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Outline

• Interaction Networks

– Modeling, evolution, problems, practical implications

• Algorithms for Analyzing Interaction Networks

– Analyzing biological networks for conserved interaction patterns

– Pairwise Alignment of networks

– Probabilistic models/analyses for assessing statistical significance

• Computational Synthesis of Interaction Networks

– Inferring function from domain co-evolution
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Conserved Interaction Patterns

• Given a collection of interaction networks, find sub-networks
that are common to an interesting subset of these networks [Koyutürk,

Grama, & Szpankowski, ISMB, 2004]

– A sub-network is a group of interactions that are tied to each other

(connected)

– Frequency: The number of networks that contain a sub-network, is a

coarse measure of statistical significance

• Computational challenges

– How to relate nodes (proteins) in different networks (organisms)?

– Requires solution of the intractable subgraph isomorphism problem

– Must be scalable to potentially large number of networks

– Networks are large [in the range of 10K edges]
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Graph Analysis

Network database

Interaction patterns that are common to all networks
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Problem Statement

• Given a set of proteins V , a set of interactions E, and a many-
to-many mapping from V to a set of ortholog groups L =
{l1, l2, ..., ln}, the corresponding interaction network is a labeled
graph G = (V,E,L).

– v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L.

– uv ∈ E(G) represents an interaction between u and v.

• S is a sub-network of G, i.e., S ⊑ G if there is an injective
mapping φ : V (S) → V (G) such that for all v ∈ V (S), L(v) ⊆
L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈ E(G).
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Computational Problem

• Conserved sub-network discovery

– Instance: A set of interaction networks G = {G1 = (V1, E1,L), G2 =

(V2, E2,L), ..., Gm = (Vm, Em,L)}, each belonging to a different

organism, and a frequency threshold σ∗.

– Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph

S. Find all connected subgraphs S such that |H(S)| ≥ σ∗, i.e., S is a

frequent subgraph in G and for all S′
= S, H(S) 6= H(S′), i.e., S is

maximal.
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Algorithmic Insight: Ortholog Contraction

• Contract orthologous nodes into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Key observation: Frequent sub-networks are preserved ⇒ No
information loss

– Sub-networks that are frequent in general graphs are also frequent in

their ortholog-contracted representation

– Ortholog contraction is a powerful pruning heuristic
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Example: Ortholog Contraction in Metabolic

Pathways

• Directed hypergraph → uniquely-labeled directed graph

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first
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Example: Ortholog Contraction in Protein Interaction

Networks

• Interaction between proteins → Interaction between ortholog
groups or protein families

Rrp4

Rrp43 Mtr3

Ski6

Csr4

KOG3013KOG3013

KOG1613KOG1613

KOG1068

KOG1068

KOG1068

KOG3409

KOG3409
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Preservation of Sub-networks

Theorem: Let G̃ be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
contracted graphs.

G G̃
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Simplifying the Graph Analysis Problem

• Observation: An ortholog-contracted graph is uniquely
determined by the set of its edges.

– Conserved Sub-network Discovery Problem → Frequent Edge set

Discovery Problem

a

a a
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b b

b

c

c c
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d

d d

de

e e

e

G1 G2

G3 G4

F1= {ab, ac, de}

F2= {ab, ac, bc, de, ea}

F3= {ab, ac, bc, ea}

F4= {ab, ce, de, ea}
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Extending Frequent Itemset Mining to Graph Analysis

• Given a set of transactions, find sets of items that are frequent
in these transactions

– Extensively studied in data mining literature

• Algorithms exploit downward closure property

– An edge set is frequent only if all of its subsets are frequent

– Generate edge sets (sub-networks) from small to large, pruning supersets

of infrequent sets

• No redundancy

• No subgraph enumeration
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MULE: Analyzing Ortholog-Contracted Networks
replacements

E = ∅

H = {1, 2, 3, 4}

D = {ab}

E = {ab}

C = {ac, ea}

H = {1, 2, 3, 4}

D = {ab, ac}

E = {ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, de}

E = {de}

C = {ea}

H = {1, 2, 4}

D = {ab, ac, de, ea}

E = {ea}

C = ∅

H = {2, 3, 4}

D = {ab, ac}

E = {ab, ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, ea}

E = {ab, ea}

C = {de}

H = {2, 3, 4}

Sample run of MULE for identifying maximal
sub-networks that are common to at least 3 organisms
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Case Study: Analyzing Protein Interaction Networks

• PPI networks for 9 eukaryotic organisms derived from BIND and
DIP

– A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.

sapiens, B. taurus, M. musculus, R. norvegicus

– # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

– # of interactions ranges from 340 (rice) to 28829 (fruit fly)

• Ortholog contraction

– Group proteins according to existing COG ortholog clusters

– Merge Homologene groups into COG clusters

– Cluster remaining proteins via BLASTCLUST

– Ortholog-contracted fruit fly network contains 11088 interactions

between 2849 ortholog groups

• MULE is available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns
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Pattern C. elegans S. cerevisiaeD. melanogaster

Small nuclear ribonucleoprotein complex (p < 2e − 43)
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Conserved Protein Interaction Patterns
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Conserved Protein Interaction Patterns
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Pattern H. sapiensS. cerevisiae D. melanogaster

Endosomal sorting (p < 1e − 78)
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Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG [Kuramochi & Karypis, IEEE TKDE, 2004], gSpan [Yan & Han, KDD, 2003]

FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patterns
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.
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Alignment of Networks

• Given two networks, identify sub-networks that are similar to
each other

– Biological implications

– Mathematical modeling

• Existing algorithms

– PathBLAST aligns pathways (linear chains) to simplify the problem while

maintaining biological meaning [Kelley et al., PNAS, 2004]

– NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets [Sharan et al., J. Comp. Biol.,

2005]

• Our approach [Koyutürk et al., RECOMB, 2005] [Koyutürk et al., J. Comp.

Biol., 2006]

– Guided by models of evolution

– Scores evolutionary events

– Identifies sets of proteins that induce high-scoring sub-network pairs
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Evolution of Networks

• Many networks evolve through the process of Duplication/ and
Divergence.

– Interactions of duplicated nodes are also duplicated

– Duplicated nodes rapidly lose interactions through mutations

• Allows defining and scoring evolutionary events as graph-
theoretical concepts

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Elimination Emergence
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Match, Mismatch, and Duplication

• Evolutionary events as graph-theoretic concepts

– A match ∈ M corresponds to two pairs of homolog nodes from each

network such that both pairs interact in both networks. A match is

associated with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog nodes from each

graph such that only one pair is interacting. A mismatch is associated

with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog nodes that are in

the same network. A duplication is associated with score δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:
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Scoring Matches, Mismatches and Duplications

• Quantizing similarity between two nodes

– Confidence in two nodes being orthologous

– E-value: S(u, v) = log10
p(u,v)

prandom
– Ortholog clustering: S(u, v) = c(u)c(v)

• Match score

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)}

• Duplication score

– δ(u, u′) = δ̄(δ̂ − S(u, u′))

– δ̂ specifies threshold for sequence similarity to be considered functionally

conserved
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Pairwise Alignment of Networks as an Optimization

Problem

• Alignment score:
σ(A(P )) =

∑

M∈M µ(M) −
∑

N∈N ν(N) +
∑

D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are rewarded/penalized for functional conservation/differentiation

after split

– Mismatches are penalized for functional divergence (what about

experimental error?)

• Scores are functions of similarity between associated proteins

• Problem: Find all protein subset pairs with significant alignment
score

– High scoring protein subsets are likely to correspond to conserved

modules

• A graph equivalent to BLAST
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Weighted Alignment Graph

• G(V,E) : V consists of all pairs of homolog proteins v = {u ∈
U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

δ(u, u′) or w(vv
′) = δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ
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Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ w(vu) ≥ ǫ.

– NP-complete by reduction from Maximum-Clique

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

• Solution: Local graph expansion

– Greedy graph growing + iterative refinement

– Linear-time heuristic

• Source code available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Case Study: Alignment of Yeast and Fruit Fly Networks

Rank Score z-score # Proteins # Matches # Mismatches # Dups.

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%)

JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Saccharomyces) (100%)

oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%)

mitosis (67%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet

Rpt6

CG12010−PA CG12010−PB

CG7257

Rpt5

Rpt2

Rpt3

Rpt1

S.Cerevisiae D.Melanogaster

Calcium-dependent stress-activated signaling pathway

Myo2 Myo3 Myo4 Myo5

Cmd1

Cna1 Cna2

Cnb1

Didum

CG31958Mlc−c And

CanA1

CanB

S.Cerevisiae D.Melanogaster
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Analytical Assessment of Statistical Significance

• What is the significance of a dense component in a network?

• What is the significance of a conserved component in multiple
networks?

• Existing techniques

– Mostly computational (e.g., Monte-Carlo simulations)

– Compute probability that the pattern exists rather than a pattern with

the property (e.g., size, density) exists

– Overestimation of significance
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Random Graph Models

• Interaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

• Analysis simplified through independence assumption [Itzkovitz

et al., Physical Review, 2003]

• Independence assumption may cause problems for networks with arbitrary

degree distribution

• P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

• Analytical techniques based on simplified models [Koyutürk, Grama,

Szpankowski, RECOMB, 2006]

– Rigorous analysis on G(n, p) model

– Extension to piecewise G(n, p) to capture network characteristics more

accurately
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Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

• What is the expected size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

– If we let p = dmax/n, largest ρ-dense subgraph in G(n, p) stochastically

dominates that in a graph with arbitrary degree distribution

• Piecewise G(n, p) model

– Few proteins with many interacting partners, many proteins with few

interacting partners

– Captures the basic characteristics of PPI networks

– Analysis of G(n, p) model immediately generalized to this model
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Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
. (2)

More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (3)

where

r0 =
log n − log log n + log κ(p, ρ)

κ(p, ρ)
(4)

for large n.
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Piecewise G(n, p) model

• The size of largest dense subgraph is still proportional to log n/κ
with a constant factor depending on number of hubs

• Model:

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

• Result:
Let nh = |Vh|. If nh = O(1), then P (Rn(ρ) ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

,

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) − log e + 1

κ(pl, ρ)

and B = pbql
pl

+ qb, where qb = 1 − pb and ql = 1 − pl.
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Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• SIDES: Use statistical significance to determine whether a
subgraph is sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p << 1p << 1

p << 1

SIDES is available at http://www.cs.purdue.edu/pdsl

http://www.cs.purdue.edu/pdsl
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Performance of SIDES

• Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

– Estimate the statistical significance of the enrichment of each GO term

in the cluster

• Quality of the clusters with respect to GO annotations

– Assume cluster C containing nC genes is associated with term T that is

attached to nT genes and nCT of genes in C are attached to T

– specificity = 100 × nCT/nC

– sensitivity = 100 × nCT/nT

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

Comparison of SIDES with MCODE [Bader & Hogue, BMC Bioinformatics, 2003]
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Performance of SIDES
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Performance of SIDES
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Functional Annotation of Pathways: From Molecules to

Systems

• Annotation is at the node level

• Map networks to function space (can generate a library of
annotated modular (sub-) networks)

Network of Gene Ontology terms based on significance of pairwise

interactions in yeast synthetic gene array (SGA) (Tong et al., Science, 2004)
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Narada Functionality
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Narada Network Annotation


