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Outline

e Preamble: Who we are and what we do

e Molecular Interaction Networks

- Modeling, evolution, problems, practical implications

e Algorithms for Analyzing Molecular Inferaction Networks

- Analyzing biological networks for conserved molecular inferaction
paftterns

- Pairwise Alignment of protein-protein inferaction nefworks

- Probabilistic models/analyses for assessing statistical significance

e Computational Synthesis of Interaction Networks

- Inferring function from domain co-evolution

e Ongoing Work
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Lab Overview

e Development of algorithmic and software substrates o solve
fundamental problems in science and engineering.

e Research transcends software infrastructure (compilers, OS),
algorithms (numerical and combinatorial), platforms (motes to
petascale), and soffware (libraries to services).

e We focus on problems at the core of computing, but measure
the value of our work in terms of ifs impact on science and
engineering applications.

e All of our projects are in close collaboration with domain
experts.
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Lab Overview: Sample Projects

Simulatfion of Contacting MEMS (DoE/NNSA PRISM Center).
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Contacting MEMS (DoE/NNSA PRISM)
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Model Reduction and Control of Large Structures (NSF)
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Model Reduction and Control of Large Structures

A critical component of embedded systems is the effort
associated with application development., Our COSMOS
environment fundamentally addresses this boffleneck.
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Simulation of Biophysical Systems: Membranes (NIH)
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Membrane Simulations (NIH)

Ternary mixture: 100 DOPC, 100 18:0 SM, 100 CHOL, 10000
water (43500 atoms), 250 ns.
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Simulation of Reactive Systems (DoE/SciDAC)

e Chemicalreactions correspond to association and dissociation
of chemical bonds.

- Classical simulations cannot simulate reactions.
- ab-initio methods calculate overlap of electron orbitals to
investigate chemical reactions.

e ReaX force field postulates a classical bond order interaction
fo mimic the association and dissociation of chemical bonds.
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Reactive Simulations: Bond Order of Choline
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Reactive Simulations: Bond Order of Benzene
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Other Ongoing Projects

e Scaling solvers to petaFLOPS (DARPA/HPCS) and Next-
Generation Solvers (NSF/CISE).

e Algorithmic Asynchrony and Scaling (NSF/CISE).
e Affinity scheduling and multicores (NSF/CISE).
e Speculation and Multicore Architectures (Infel).

e [ransactions and Parallelismm (Microsoft).



Ananth Grama 2001/01/27

Outline

e Preamble: Who we are and what we do

e Molecular Interaction Networks

- Modeling, evolution, problems, practical implications

e Algorithms for Analyzing Molecular Intferaction Networks

- Analyzing biological networks for conserved molecular inferaction
paftterns

- Pairwise Alignment of protein-protein inferaction nefworks

- Probabilistic models/analyses for assessing statistical significance

e Computational Synthesis of Interaction Networks

- Inferring function from domain co-evolution

e Ongoing Work
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Protein-Protein Interaction (PPl) Networks

e Inferacting protfeins can be identified via high-throughput
screening

- Two-hybrid
- Mass spectrometry
- Tandem affinity purification (TAP)

Protein
1.."..-:
Interaction " R R
Undirected Graph Model S. Cerevisiae PPl network

(Jeong et al., Nature, 2001)
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Gene Regulatory Networks

e Expression of genes is dynamically orchestrated through genes
conftrolling each ofther’s franscription

- Computationally induced from gene expression data and/or sequence
level analysis
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(Blazguez et al, EMBO Reports, 2001)
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Metabolic Pathways

2001/01/27

e Chains of reactions that perform a particular metabolic

function

- Reactions are linked to each other through substrate-product relationships
- Experimentally derived & computationally extended
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Evolution of Molecular Interactions

e Evolution thinks modular” (Vespignani, Nature Gen., 2003)

e Cooperative tasks require all participating units

- Selective pressure on preserving interactions & interacting proteins
- Interacting proteins follow similar evolutionary frajectories (Pellegrini et al.,
PNAS, 1999)

e Orthologs of inferacting proteins are likely to interact (wagner,
Mol. Bio. Evol., 2001)

- Conservation of interactions may provide clues relating to conservation
of function

e Modular conservation and alignment hold the key to crifical
stfructural, functional, and evolufionary concepts in systems
piology
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Conserved Interaction Patterns

e Given a collection of interaction networks (belonging fo
different species), find sub-networks that are common to
an inferesting subset of these networks (Koyuturk, Grama, &
Szpankowski, ISMB, 2004)

- A sub-network is a group of inferactions that are tied to each other
(connected)

- Frequency: The number of networks that contain a sub-network, is a
coarse measure of stafistical significance

e Computational challenges

- How to relate molecules (proteins) in different organisms?

- Requires solution of the infractable subgraph isomorphism problem
- Must be scalable to potentially large number of networks

- Networks are large (in the range of 10 K edges)
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Graph Analysis

Network database

Interaction patterns that are common to all networks
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Relating Proteins in Different Species

e Ortholog Databases

- PPl networks: COG, Homologene, Pflam, ADDA

- Metabolic pathways: Enzyme nomenclature

- Reliable, but conservative

- Domain families rely on domain information, but the underlying domains
for most interactions are unknown = Multiple node labels

e Sequence Clustering
- Cluster protein sequences and label proteins according to this clustering
- Flexible, but expensive and noisy

e Labels may span a large range of functional relationships, from
protein families to ortholog groups

- Without loss of generality, we call identically labeled proteins as orthologs
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Problem Statement

e Given a set of proteins V, a set of interactions £, and a many-
fo-many mapping from V to a set of ortholog groups £ =
{l1,1s, ..., 1, }, the corresponding interaction network is a labeled
groph G=(V,E, L).

- v € V(G) is associated with a set of ortholog groups L(v) C L.
- uwv € E(G) represents an inferaction between u and v.

e S is a sub-network of G, iie., S C G if there is an injective
mapping ¢ : V(S) — V(G) such that for all v € V(S), L(v) C
L(¢(v)) and for all uwv € E(S), ¢(u)p(v) € E(G).
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Computational Problem

e Conserved sub-network discovery

- Instance: A set of interaction networks G = {G; = (Vi, E1, L), Gy =
(Va, Eo, L), ..., Gy = (Vin, Em, £)}, each belonging to a different
organism, and a frequency threshold o*.

- Problem: Let H(S) = {G; : S C G,;} be the occurrence set of graph
S. Find all connected subgraphs S such that |H(S)| > o*, i.e., Sisa
frequent subgraph in G and for all S 1 S, H(S) # H(S'), ie., Sis
maximal,
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Algorithmic Insight: Ortholog Contraction

e Contract orthologous nodes info a single node

e NO subgraph isomorphism

- Graphs are uniquely identified by their edge sets

e Key observation: Frequent sub-networks are preserved = No
information 1oss

- Sub-networks that are frequent in general graphs are also frequent in
their ortholog-contracted representation
- Ortholog conftraction is a powerful pruning heuristic

e Discovered frequent sub-networks are still biologically interpretablel

- Interaction between proteins becomes interaction between ortholog
groups
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Ortholog Contraction in Metabolic Pathways

e Directed hypergraph — uniquely-labeled directed graph

— Nodes represent enzymes

- Global labeling by enzyme nomenclature (EC numbers)

- A directed edge from one enzyme to the other implies that the second
consumes a product of the first

2.7.1.1
2.7.1.2

51.3.3 —
2.7.1.1 '

2.7.1.63 5.1.3.3 2.7.1.63
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Ortholog Contraction in PPl Networks

e Interaction between proteins — Interaction between ortholog
groups or protein families

KOG3013 KOG 1068 KOG3013 KOG 1068

/
KOG3409

KOG 1068 KOG3409

Rrp43
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Preservation of Sub-networks

Theorem: Let G be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if 5'is d
subgraph of G, S'is a subgraph of G.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
confracted graphs.
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Simplifying the Graph Analysis Problem

e Observation: An ortholog-contracted graph is uniquely
determined by the set of its edges.

- Conserved Sub-network Discovery Problem — Frequent Edge set
Discovery Problem

Fy= {ab, ac, de}

Fy= {ab, ac, be, de, ea}

Fs= {ab, ac, bc, ea}

F,= {ab, ce, de, ea}



Ananth Grama 2001/01/27

Extending Frequent ltemset Mining to Graph Analysis

e Given a set of fransactions, find sets of items that are frequent
iINn these fransactions

- Extensively studied in data mining literature

e Algorithms exploit downward closure property

- An edge set is frequent only if all of its subbsets are frequent
- Generate edge sefts (sub-networks) from small o large, pruning supersets
of infrequent sefts

e No redundancy

e NO subgraph enumeratfion
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MUuLE: Analyzing Ortholog-Contracted Networks

E=10

H = {1,2,3,4}

D = {ab, ac, de, ea}

D = {ab, ac, de}

E = {ab} E = {ac} E = {de} E = {ea}

C = {ac,ea}
H={1,2,3,4}

D = {ab, ac} D = {ab,ac, ea}

C = {ea}
H={1,2,3)

C ={ea}
H = {1,2,4}

E = {ab,ac} E = {ab, ea}
C ={ea} C = {de}
H={1,2,3} H={2,3,4)}

sample run of MULE for identifying maximal

C =
H={2,3,4)}

sub-networks that are common to at least 3 organisms
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Results: Analyzing PPl Networks

e PPl networks for @ eukaryotic organisms derived from BIND and
DIP

- A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.
sapiens, B. faurus, M. musculus, R. norvegicus

- # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

- # of interactions ranges from 340 (rice) to 28829 (fruit fly)

e Ortholog contraction

- Group proteins according to existing COG ortholog clusters

- Merge Homologene groups into COG clusters

- Cluster remaining proteins via BLASTCLUST

- Ortholog-contracted fruit fly network contains 11088 inferactions
between 2849 ortholog groups

e MULE is available at
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns

Q KOG1782 CG4279 F40F8.9 Lsml

) KOG3448 CG10418 T10G3.6 Lsm2
[

) KOG3482 DebB ZK652.1 Q Smx3

C
C
() koG3459 CG1249 cs2e4.3 () smdz
C

) KOG1781 CG13277 ZK593.7 C) Lsm7
O KOG3293 CG31990 F32A5.7 O Lsm4
Pattern D. melanogaster C. elegans S. cerevisiae

Small nuclear ribonucleoprotein complex (p < 2¢ — 43)
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Conserved Protein Interaction Patterns

KOGO0677

Arp2 Arp2 Arp2
/
/

KOG3380,
|

Arp23-pl6 Arp23-p16 Arcl5

\
KOG1876\ Arp23-p20 Arp23-p20 Arcl9

KOG1523 Arp23-p41 Arp23-p41 Arc40

!
Arp23-p34 i Arp23-p34 Arc35
|
\

Arp3 \ Arp3 Arp3

I
KOG2826

KOGO0678

Pattern B. taurus H. sapiens  S. cerevisiae

Actin-related protein Arp2/3 complex (p < 9¢ — 11)
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Conserved Protein Interaction Patterns

KOG3229 Vps24 CG9779
Chmp4A -
KOG1656 Vps32 CG8055 £ - =

KOG2910 Vps20 CG4071
|
KOG2760 \/ps36 " CG10711
| \ |
KOG3341 Vps22 CG6637 ) Eap30
KOG4068 Vps25 CG14750 Eap20

Pattern S. cerevisiae D. melanogaster  H. sapiens

Endosomal sorting ( )



Ananth Grama

2001/01/27

Runtime Characteristics

Comparison with isomorphism-based algorithms
FSGE (Kuramochi & Karypis, IEEE TKDE, 2004), gSpan (Yan & Han, KDD, 2003)

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of
Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns
20 0.2 9 12 0.01 9 12
16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39
10 22.7 16 34 0.29 15 34
8 138.9 16 56 0.99 15 56
24 0.1 8 11 0.01 8 11
20 1.5 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21
12 112.7 17 25 1.06 16 25
10 2151 17 34 1.72 16 34
Exfraction of contracted patterns
Glutamate metabolism, o = 8% Alanine metabolism, o = 10%
Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted
pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54,1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56
Total runtime of FSG alone: 138.9 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs.

Total number of patterns: 34

Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 1.72+160.6 secs.
Total runtime of MULE+gSpan: 1.72+31.0 secs.
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Discussion

e Ortholog contraction is fast & scalable

- Graph cartesian product based methods (Sharan et al., PNAS, 2004),
(Koyuturk et al., RECOMB, 2005) create m" product nodes for an ortholog
group that has m proteins in each of n organisms

- Ortholog contraction represents the same group with only » contracted

nodes
- Isomorphism-based graph analysis algorithms do not scale to large
networks

e Ortholog contraction implicitly accounts for noise by eliminating
false positives by thresholding frequency, and false negatives
by contraction

e Frequency-based approach is not easily extensible 1o
weighted graphs (zhou et al., ISMB, 2005)
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Alignment of PPl Networks

e Given two PPl networks that belong to two different organisms,
identify subb-networks that are similar fo each other

- Biological implications
- Mathematical modeling

e EXisting algorithms

- PathBLAST aligns pathways (linear chains) to simplify the problem while
maintaining biological meaning (Kelley et al., PNAS, 2004)
— NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets (Sharan et al., J. Comp. Biol.,
2005)

e Our approach (Koyuttrk et al., RECOMB, 2005) (Koyuttrk et al., J. Comp.
Biol., 2006)

- Guided by models of evolution
- Scores evolutionary events

- |dentifies sets of proteins that induce high-scoring sub-network pairs
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Evolution of PPl Networks

e Duplication/divergence models for the evolution of protein
interaction networks

- Inferactions of duplicated proteins are also duplicated
- Duplicated proteins rapidly lose interactions through mutations

e Allows defining and scoring evolutionary events as graph-
theoretical concepts

Duplication Elimination Emergence
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Match, Mismatch, and Duplication

e Evolufionary events as graph-theoretic concepts

- A match € M corresponds to Two pairs of homolog proteins from each
organism such that both pairs interact in both PPIs. A match is associated
with score p.

- A mismatch € N corresponds to two pairs of homolog proteins from
each organism such that only one pair is interacting. A mismatch is
associated with penalty v.

- A duplication € D corresponds to a pair of homolog proteins that are in
the same organism. A duplication is associated with score 9.
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Scoring Matches, Mismatches and Duplications

e Quantizing similarity between two proteins

- Confidence in two proteins being orthologous
- BLAST E-value: S(u, v) = logig p(u,v)

Prandom

- Ortholog clustering: S(u, v) = c(u)c(v)

e Vatch score

- p(uu',vv") = gmin{S(u,v), S(u',v")}

e Mismatch penalty

- v(uu', vv") = vmin{S(u,v), S(u',v")}

e Duplication score

- §(u,u’) = 6(8 — S(u,u'))
- ¢ specifies threshold for sequence similarity to be considered functionally
conserved
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Pairwise Alignment of PPls as an Optimization Problem

e Alignment score:
U(A(P)) — ZMEM M(M) — ZNe/\/’V(N) + ZDeD 5(D)

- Matches are rewarded for conservation of interactions
- Duplications are rewarded/penalized for functional conservation/differentiation

affter split
- Mismatches are penalized for functional divergence (what about

experimental error?)

e Scores are functions of similarity between associated proteins

e Problem: Find all protein subset pairs with significant alignment
score

- High scoring protein subsets are likely to correspond to conserved
modules

e A graph equivalent to BLAST
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Weighted Alignment Graph

e G(V,E) : V consists of all pairs of homolog protfeins v = {u €
UveV}

e Anedge vv' = {uwv}{uv'} in Eis @

- match edge ifuu’ € E and vy’ € V, with weight w(vv') = p(uv, u'v’

- mismatch edge if uu’ € E and vv' ¢ V or vice versa, with weight
w(vv') = —v(uv, u'v’

- duplication edge if S(u,u") > 0 or S(v,v") > 0, with weight w(vv') =
5(u,u) orw(vv') = §(v,v")

{ug, va}

{u,v1} @

{U2, ’01}

{ua, va}
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Maximum Weight Induced Subgraph Problem

e Definition: (IMAWISH)

- Given graph G(V,€&) and a constant ¢, find V € V such that

Zv,ueff w(vu) > e,
- NP-complete by reduction from Maximum-Clique

e Theorem: (MAWISH = Pairwise alignment)
- If V is a solution for the MAWISH problem on G(V, £), then P = {U,V'}
induces an alignment A(P) with o(A) > e ,where YV = U x V.
e Solution: Local graph expansion

- Greedy graph growing + iterative refinement
- Linear-fime heuristic

e Source code available at
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Alignment of Yeast and Fruit Fly PPl Networks

Rank Score  z-score #Proteins # Mafches # Mismatches  # Dups.

| 15.97 6.6 18 (16, 5) 28 6 (4, 0)
protein amino acid phosphorylation (69%)
JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 / @G, 1
endocytosis (60%) / calcium-mediated signaling (50%)
5 8.22 13.5 @ (5. 3) 19 11 (1,0)

invasive growth (sensu Saccharomyces) (100%)
oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 O, D
ubiquitin-dependent protein catabolism (100%)
mitosis (67%)

21 4.36 6.2 @ (5. 4) 18 13 0, 5
cytokinesis (100%, 50%)

30 3.76 39.6 6 (3.5) 5 1 O, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory parficle subnet

S.Cerevisiae D.Melanogaster

‘

CG12010-PA & CG12010-F

Calcium-dependent stress-activated signaling pathway

S.Cerevisiae D.Melanogaster
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Discussion

e Comparison to other approaches: NetworkBlast (Sharan et al.,
PNAS, 2005), NUKE (Novak et al., Genome Informatics, 2005)

- Much faster than NetworkBLAST, but provides less coverage
- Comparable to NUKE depending on speed vs coverage trade-off

e Scores evolutionary events

- Flexible, allows incorporation of different evolutionary models, experimental
bases, target structures

- Somewhat ad-hoc, what is a good weighting of scores?
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Analytical Assessment of Statistical Significance

e What is the significance of a dense component in a network?

e What is the significance of a conserved component in mulfiple
networks?

e EXxisting fechniques

- Mostly computational (e.g., Monte-Carlo simulations)

- Compute probability that the pattern exists rather than a pattern with
the property (e.g., size, density) exists

- Overestimation of significance
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Random Graph Models

e Inferaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

e Analysis simplified through independence assumption (ltzkovitz
et al., Physical Review, 2003)

e Independence assumption may cause problems for networks with arbitrary
degree distribution

e P(uv € E) = d,d,/|E|. where d, is expected degree of u, but generally
d? > |E| for PPl networks

max

e Analytical techniques based on simplified models (Koyuturk, Grama,
Szpankowski, RECOMB, 2006)

- Rigorous analysis on G(n, p) model
- Extension to piecewise G(n, p) to capture network characteristics more
accurately
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Significance of Dense Subgraphs

e A subnet of r proteins is said to be p-dense if F(r) > pr?, where
F(r) is the number of inferactions between these r proteins

e What is the expected size of the largest p-dense subgraph in a
random graph?

- Any p-dense subgraph with larger size is statistically significant!

e G(n,p) model

- n proteins, each interaction occurs with probability p

- Simple enough to facilitate rigorous analysis

- If we let p = dnax/n. largest p-dense subgraph in G(n, p) stochastically
dominates that in a graph with arbitrary degree distribution

e Piecewise G(n,p) model

- Few proteins with many interacting partners, many proteins with few
interacting partners

- Captures the basic characteristics of PPl networks

- Analysis of G(n, p) model immediately generalized o this model
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Largest Dense Subgraph

e Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

R 1
lim —2 = ), (1
n—oologn  Kk(p,p) (pr)
where |
p —p
k(p,p) = plog=—+ (1 —p)lo . 2)
(p,p) =p 2 (1—p) BT,
More precisely,
logn
P(Ey =2 10) <O (nl/ﬂ(p,p)> ’ (3)

where
~ logn —loglogn + log k(p, p)

— 4
10 k(p, p) @

for large n.
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Piecewise GG(n,p) model

e The size of largest dense subgraph is sfill proportional to logn/k
with a constant factor depending on number of hulbs

e Model:

pn ifu,veV,
Pluv e E(G)) =< p Ifu,veV
pp fueVy,veV,orueV,veV,

e Result:
Letm, = [Vil. I ny = O(1), then P(Ry(p) > r) < O (f5n ).
where

~ logn —loglogn + 2nylog B + log k(pr, p) — loge + 1

1
’f(plap)

OﬂdB:p]l;—?l—l—qb,Whereqb:1—pb0ﬂdql:1—pl.
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Algorithms Based on Statistical Significance

e |dentification of fopological modules

e Use staftistical significance as a stopping criterion for graph
clustering heuristics

e HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)

- Find a minimum-cut bipartitioning of the network
- If any of the partsis dense enough, record it as a dense cluster of proteins
— Else, further partition them recursively

e SIDES: Use statistical significance to determine whether a
subgrapnh is sufficiently dense

- For given number of proteins and interactions between them, we can
determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p <<l

>

B3 O<E0

p<<l1 p<<l1

SIDES is available at htt p: / / www. cs. pur due. edu/ pdsl


http://www.cs.purdue.edu/pdsl
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Performance of SIDES

e Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

- Estimate the statistical significance of the enrichment of each GO term
in the cluster

e Quality of the clusters with respect to GO annotations

- Assume cluster C' containing no genes is associated with ferm T' that is
affached to n genes and nqer of genes in C' are attached to T

- specificity = 100 X nor/ne

- sensitivity = 100 X nor/nr

SIDES MCODE
Min.  Max. Avg. Min.  Max. Avg.
specificity (%) 43.0 100.0 91.2 0.0 1000 77.8
sensitfivity (%) 20 100.0 558 0.0 100.0 47.6

Comparison of SIDES with MCODE (Bader & Hogue, BMC Bioinformatics, 2003)
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Performance of SIDES
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Performance of SIDES
10(-++eeecssscer—o-co-oo - 10Q-++eeecses -
olg} ®O80o Z* o * * o O o&‘SoO 1 )
80» & o * * 8(} © © o
7C|> *% © * * 7C|>* *OO**O **
60+ N géc} *Zog
%50*@@*** %5(}%00*0*****
"4 ° Faq C o "
3¢ 3G -
2 ) * 2t .
%Oé o
10 sDes|  Qee o oSIDES |
o 1 1 1 1 MCOD M50 1 1 1 1 MCOD
10 20 _30_ 40 50 60 70 10 20 _30_ 40 50 60 70
Cluster size Cluster size
Size vs Specificity Size vs Sensitivity
Correlation

SIDES: 0.22
MCODE: -0.02

SIDES: 0.27

MCODE: 0.36



Ananth Grama 2001/01/27

Functional Annotation of Biochemical Pathways

e |dentifying Significant Pathways
e Annotations and Metfrics
e Application to Protein/Domain Interaction Networks

e IMmplementation and Results
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Molecular Annotation

e Functional annotation of genes provides an understanding of
the underlying principles

- Molecular function: role of a gene.
— Biological process: processes a gene is involved in.
— Cellular component: localization of genes product.

e Gene Ontology provides A library of molecular annotations (we
refer to each annotation class as a functional attribute).
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From Molecules to Systems

e Networks are species-specific
e Annofafion is af the molecular level

e Map networks from gene space to function space (can
generate a library of annotated modular (sub-) networks)
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Network of Gene Ontology ferms based on significance of pairwise
interactions in yeast synthetic gene array (SGA) (Tong et al., Science, 2004)
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Indirect Regulation
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Key Results

e Statistically interpretable measures of significance are not
mMonotonic.

e There is no monotonicity in the GO space either.

e Develop an alternate (weaker) measure of significance that
uilds on modularity of sub-components.

e Need o short-circuit common terms (transcription factors, DNA
binding genes, etc.)

e Comprehensive software infrastructure built on these results.
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Narada Network Annotation

@ Transcription
@ DNA metabolism
@ Response to stimulus
@ Protein metabolism
@ Cell morphogenesis
@ Localization
Signaling
@ Other metabolic processes
® Other cellular processes
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Ongoing Work

e Domain identification and domain-domain networks.
e (Sub)Network phylogenies.

e Network inference and stability.
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Phylogenetic Analysis for Predicting Interactions

e Functionally related proteins are likely fo have co-evolved

- Construct phylogenetic profile for each genome: Vector of E-values
signifying existence of an orthologous protein in each organism

- |dentify pairwise functional associations based on mutual information
between phylogenetic profiles (Pellegrini et al., PNAS, 1999)

- Mutual information:
I(X,Y)=H(X) - HX|Y) =>,>,p( y)log(p(z,y)/r(x)p(y))

- Shown to identify functionally associated protein pairs at a coarser level
than high-throughput methods

e However, domains, not proteins, co-evolve

- How can we incorporate domain information to enhance performance
of phylogeny-based interaction prediction?
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Inferring Function from Domain Co-evolution

e Residue-level phylogenetic analysis (Kim, Koyuttrk, Topkara, Grama,
& Subramaniam, Bioinformatics, 2006)

- No a-priori knowledge about domains

- Construct residue phylogenetic profiles from local alignment results

- Construct mutual information matrix

- High-information contiguous submatrices that are sufficiently large
correspond to putative co-evolved domains
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Conclusion

e A lof fo learn fromm comparative network analysis

e We have fast algorithms

e \We need

- Enhanced & more detailed network models
- High quality & comprehensive data
- Detailed statistical models
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Other Work on Patitern Identification

e PROXIMUS: Non-orthogonal decomposition of binary matrices
(Koyuturk, Grama, Ramakrishnan, IEEE TKDE, 2005)

high dimensional data in microarray experiments”

Find a compact set of vectors that represent the entire matrix
Recursive decomposition through rank-one approximations

Fast (linear-tfime) iterative heuristics for computing approximations
Source code available at
http://ww. cs. purdue. edu/ hones/ pdsl /
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"Algorithms for bounded-error correlation of

(Koyuturk, Grama, Szpankowski: CSB’03.)
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"Biclustering gene-feature matrices for
statistically significant dense patterns”
(Koyuturk, Grama, Szpankowski: CSB’04.)


http://www.cs.purdue.edu/homes/pdsl/
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Identifying "Canonical” Regulatory

e Can we derive rules in ferms of GO terms, e.g

2001/01/27

Pathways

. P, — P; 4 P?

- Stafistical challenge: Such patterns have to be significantly abundant
- Computational challenge: When stafistical significance is the basis
(as opposed to frequency), monotonicity properties (e.g., downward

closure) no longer hold!

- Our approach: conditional significance, i.e., evaluate significance of a
pattern based on the background constructed by its substructures

e FiNal goal: Database of (computationally derived) canonical

modules and pathways
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Cell as a State Machine

e Signaling pathways can be modeled as a series of fransifions
between states of protein or peptide molecules, non-protein
molecules, (hon-)protein complexes, and modules

- Signaling Gateway provides a database of netfwork states for proteins, a
mirror is available to our group via our collaboration with S. Subramaniam

e Constructing signaling pathways from state information for
individual molecules

- Smallest common supergraph problem
- |dentification of specified pathways
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Modular Phylogenetics
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Replication Factor C complex identified on yeast PPl network by
MCODE (Bader & Hogue, BMC Bioinformatics, 2003) algorithm
and the phylogenetic profiles of its proteins on
25 eukaryotic genomes

Conserved in all eukaryotic species!
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Modular Phylogenetics
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A component of mitochondrial ribosome idenftified on
yeast PPl network by MCODE algorithm and the
phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in only yeast species!

e Models and algorithms for quantifying, analyzing, and
evaluating modular conservation and divergence Qcross
species



