Sensor Networks for Structural Monitoring: Status, Plans, Problems

Ananth Grama

Goal

Designing sensing infrastructure for real-time, high fidelity physical measurement retrieval

Test infrastructure: three story $30' \times 50'$ structure

- Physical phenomenon to be measured:
 - Linear displacement
 - Multi-axial acceleration
 - Structural strain

- Four commonly-used options:
 - Optical tracking
 - Time of flight and triangulation sensors
 - Magnetic, inductive and capacitive sensors
 - Strain gauges and resistive sensors

- Optical tracking
 - Mechanism
 - * Markers on the surface
 - * Cameras capture mark displacement
 - * Image processing calibrated to measure distance
 - Pros
 - * Non-contact sensing
 - * Simple and safe installation
 - Cons
 - * Expensive video capture equipment
 - * Difficult calibration
 - * High processing requirements
 - * High data transfer rates

- Time of flight and triangulation sensors
 - Mechanism
 - * Sound or light (laser or IR) waves incident on the surface
 - * Measures round trip time or phase shift of the wave to measure distance
 - Pros
 - * Laser sensors have high accuracy (up to few microns) and wide measurement ranges (up to few feet)
 - * Ultrasonic sensors are safe, most laser sensors in the market are eye-safe
 - * Most products usually ship with RS-232 I/O interface
 - Cons
 - * Ultrasonic sensors do not have high accuracy and depend on ambient conditions
 - * Laser sensors are very expensive (\approx \$2,000)
 - * Requires 12V DC power supply

- Magnetic, inductive and capacitive sensors
 - Mechanism
 - Magnetic and inductive sensors use the relative movement of a soft iron core and a magnetic field to measure displacements
 - * Capacitive sensors measure capacitance changes as distance or overlapping area between conductive plates change
 - Pros
 - * These sensors are very cheap
 - Cons
 - * Capacitive sensors and some magnetic sensors have a very short range and span of distances
 - Most magnetic and inductive sensors with higher ranges involve the movement of concentric rods (one attached to the moving surface and other to the fixed support)
 - * Sensors are affected by ambient conditions like temperature and humidity

• Strain gauges and resistive (potentiometer) sensors

- Mechanism

- * A shaft in contact with the surface moves, resulting in electrical resistance change which is translated to distance
- Another design has an extensible chord and a mountable base, whereby pulling the chord results in change of resistance of a potentiometer in the base

- Pros

- * These sensors are very cheap
- * The chord version can extend up to thousands of inches
- * Essentially the resolution is infinite, however resistance variability may cause inaccuracies
- * Chorded version also allows velocity measurement

- Cons

- * Involves moving parts implying low life due to wear
- * Need external circuitry and calibration to translate voltage differences to distance
- Requires 25V supply; variation in input voltage may also cause inaccuracies

- Use of a few laser sensors for high precision measurements and several chorded potentiometers appear to be an attractive option.
- Battery packs can be used to supply power, however the life expectancy of such power packs needs to be evaluated.
- Chorded potentiometers can also be used to evaluate structural strain

Multi-axial acceleration

- 2-*axis* and 3-*axis* accelerometers are available
- Most options have are MEMs devices with small size and low power requirements
- Most common sensors have +/- 2g range and with +/- 2mg sensitivity, and are available for only tens of dollars
- Higher end accelerometers are available for a couple of hundred dollars
- Example: MTS420CA is a data acquisition board with 2-*axis* accelerometer, developed by UC Berkeley and Intel and is compatible with MICA2

Network Plan

- For our current test infrastructure both wired and wireless options are possible
- Wireless option allows easier deployment but lower data rates
- For wireless 433 MHz radio communication equipment is available, this allows a maximum of 42 packets per second (12.364 Kbps)
- Using a high number of sensing devices over a large geographical area favors an ad-hoc network of nodes
- Fewer devices in a small area can all directly report to a single master gateway (forming a star topology)

Network Plan: continued..

- MICA2 mote is a good possibility because it also allows programmability and on board processing capability
- For a high density deployment an overlay of gateways with one interface to the mote wireless network and the other to RS-232, Ethernet, or 802.11b can be deployed
- Data streams from the gateways can be redirected via commodity networks to the data sinks possibly over campus networks, WANs, or even the Internet
- Bluetooth communication devices are also an option

Implementation Plan

- In the next few weeks, we must have complete deployment in preparation for tests.
- Set up displacement sensors first displacement at periphery is adequate at this point.
- Perhaps, start from optical sensing and see if we can use laser rangefinders? (Eyesafe lasers are difficult to scale to larger distances).
- Accelerometers are easy to deploy. These can be done at short notice.

Research and Implementation Issues

- Data rate
- Errors
- Calibrations