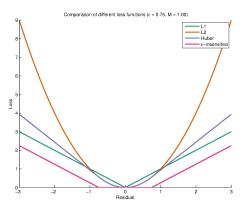
$$\min_{\mathsf{G},\mathsf{C}\in\mathsf{feasible region}} \delta(\mathsf{GC},\mathsf{M})$$

Deconvolution: Formal Definition Scope of this study

Goal: To systematically evaluate different configurations and their performance in gene expression deconvolution

- Different loss functions for evaluating estimation error
- Constraints on solutions
- Preprocessing and data filtering
- Feature selection
- Regularization

Loss functions



1.
$$\mathcal{L}_2(r_i) = r_i^2 = (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

2.
$$\mathcal{L}_1(r_i) = |r_i| = |y_i - \mathbf{w}^T \mathbf{x}_i|$$

3.
$$\mathcal{L}_{Huber}^{(M)}(r_i) = \begin{cases} r_i^2, & \text{if } |r_i| \leq M \\ M(2|r_i| - M), & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \textbf{4.} \;\; \mathcal{L}_{\epsilon}^{(\epsilon)}(r_i) = \\ \begin{cases} 0, & \text{if } |r_i| \leq \epsilon \\ |r_i| - \epsilon, & \text{otherwise} \end{cases}$$

Regularizers

Shrinking/smoothing regression coefficients w:

$$\mathcal{R}_2(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \sum_{i=1}^k w_i^2.$$

Sparsifying solutions :

$$\mathcal{R}_1(w) = \parallel w \parallel_1 = \sum_{i=1}^k |w_i|.$$

Examples

Some of existing combinations

Ordinary Least Squares (OLS):

$$\min_{\mathbf{w}} \{ \sum_{i=1}^{m} \mathcal{L}_{2}(r_{i}) \} = \min_{\mathbf{w}} \{ \sum_{i=1}^{m} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i})^{2} \}$$
$$= \min_{\mathbf{w}} \parallel y - \mathbf{X} \mathbf{w} \parallel_{2}^{2}$$

Least Absolute Selection and Shrinkage Operator (LASSO) Regression:

$$\begin{aligned} & \min_{\boldsymbol{w}} \{ \sum_{i=1}^{m} \mathcal{L}_2(r_i) + \lambda \mathcal{R}_1(\boldsymbol{w}) \} \\ &= \min_{\boldsymbol{w}} \parallel \boldsymbol{y} - \mathbf{X} \boldsymbol{w} \parallel_2^2 + \lambda \parallel \boldsymbol{w} \parallel_1 \end{aligned}$$

Support Vector Regression (SVR):

$$\min_{\boldsymbol{w}} \{ \sum_{i=1}^{m} \mathcal{L}_{\epsilon}(y_i - \boldsymbol{w}^T \boldsymbol{x}_i) + \lambda \mathcal{R}_2(\boldsymbol{w}) \}$$

Constraints

- ► Non-negativity (NN)
- ► Sum-to-one (STO)
- Similar cell quantity (SCQ)

Selecting genes to include in basis matrix

Updating ${\bf C}$ is highly over-determined. We try to select genes to simultaneously minimize noise and enhance conditioning of the basis matrix ${\bf G}$:

- Range filtering
- Marker selection

New criteria: Sum-To-One (STO) violations

► Violating reference gene:

$$m(i) \leq G_{min}(i); \forall 1 \leq i \leq n$$

► Violating mixture gene:

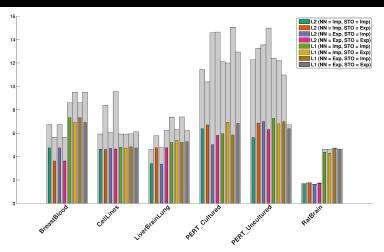
$$\mathbf{G}_{max}(i) \leq \mathbf{m}(i); \forall 1 \leq i \leq n$$

Summary of results

We performed comprehensive, unbiased evaluation for all combinations of these factors on the following datasets:

Dataset	# features	# samples	# references
BreastBlood	54675	9	2
CellLines	54675	12	4
LiverBrainLung	31099	33	3
$PERT_Cultured$	22215	2	11
$PERT_{-}Uncultured$	22215	4	11
RatBrain	31099	10	4
Retina	22347	24	2

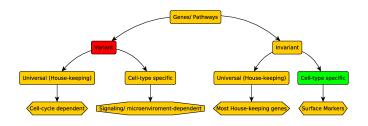
Summary of results Take home message



► With the right choice of preprocessing and objective function, we can limit error levels in all test datasets PURDUE

Summary of results Key observation

Selecting the "right" set of genes for deconvolution has one of the strongest effects on the overall deconvolution performance.



- Selecting genes that are not:
 - ► Time-dependent, such as cell cycle genes.
 - Microenvironment-dependent factors, such as genes involved in cell signaling pathways.

Forthcoming Results

Use single-cell profiles as basis for deconvolution

Motivation

- ▶ Bulk-tissue RNA-seq profiling is still more cost effective and the preferred choice for large population studies.
- Fresh specimens needed for single-cell profiling is not always available (for example in archived formalin fixed paraffin embedded (FFPE) tissue samples).
- ► There is a significant body of knowledge in existing databases using bulk-tissue profiling.

Thank you!

67 / 71