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Lab Overview

• Development of algorithmic and software substrates to solve
fundamental problems in science and engineering.

• Research transcends software infrastructure (compilers, OS),
algorithms (numerical and combinatorial), platforms (motes to
petascale), and software (libraries to services).

• We focus on problems at the core of computing, but measure
the value of our work in terms of its impact on science and
engineering applications.

• All of our projects are in close collaboration with domain
experts.
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Lab Overview: Sample Projects

Simulation of Contacting MEMS (DoE/NNSA PRISM Center).
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Contacting MEMS (DoE/NNSA PRISM)

Multiresolution simulations of contact physics

Multiscale Models for Aerodynamic Damping
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Model Reduction and Control of Large Structures (NSF)
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Model Reduction and Control of Large Structures

A critical component of embedded systems is the effort
associated with application development. Our COSMOS
environment fundamentally addresses this bottleneck.
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Simulation of Biophysical Systems: Membranes (NIH)
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Membrane Simulations (NIH)

Ternary mixture: 100 DOPC, 100 18:0 SM, 100 CHOL, 10000
water (43500 atoms), 250 ns.
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Simulation of Reactive Systems (DoE/SciDAC)

• Chemical reactions correspond to association and dissociation
of chemical bonds.

– Classical simulations cannot simulate reactions.
– ab-initio methods calculate overlap of electron orbitals to

investigate chemical reactions.

• ReaX force field postulates a classical bond order interaction
to mimic the association and dissociation of chemical bonds.
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Reactive Simulations: Bond Order of Choline
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Reactive Simulations: Bond Order of Benzene
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Other Ongoing Projects

• Scaling solvers to petaFLOPS (DARPA/HPCS) and Next-
Generation Solvers (NSF/CISE).

• Algorithmic Asynchrony and Scaling (NSF/CISE).

• Affinity scheduling and multicores (NSF/CISE).

• Speculation and Multicore Architectures (Intel).

• Transactions and Parallelism (Microsoft).
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Protein-Protein Interaction (PPI) Networks

• Interacting proteins can be identified via high-throughput
screening

– Two-hybrid

– Mass spectrometry

– Tandem affinity purification (TAP)

Protein

Interaction

Undirected Graph Model S. Cerevisiae PPI network
[Jeong et al., Nature, 2001]
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Gene Regulatory Networks

• Expression of genes is dynamically orchestrated through genes
controlling each other’s transcription

– Computationally induced from gene expression data and/or sequence

level analysis

Gene

Down-regulation

Up-regulation

Boolean Network Genetic network that controls
Model flowering time in A. Thaliania

[Blazquez et al, EMBO Reports, 2001]
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Metabolic Pathways

• Chains of reactions that perform a particular metabolic
function

– Reactions are linked to each other through substrate-product relationships

– Experimentally derived & computationally extended

Enzyme

Substrate

Product

Compound

Directed Hypergraph Model Glycolysis pathway in S. Cerevisiae
[Hynne et al., Biophys. Chem., 2001]
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Evolution of Molecular Interactions

• “Evolution thinks modular”[Vespignani, Nature Gen., 2003]

• Cooperative tasks require all participating units

– Selective pressure on preserving interactions & interacting proteins

– Interacting proteins follow similar evolutionary trajectories [Pellegrini et al.,

PNAS, 1999]

• Orthologs of interacting proteins are likely to interact [Wagner,

Mol. Bio. Evol., 2001]

– Conservation of interactions may provide clues relating to conservation

of function

• Modular conservation and alignment hold the key to critical
structural, functional, and evolutionary concepts in systems
biology
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Conserved Interaction Patterns

• Given a collection of interaction networks (belonging to
different species), find sub-networks that are common to
an interesting subset of these networks [Koyutürk, Grama, &

Szpankowski, ISMB, 2004]

– A sub-network is a group of interactions that are tied to each other

(connected)

– Frequency: The number of networks that contain a sub-network, is a

coarse measure of statistical significance

• Computational challenges

– How to relate molecules (proteins) in different organisms?

– Requires solution of the intractable subgraph isomorphism problem

– Must be scalable to potentially large number of networks

– Networks are large [in the range of 10K edges]
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Graph Analysis

Network database

Interaction patterns that are common to all networks
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Relating Proteins in Different Species

• Ortholog Databases

– PPI networks: COG, Homologene, Pfam, ADDA

– Metabolic pathways: Enzyme nomenclature

– Reliable, but conservative

– Domain families rely on domain information, but the underlying domains

for most interactions are unknown ⇒ Multiple node labels

• Sequence Clustering

– Cluster protein sequences and label proteins according to this clustering

– Flexible, but expensive and noisy

• Labels may span a large range of functional relationships, from
protein families to ortholog groups

– Without loss of generality, we call identically labeled proteins as orthologs
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Problem Statement

• Given a set of proteins V , a set of interactions E, and a many-
to-many mapping from V to a set of ortholog groups L =
{l1, l2, ..., ln}, the corresponding interaction network is a labeled
graph G = (V,E,L).

– v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L.

– uv ∈ E(G) represents an interaction between u and v.

• S is a sub-network of G, i.e., S ⊑ G if there is an injective
mapping φ : V (S) → V (G) such that for all v ∈ V (S), L(v) ⊆
L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈ E(G).
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Computational Problem

• Conserved sub-network discovery

– Instance: A set of interaction networks G = {G1 = (V1, E1,L), G2 =

(V2, E2,L), ..., Gm = (Vm, Em,L)}, each belonging to a different

organism, and a frequency threshold σ∗.

– Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph

S. Find all connected subgraphs S such that |H(S)| ≥ σ∗, i.e., S is a

frequent subgraph in G and for all S′
= S, H(S) 6= H(S′), i.e., S is

maximal.
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Algorithmic Insight: Ortholog Contraction

• Contract orthologous nodes into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Key observation: Frequent sub-networks are preserved ⇒ No
information loss

– Sub-networks that are frequent in general graphs are also frequent in

their ortholog-contracted representation

– Ortholog contraction is a powerful pruning heuristic

• Discovered frequent sub-networks are still biologically interpretable!

– Interaction between proteins becomes interaction between ortholog

groups
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Ortholog Contraction in Metabolic Pathways

• Directed hypergraph → uniquely-labeled directed graph

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first

267

221

668

1172

5.1.3.3

5.1.3.3

2.7.1.1

2.7.1.1

2.7.1.1

2.7.1.2

2.7.1.2

2.7.1.632.7.1.63
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Ortholog Contraction in PPI Networks

• Interaction between proteins → Interaction between ortholog
groups or protein families

Rrp4

Rrp43 Mtr3

Ski6

Csr4

KOG3013KOG3013

KOG1613KOG1613

KOG1068

KOG1068

KOG1068

KOG3409

KOG3409
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Preservation of Sub-networks

Theorem: Let G̃ be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
contracted graphs.

G G̃
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Simplifying the Graph Analysis Problem

• Observation: An ortholog-contracted graph is uniquely
determined by the set of its edges.

– Conserved Sub-network Discovery Problem → Frequent Edge set

Discovery Problem

a

a a

ab

b b

b

c

c c

c

d

d d

de

e e

e

G1 G2

G3 G4

F1= {ab, ac, de}

F2= {ab, ac, bc, de, ea}

F3= {ab, ac, bc, ea}

F4= {ab, ce, de, ea}
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Extending Frequent Itemset Mining to Graph Analysis

• Given a set of transactions, find sets of items that are frequent
in these transactions

– Extensively studied in data mining literature

• Algorithms exploit downward closure property

– An edge set is frequent only if all of its subsets are frequent

– Generate edge sets (sub-networks) from small to large, pruning supersets

of infrequent sets

• No redundancy

• No subgraph enumeration
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MULE: Analyzing Ortholog-Contracted Networks
replacements

E = ∅

H = {1, 2, 3, 4}

D = {ab}

E = {ab}

C = {ac, ea}

H = {1, 2, 3, 4}

D = {ab, ac}

E = {ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, de}

E = {de}

C = {ea}

H = {1, 2, 4}

D = {ab, ac, de, ea}

E = {ea}

C = ∅

H = {2, 3, 4}

D = {ab, ac}

E = {ab, ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, ea}

E = {ab, ea}

C = {de}

H = {2, 3, 4}

Sample run of MULE for identifying maximal
sub-networks that are common to at least 3 organisms
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Results: Analyzing PPI Networks

• PPI networks for 9 eukaryotic organisms derived from BIND and
DIP

– A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.

sapiens, B. taurus, M. musculus, R. norvegicus

– # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

– # of interactions ranges from 340 (rice) to 28829 (fruit fly)

• Ortholog contraction

– Group proteins according to existing COG ortholog clusters

– Merge Homologene groups into COG clusters

– Cluster remaining proteins via BLASTCLUST

– Ortholog-contracted fruit fly network contains 11088 interactions

between 2849 ortholog groups

• MULE is available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns

KOG3448

KOG1781

KOG1782

KOG3482

KOG3459

KOG3293

CG4279

CG10418

DebB

CG1249

CG13277

CG31990

F40F8.9

F32A5.7

ZK593.7

C52E4.3

ZK652.1

T10G3.6

Lsm4

Lsm7

Smd2

Smx3

Lsm2

Lsm1

Pattern C. elegans S. cerevisiaeD. melanogaster

Small nuclear ribonucleoprotein complex (p < 2e − 43)
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Conserved Protein Interaction Patterns

KOG3380

KOG2826

KOG0677

KOG1876

KOG1523

KOG0678

Arp2

Arp23−p16

Arp23−p20

Arp23−p41

Arp23−p34

Arp3

Arp2

Arp23−p16

Arp23−p20

Arp23−p41

Arp23−p34

Arp3

Arp2

Arp3

Arc35

Arc40

Arc19

Arc15

Pattern H. sapiens S. cerevisiaeB. taurus

Actin-related protein Arp2/3 complex (p < 9e − 11)
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Conserved Protein Interaction Patterns

KOG1656

KOG3341

KOG3229

KOG2910

KOG2760

KOG4068

Vps24

Vps32

Vps20

Vps36

Vps22

Vps25

CG8055

CG9779

CG4071

CG10711

CG6637

CG14750

Chmp3

Chmp4A

Chmp4B

Chmp4C

Eap20

Eap30

Eap45

Chmp6

Pattern H. sapiensS. cerevisiae D. melanogaster

Endosomal sorting (p < 1e − 78)



Ananth Grama 2001/01/27

Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG [Kuramochi & Karypis, IEEE TKDE, 2004], gSpan [Yan & Han, KDD, 2003]

FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patterns
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.
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Discussion

• Ortholog contraction is fast & scalable

– Graph cartesian product based methods [Sharan et al., PNAS, 2004],

[Koyutürk et al., RECOMB, 2005] create mn product nodes for an ortholog

group that has m proteins in each of n organisms

– Ortholog contraction represents the same group with only n contracted

nodes

– Isomorphism-based graph analysis algorithms do not scale to large

networks

• Ortholog contraction implicitly accounts for noise by eliminating
false positives by thresholding frequency, and false negatives
by contraction

• Frequency-based approach is not easily extensible to
weighted graphs [Zhou et al., ISMB, 2005]
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Alignment of PPI Networks

• Given two PPI networks that belong to two different organisms,
identify sub-networks that are similar to each other

– Biological implications

– Mathematical modeling

• Existing algorithms

– PathBLAST aligns pathways (linear chains) to simplify the problem while

maintaining biological meaning [Kelley et al., PNAS, 2004]

– NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets [Sharan et al., J. Comp. Biol.,

2005]

• Our approach [Koyutürk et al., RECOMB, 2005] [Koyutürk et al., J. Comp.

Biol., 2006]

– Guided by models of evolution

– Scores evolutionary events

– Identifies sets of proteins that induce high-scoring sub-network pairs
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Evolution of PPI Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• Allows defining and scoring evolutionary events as graph-
theoretical concepts

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Elimination Emergence
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Match, Mismatch, and Duplication

• Evolutionary events as graph-theoretic concepts

– A match ∈ M corresponds to two pairs of homolog proteins from each

organism such that both pairs interact in both PPIs. A match is associated

with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each organism such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same organism. A duplication is associated with score δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:
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Scoring Matches, Mismatches and Duplications

• Quantizing similarity between two proteins

– Confidence in two proteins being orthologous

– BLAST E-value: S(u, v) = log10
p(u,v)

prandom
– Ortholog clustering: S(u, v) = c(u)c(v)

• Match score

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)}

• Duplication score

– δ(u, u′) = δ̄(δ̂ − S(u, u′))

– δ̂ specifies threshold for sequence similarity to be considered functionally

conserved
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Pairwise Alignment of PPIs as an Optimization Problem

• Alignment score:
σ(A(P )) =

∑

M∈M µ(M) −
∑

N∈N ν(N) +
∑

D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are rewarded/penalized for functional conservation/differentiation

after split

– Mismatches are penalized for functional divergence (what about

experimental error?)

• Scores are functions of similarity between associated proteins

• Problem: Find all protein subset pairs with significant alignment
score

– High scoring protein subsets are likely to correspond to conserved

modules

• A graph equivalent to BLAST
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Weighted Alignment Graph

• G(V,E) : V consists of all pairs of homolog proteins v = {u ∈
U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

δ(u, u′) or w(vv
′) = δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ
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Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ w(vu) ≥ ǫ.

– NP-complete by reduction from Maximum-Clique

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

• Solution: Local graph expansion

– Greedy graph growing + iterative refinement

– Linear-time heuristic

• Source code available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Alignment of Yeast and Fruit Fly PPI Networks

Rank Score z-score # Proteins # Matches # Mismatches # Dups.

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%)

JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Saccharomyces) (100%)

oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%)

mitosis (67%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet

Rpt6

CG12010−PA CG12010−PB

CG7257

Rpt5

Rpt2

Rpt3

Rpt1

S.Cerevisiae D.Melanogaster

Calcium-dependent stress-activated signaling pathway

Myo2 Myo3 Myo4 Myo5

Cmd1

Cna1 Cna2

Cnb1

Didum

CG31958Mlc−c And

CanA1

CanB

S.Cerevisiae D.Melanogaster
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Discussion

• Comparison to other approaches: NetworkBlast [Sharan et al.,

PNAS, 2005], NUKE [Novak et al., Genome Informatics, 2005]

– Much faster than NetworkBLAST, but provides less coverage

– Comparable to NUKE depending on speed vs coverage trade-off

• Scores evolutionary events

– Flexible, allows incorporation of different evolutionary models, experimental

bases, target structures

– Somewhat ad-hoc, what is a good weighting of scores?
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Analytical Assessment of Statistical Significance

• What is the significance of a dense component in a network?

• What is the significance of a conserved component in multiple
networks?

• Existing techniques

– Mostly computational (e.g., Monte-Carlo simulations)

– Compute probability that the pattern exists rather than a pattern with

the property (e.g., size, density) exists

– Overestimation of significance
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Random Graph Models

• Interaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

• Analysis simplified through independence assumption [Itzkovitz

et al., Physical Review, 2003]

• Independence assumption may cause problems for networks with arbitrary

degree distribution

• P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

• Analytical techniques based on simplified models [Koyutürk, Grama,

Szpankowski, RECOMB, 2006]

– Rigorous analysis on G(n, p) model

– Extension to piecewise G(n, p) to capture network characteristics more

accurately
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Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

• What is the expected size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

– If we let p = dmax/n, largest ρ-dense subgraph in G(n, p) stochastically

dominates that in a graph with arbitrary degree distribution

• Piecewise G(n, p) model

– Few proteins with many interacting partners, many proteins with few

interacting partners

– Captures the basic characteristics of PPI networks

– Analysis of G(n, p) model immediately generalized to this model
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Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
. (2)

More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (3)

where

r0 =
log n − log log n + log κ(p, ρ)

κ(p, ρ)
(4)

for large n.
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Piecewise G(n, p) model

• The size of largest dense subgraph is still proportional to log n/κ
with a constant factor depending on number of hubs

• Model:

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

• Result:
Let nh = |Vh|. If nh = O(1), then P (Rn(ρ) ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

,

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) − log e + 1

κ(pl, ρ)

and B = pbql
pl

+ qb, where qb = 1 − pb and ql = 1 − pl.
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Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• SIDES: Use statistical significance to determine whether a
subgraph is sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p << 1p << 1

p << 1

SIDES is available at http://www.cs.purdue.edu/pdsl

http://www.cs.purdue.edu/pdsl
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Performance of SIDES

• Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

– Estimate the statistical significance of the enrichment of each GO term

in the cluster

• Quality of the clusters with respect to GO annotations

– Assume cluster C containing nC genes is associated with term T that is

attached to nT genes and nCT of genes in C are attached to T

– specificity = 100 × nCT/nC

– sensitivity = 100 × nCT/nT

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

Comparison of SIDES with MCODE [Bader & Hogue, BMC Bioinformatics, 2003]
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Performance of SIDES
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Performance of SIDES
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Functional Annotation of Biochemical Pathways

• Identifying Significant Pathways

• Annotations and Metrics

• Application to Protein/Domain Interaction Networks

• Implementation and Results
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Molecular Annotation

• Functional annotation of genes provides an understanding of
the underlying principles

– Molecular function: role of a gene.
– Biological process: processes a gene is involved in.
– Cellular component: localization of genes product.

• Gene Ontology provides a library of molecular annotations (we
refer to each annotation class as a functional attribute).
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From Molecules to Systems

• Networks are species-specific

• Annotation is at the molecular level

• Map networks from gene space to function space (can
generate a library of annotated modular (sub-) networks)

Network of Gene Ontology terms based on significance of pairwise

interactions in yeast synthetic gene array (SGA) (Tong et al., Science, 2004)
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Indirect Regulation
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Key Results

• Statistically interpretable measures of significance are not
monotonic.

• There is no monotonicity in the GO space either.

• Develop an alternate (weaker) measure of significance that
builds on modularity of sub-components.

• Need to short-circuit common terms (transcription factors, DNA
binding genes, etc.)

• Comprehensive software infrastructure built on these results.
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Narada Functionality
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Narada Network Annotation
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Ongoing Work

• Domain identification and domain-domain networks.

• (Sub)Network phylogenies.

• Network inference and stability.



Ananth Grama 2001/01/27

References

• J. Pandey, M. Koyuturk, S. Subramaniam, and A. Grama. Functional

coherence in domain interaction networks, Bioinformatics Suppl. on

ECCB’08.

• M. Koyuturk, W. Szpankowski, and A. Grama, Assessing significance of

connectivity and conservation in protein interaction networks, Journal of

Computational Biology, 14(6), 747-764, 2007.

• M. Koyuturk, Y. Kim, S. Subramaniam, W. Szpankowski, and A. Grama,

“Detecting conserved interaction patterns in biological networks”, Journal

of Computational Biology, 13(7), 1299-1322, 2006.

• M. Koyuturk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and

A. Grama, Pairwise Alignment of Protein Interaction Networks, Journal of

Computational Biology, 13(2), 182-199, 2006.

• Y. Kim, M. Koyuturk, U. Topkara, A. Grama, and S. Subramaniam, Inferring

Functional Information from Domain Co-evolution, Bioinformatics, 22(1), pp.

40-49, 2006.



Ananth Grama 2001/01/27

References

• M. Koyutürk, A. Grama, and W. Szpankowski, An Efficient Algorithm for

Detecting Frequent Subgraphs in Biological Networks, Bioinformatics, Vol.

20, Suppl. 1, pp i200-i207, 2004.

• M. Koyuturk, A. Grama, and W. Szpankowski, Assessing Significance

of Connectivity and Conservation in Protein Interaction Networks, 10th

International Conference on Research in Computational Molecular Biology

(RECOMB), LNBI 3909, pp. 45-59, 2006.

• M. Koyutürk, A. Grama and W. Szpankowski, Pairwise Local Alignment of

Protein Interaction Networks Guided by Models of Evolution, RECOMB 2005.

Available from http://www.cs.purdue.edu/pdsl

http://www.cs.purdue.edu/pdsl


Ananth Grama 2001/01/27

Thank you!
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Phylogenetic Analysis for Predicting Interactions

• Functionally related proteins are likely to have co-evolved

– Construct phylogenetic profile for each genome: Vector of E-values

signifying existence of an orthologous protein in each organism

– Identify pairwise functional associations based on mutual information

between phylogenetic profiles [Pellegrini et al., PNAS, 1999]

– Mutual information:

I(X, Y ) = H(X) − H(X|Y ) =
P

x

P

y p(x, y) log(p(x, y)/p(x)p(y))

– Shown to identify functionally associated protein pairs at a coarser level

than high-throughput methods

• However, domains, not proteins, co-evolve

– How can we incorporate domain information to enhance performance

of phylogeny-based interaction prediction?



Ananth Grama 2001/01/27

Inferring Function from Domain Co-evolution

• Residue-level phylogenetic analysis [Kim, Koyutürk, Topkara, Grama,

& Subramaniam, Bioinformatics, 2006]

– No a-priori knowledge about domains

– Construct residue phylogenetic profiles from local alignment results

– Construct mutual information matrix

– High-information contiguous submatrices that are sufficiently large

correspond to putative co-evolved domains
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Conclusion

• A lot to learn from comparative network analysis

• We have fast algorithms

• We need

– Enhanced & more detailed network models

– High quality & comprehensive data

– Detailed statistical models
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Other Work on Pattern Identification

• PROXIMUS: Non-orthogonal decomposition of binary matrices
[Koyutürk, Grama, Ramakrishnan, IEEE TKDE, 2005]

– Find a compact set of vectors that represent the entire matrix

– Recursive decomposition through rank-one approximations

– Fast (linear-time) iterative heuristics for computing approximations

– Source code available at

http://www.cs.purdue.edu/homes/pdsl/

Patterns of regulation Biclustering
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Identifying ”Canonical” Regulatory Pathways

• Can we derive rules in terms of GO terms, e.g., Pi → Pj ⊣ Pk?

– Statistical challenge: Such patterns have to be significantly abundant

– Computational challenge: When statistical significance is the basis

(as opposed to frequency), monotonicity properties (e.g., downward

closure) no longer hold!

– Our approach: conditional significance, i.e., evaluate significance of a

pattern based on the background constructed by its substructures

• Final goal: Database of (computationally derived) canonical
modules and pathways

A network of GO terms [Tong et al., Science, 2004]
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Cell as a State Machine

• Signaling pathways can be modeled as a series of transitions
between states of protein or peptide molecules, non-protein
molecules, (non-)protein complexes, and modules

– Signaling Gateway provides a database of network states for proteins, a

mirror is available to our group via our collaboration with S. Subramaniam

• Constructing signaling pathways from state information for
individual molecules

– Smallest common supergraph problem

– Identification of specified pathways

State diagram for Cdk8 protein (from Molecule Pages)
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Modular Phylogenetics
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Replication Factor C complex identified on yeast PPI network by
MCODE [Bader & Hogue, BMC Bioinformatics, 2003] algorithm

and the phylogenetic profiles of its proteins on
25 eukaryotic genomes

Conserved in all eukaryotic species!
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Modular Phylogenetics
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A component of mitochondrial ribosome identified on
yeast PPI network by MCODE algorithm and the

phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in only yeast species!

• Models and algorithms for quantifying, analyzing, and
evaluating modular conservation and divergence across
species


