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Component 1

Motivation

Underlying hypothesis

Transcriptional profile of cells is dominated by housekeeping genes,
whereas their functional identity is determined by a combination of weak

but preferentially expressed genes.
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Component 1

Supporting evidence

Endothelial Cells (p-val = 2.11e-22) B-Cells (p-val = 6.71e-123)
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Component 1

Supporting evidence

Endothelial Cells (p-val = 8.41e-23) B-Cells (p-val = 2.39e-160)
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Component 1

Overall flow — cell similarity kernel
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The main steps involved in identifying similarity between cells
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Component 1

Reducing the noise contributed by highly expressed but uninformative genes

Goal: ldentify the shared subspace of genes

Low-rank decomposition

A=UZL V=) o,
i=1

Example decomposition choices:

Mean vector

Optimal in a least-square sense when the chance of observing a
gene is uniform across all cells.

Singular Value Decomposition (SVD)
Nonnegative Matrix Underapproximation (NMU)

NM
Sparse U PURDUE
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Component 1

Reducing the noise contributed by highly expressed but uninformative genes

Goal: Remove the effect of common subspace
Br

x; and x;: tissues/cell types i and j
z-score normalize x; to compute z;

B: the common signature

z-score normalize 3, to compute z,

Project to the orthogonal subspace: B
T
zZpz
z,~L = <I — h7h2)2,'.
l[znl13

Similar in nature to the partial Pearson's correlation
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Component 1

Enhancing the signal from preferentially-expressed genes

Goal: Estimate expression-specificity of genes across different cells

. Entropy as a measure of expression
uniformity: H(i) = —3_; pjjlog(pij)
How informative observing a gene is with
respect to the cell type that it came from

0.8

0.6

H(X)

> Maximum entropy when probability of a

o2 gene coming from all cell types is equal

2

02 08 1 For each gene i/, compute a specificity

factor w;.

0.4 0.6
Prob(X = 1)
Similar formulation have been previously used for marker detection.
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Component 1

Putting pieces back together

ACTION-adjusted cell signatures

Y = diag(w)Z+
ACTION metric (kernel)

Kactiov = Y'Y
(21)" diag(w?)(2")
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Component 1

Cell similarity kernel — revisited
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Now we have computed the ACTION kernel
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Overall Workflow

Component 2
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Component 2
Motivation

General framework

argmin |Y—-YCH|
CH ~—~
w
subject to: || C(:,1) ||1= 1.
IHE,7) l= 1.
0<C,0<H

Various algorithms can be cast using this formulation
K-means: Ce RT H € {0,1}
K-medoids: C € {0,1},H € {0,1}
PURDUE
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Component 2
Convex Nonnegative Matrix Factorization (NMF)

argmin Y —-Y(,S)H |

subject to: || H(;, i) |li=1,H € RT.

It uses the same formulation as k-medoid, but relaxes the hard

assignment of cells: C € {0,1},H € R"

Unlike k-medoid and k-means, it has an optimal global solution.
Under near-separability assumption: there exists for each cell
type an ideal example in the population.

A modification of the Gram Schmidt process.
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Component 2

Convex NMF- Geometric interpretation

Picking k corner points/archetypes
from the convex hull of the cells, such
that they optimally "contain” the rest
of cells.

Each archetype is an ideal example of a
cell type with a distinct set of principal
Geometry of functional space: functions.

each point is a cell and red

points are the “pure cells”
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Continuous view

Case study in the Melanoma dataset
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T-cells reside in a continuum of
states (Thogerson et al.).

Tumor cells form compact groups.

Two subclasses of MITF-associated
tumors significantly differ in terms
of their survival.

ACTION sheds light on the underlying topology of cell types

A. Grama (Purdue)
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Overall Workflow

Component 3

Component 1 Component 2 Component 3
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Component 3

Constructing TRN
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Component 3

Constructing TRN

Continued Goal: Identifying key regulatory elements that drive each cell
type

Archetype Orthogonalization (— Only over positive projection)

at = (1- A (ATA_)IAT,)a;

]

Assessing significance of TFs/TGs

p-value(Z = b)(\)) = Prob(b,()\) Z)

T 7y ()
- Z() BN

Use Dynamic Programming to compute exact p-value. PURDUE
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Functional activity of transcription factors (TFs)

We identify “functional activity” of transcription factors (TFs) by
aggregating transcriptional activity of their downstream targets, not the
transcriptional level of TFs themselves. TFs can, and typically do, get
regulated through post-translational mechanisms.
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Dissecting transcriptional controls of Melanoma subtypes

Proliferative versus invasive status

Both Subtype A and Subtype C exhibit high activity of MITF and Sox10
transcription factors, which are canonical markers for melanoma cells in the
“proliferative” (as opposed to “invasive") state (Verfaiilie et al.).

These two subtypes are significantly enriched for marker genes in the
proliferative state:

Subtype A: 9.3 x 10714

Subtype B: 7.9 x 10711
Subtype A has higher MITF activity (according to its activated targets):

GPNMB, M1ANA, PMEL, and TYR are shared between two subtypes.
ACP5, CDK2, CTSK, DCT, KIT, and TRPM1/P1 are uniquely
upregulated in subtype A.
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Dissecting transcriptional controls of Melanoma subclasses

Case study in MITF]/MYC1 subtype
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19 “functionally” active transcription factors in subtype A (p-value < 0.05)

We focus on the five most significant TFs and their targets (p-value < 103)
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Case study in MITF{]/MYC1 subtype

Core transcription factors

MITF is one of the most well-known markers for classifying melanoma patients
(Hartman et al.: MITF in melanoma: mechanisms behind its expression and
activity).

Overexpression of the E2F1 is common in high-grade tumors that are associated
with poor survival in melanoma patients (Alla et al.: E2F1 in melanoma
progression and metastasis).

Melanoma cell phenotype switching, between proliferative an invasive states, is
regulated by differential expression of LEF1/TCF4 (Eichhoff et al.:Differential
LEF1 and TCF4 expression is involved in melanoma cell phenotype switching).

Amplification and overexpression of the c-myc have been associated with poor
outcome (Kraehn et al.: Extra c-myc oncogene copies in high risk cutaneous
malignant melanoma and melanoma metastases).
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Case study in MITF{]/MYC1 subtype

Survival analysis revisited — Kaplan-Meier plots
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Contributions

Recap

Developed a novel cell similarity metric that is robust to biological
noise, while at the same time is sensitive enough to identify weak cell
type-specific signals
Characterized the functional identity of cells
Under the pure cell assumption, this metric induces a convex
topology that embeds functional identity of cells
Utilized functional identity of cells to identify both discrete cell types
and continuous cell states
Identified driving transcriptional controls that mediate the functional
identity of cells

Clinical significance: Characterization of two MITF-associated subclasses
of Melanoma patients, one of which has substantially worse outcomes,
along with their underlying regulatory elements. PURDUE
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	Discovering the functional identity of cell types

