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Overview
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Overall Workflow
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Component 1
Motivation

Underlying hypothesis

Transcriptional profile of cells is dominated by housekeeping genes,
whereas their functional identity is determined by a combination of weak
but preferentially expressed genes.

S. Mohammadi (Purdue) Cell-type specific analysis June17 4 / 1



Component 1
Supporting evidence
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Component 1
Supporting evidence
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Component 1
Overall flow – cell similarity kernel
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I The main steps involved in identifying similarity between cells
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Component 1
Reducing the noise contributed by highly expressed but uninformative genes

Goal: Identify the shared subspace of genes

Low-rank decomposition

A = UrΣrVr =
r∑

i=1

σiuivi
T ,

Example decomposition choices:

I Mean vector

I Optimal in a least-square sense when the chance of observing a
gene is uniform across all cells.

I Singular Value Decomposition (SVD)

I Nonnegative Matrix Underapproximation (NMU)

I Sparse NMU
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Component 1
Reducing the noise contributed by highly expressed but uninformative genes

Goal: Remove the effect of common subspace

I x i and x j : tissues/cell types i and j

I z-score normalize x i to compute z i

I βh: the common signature

I z-score normalize βh to compute zh

I Project to the orthogonal subspace:

z⊥i =
(

I− zhzT
h

‖zh‖2
2

)
z i .

Similar in nature to the partial Pearson’s correlation
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Component 1
Enhancing the signal from preferentially-expressed genes

Goal: Estimate expression-specificity of genes across different cells

I Entropy as a measure of expression
uniformity: H(i) = −

∑
j pij log(pij)

I How informative observing a gene is with
respect to the cell type that it came from

I Maximum entropy when probability of a
gene coming from all cell types is equal

I For each gene i , compute a specificity
factor wi .

Similar formulation have been previously used for marker detection.
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Component 1
Putting pieces back together

ACTION-adjusted cell signatures

Y = diag(w)Z⊥

ACTION metric (kernel)

KACTION = YTY

=
(
Z⊥
)Tdiag(w2)

(
Z⊥
)
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Component 1
Cell similarity kernel – revisited
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I Now we have computed the ACTION kernel
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Benchmark datasets

I Immune: 1,522 immune cells from mouse hematopoietic system (30
different types of stem, progenitor, and fully differentiated cells)

I Melanoma: 4,645 malignant, immune, and stromal cells isolated from 19
freshly procured human melanoma tumors (7 major types, including T, B,
NK, CAF, Endo, Macro, and Tumor)

I MouseBrain: 3005 cells from the mouse cortex and hippocampus (7 major
types, including astrocytes-ependymal, endothelial-mural, interneurons,
microglia, oligodendrocytes, pyramidal CA1, and pyramidal SS).

I Pollen: Small set of 301 cells spanning 11 different cell types in developing
cerebral cortex
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Performance of ACTION Kernel
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I Benchmarks:

I SIMLR: Specifically designed for single-cell
data

I IsoMap,MDS: General purpose dimension
reduction

I Tested a range of parameters (5:5:50). Reported
best case.

I Ties:
I Immune (NMI: ACTION/MDS/SMLR, ARI: ACTON/MDS)
I Melanoma (ARI: ACTION/SIML)

I In all other cases, ACTION metric significantly
outperforms all other methods.

I ACTION metric performs equally good or better than other methods
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Overall Workflow
Component 2
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Component 2
Motivation

General framework

argmin
C,H

‖ Y − YC︸︷︷︸
W

H ‖

subject to: ‖ C(:, i) ‖1= 1.

‖ H(:, i) ‖1= 1.

0 ≤ C, 0 ≤ H

Various algorithms can be cast using this formulation

I K-means: C ∈ R+,H ∈ {0, 1}
I K-medoids: C ∈ {0, 1},H ∈ {0, 1}
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Component 2
Motivations

There are fundamental problems with K-means/medoids:

I They use hard assignment, whereas many cell types are believed to
form a continuum.

I They are sensitive to initialization.

I They are dependent on k .
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Component 2
Convex Nonnegative Matrix Factorization (NMF)

Convex NMF

argmin
K,H

‖ Y − Y(:,S)H ‖

subject to: ‖ H(:, i) ‖1= 1,H ∈ R+.

I It uses the same formulation as k-medoid, but relaxes the hard
assignment of cells: C ∈ {0, 1},H ∈ Rn

I Unlike k-medoid and k-means, it has an optimal global solution.

I Under near-separability assumption: there exists for each cell
type an ideal example in the population.

I A modification of the Gram Schmidt process.
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Component 2
Convex NMF– Geometric interpretation

Geometry of functional space:
each point is a cell and red
points are the “pure cells”

I Picking k corner points/archetypes
from the convex hull of the cells, such
that they optimally ”contain” the rest
of cells.

I Each archetype is an ideal example of a
cell type with a distinct set of principal
functions.
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Component 2
Preconditioning – theorems

Goal: Understand the behavior of near-separable NMF

Performance guarantee

max
1≤j≤r

min
s∈S
‖ Y(:, s)−W(:, j) ‖≤ O

(
εκ2(W)

)
I For any near-separable matrix, multiplying it with any nonsingular

matrix Q preserved separability, where matrix W is replaced with
QW.

I In this case, we have the following modified upper bound:

O
(
εκ(W)κ3(QW)

)
.
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Component 2
Archetypal Analysis (AA)

I It further relaxes matrix C: C,H ∈ R+.

I It can handle cases where pure pixel assumption is violated.

I But it no longer has global convergence guarantee → it is also
dependent on the initialization

I To address this issue, we use the solution of convex NMF for
initializing A.A.

I In essence, it allows local adjustment of the Convex NMF solution.

I A variant of block-coordinate descent for optimization.
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Component 2
Finding the number of archetypes (k)

Goal: To identify when we should stop adding new archetypes.

I Idea is simple: keep adding archetypes till we sense ”oversampling.”

I Oversampling happens when we start adding archetypes that are ”too close”
to each other.

I Each archetype is a cell → we can compute their similarity of using the
ACTION metric.
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Component 2
Statistical significance of oversampling

I We build and threshold an archetype-archetype similarity
graph.

I For each connected component in this graph, we assess its
statistical significance using ER model.

I Probability that there exists in G a subgraph of density δ(Z)
and size at least |Z |:

Pr[∃H ⊆ G , |H| ≥ |Z | : δ(H) = δ(Z)].
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Component 2
Test 1: Identifying cell types using closest archetype

I ACTION excels in identifying underlying cell types in all cases
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Component 2
Visualizing the functional space

I Use matrix H instead of Y in visualization:

I We are interested in the relationship between cells and their
surrounding archetypes.

I Initialize using Fiedler embedding

I Position according to the dominant eigenvectors of the Laplacian
matrix: L = diag(∆Y)− Y.

I Update using t-SNE
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Continuous view
Case study in the Melanoma dataset

I T-cells reside in a continuum of
states (Thogerson et al.).

I Tumor cells form compact groups.

I Two subclasses of MITF-associated
tumors significantly differ in terms
of their survival.

I ACTION sheds light on the underlying topology of cell types
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Overall Workflow
Component 3
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Component 3
Constructing TRN
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Component 3
Constructing TRN

Continued Goal: Identifying key regulatory elements that drive each cell
type

1. Archetype Orthogonalization (→ Only over positive projection)

a⊥i =
(

I− A−i (AT
−iA−i )

−1AT
−i

)
ai

2. Assessing significance of TFs/TGs

p-value(Z = bl(λ)) = Prob(bl(λ) ≤ Z )

=

min(T ,l)∑
x=bl (λ)

(T
x

)(m−T
l−x
)(m

l

)
Use Dynamic Programming to compute exact p-value.
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Functional activity of transcription factors (TFs)

Key point!

We identify “functional activity” of transcription factors (TFs) by
aggregating transcriptional activity of their downstream targets, not the
transcriptional level of TFs themselves. TFs can, and typically do, get
regulated through post-translational mechanisms.
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Dissecting transcriptional controls of Melanoma subtypes
Proliferative versus invasive status

I Both Subtype A and Subtype C exhibit high activity of MITF and Sox10
transcription factors, which are canonical markers for melanoma cells in the
“proliferative” (as opposed to “invasive”) state (Verfaiilie et al.).

I These two subtypes are significantly enriched for marker genes in the
proliferative state:

I Subtype A: 9.3× 10−14

I Subtype B: 7.9× 10−11

I Subtype A has higher MITF activity (according to its activated targets):

I GPNMB, M1ANA, PMEL, and TYR are shared between two subtypes.
I ACP5, CDK2, CTSK, DCT, KIT, and TRPM1/P1 are uniquely

upregulated in subtype A.
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Dissecting transcriptional controls of Melanoma subclasses
Case study in MITF�/MYC↑ subtype
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I 19 “functionally” active transcription factors in subtype A (p-value ≤ 0.05)

I We focus on the five most significant TFs and their targets (p-value ≤ 10−3)
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Case study in MITF�/MYC↑ subtype
Core transcription factors

I MITF is one of the most well-known markers for classifying melanoma patients
(Hartman et al.: MITF in melanoma: mechanisms behind its expression and
activity).

I Overexpression of the E2F1 is common in high-grade tumors that are associated
with poor survival in melanoma patients (Alla et al.: E2F1 in melanoma
progression and metastasis).

I Melanoma cell phenotype switching, between proliferative an invasive states, is
regulated by differential expression of LEF1/TCF4 (Eichhoff et al.:Differential
LEF1 and TCF4 expression is involved in melanoma cell phenotype switching).

I Amplification and overexpression of the c-myc have been associated with poor
outcome (Kraehn et al.: Extra c-myc oncogene copies in high risk cutaneous
malignant melanoma and melanoma metastases).
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Dissecting transcriptional controls of Melanoma subtypes
Survival analysis
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Subtype C: p-value = 0.31

I OncoLnc (Jordan Anaya)

I Multivariate Cox regressions

I Gene expression, sex, age, and grade or
histology as factors

I Genes associated with Subclass A have
significantly worse outcome, compare to
the background of all genes
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Case study in MITF�/MYC↑ subtype
Survival analysis revisited – Kaplan-Meier plots
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Contributions
Recap

1. Developed a novel cell similarity metric that is robust to biological
noise, while at the same time is sensitive enough to identify weak cell
type-specific signals

2. Characterized the functional identity of cells

I Under the pure cell assumption, this metric induces a convex
topology that embeds functional identity of cells

3. Utilized functional identity of cells to identify both discrete cell types
and continuous cell states

4. Identified driving transcriptional controls that mediate the functional
identity of cells

Clinical significance: Characterization of two MITF-associated subclasses
of Melanoma patients, one of which has substantially worse outcomes,

along with their underlying regulatory elements.
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Questions?

S. Mohammadi (Purdue) Cell-type specific analysis June17 37 / 1


