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Outline

e Inferaction Networks

- Modeling, evolution, problems, practical implications

e Algorithms for Analyzing Intferaction Networks

- Analyzing biological networks for conserved interaction patterns
- Pairwise Alignment of nefworks
- Probabilistic models/analyses for assessing statistical significance

e Computational Synthesis of Interaction Networks

- Inferring function from domain co-evolution
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Conserved Interaction Patterns

e Given a collection of inferaction networks, find sub-networks

that are common to an inferesting subset of these networks (Koyuttrk,
Grama, & Szpankowski, ISMB, 2004)

- A sub-network is a group of inferactions that are tied to each other
(connected)

- Frequency: The number of networks that contain a sub-network, is a
coarse measure of stafistical significance

e Computational challenges

- How to relate nodes (proteins) in different networks (organisms)?

- Requires solution of the infractable subgraph isomorphism problem
- Must be scalable to potentially large number of networks

- Networks are large (in the range of 10K edges)
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Graph Analysis

Network database

Interaction patterns that are common to all networks
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Problem Statement

e Given a set of proteins V, a set of interactions £, and a many-
fo-many mapping from V to a set of ortholog groups £ =
{l1,1s, ..., 1, }, the corresponding interaction network is a labeled
groph G=(V,E, L).

- v € V(G) is associated with a set of ortholog groups L(v) C L.
- uwv € E(G) represents an inferaction between u and v.

e S is a sub-network of G, iie., S C G if there is an injective
mapping ¢ : V(S) — V(G) such that for all v € V(S), L(v) C
L(¢(v)) and for all uwv € E(S), ¢(u)p(v) € E(G).
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Computational Problem

e Conserved sub-network discovery

- Instance: A set of interaction networks G = {G; = (Vi, E1, L), Gy =
(Va, Eo, L), ..., Gy = (Vin, Em, £)}, each belonging to a different
organism, and a frequency threshold o*.

- Problem: Let H(S) = {G; : S C G,;} be the occurrence set of graph
S. Find all connected subgraphs S such that |H(S)| > o*, i.e., Sisa
frequent subgraph in G and for all S 1 S, H(S) # H(S'), ie., Sis
maximal,
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Algorithmic Insight: Ortholog Contraction

e Contract orthologous nodes info a single node

e NO subgraph isomorphism

- Graphs are uniquely identified by their edge sets

e Key observation: Frequent sub-networks are preserved = No
information 1oss

- Sub-networks that are frequent in general graphs are also frequent in
their ortholog-contracted representation

- Ortholog conftraction is a powerful pruning heuristic
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Example: Ortholog Contraction in Metabolic
Pathways

e Directed hypergraph — uniquely-labeled directed graph

— Nodes represent enzymes

- Global labeling by enzyme nomenclature (EC numbers)

- A directed edge from one enzyme to the other implies that the second
consumes a product of the first

2.7.1.1
\ 2.7.1.2 2.7.1.1
2.7.1.2
5.1.3.3 —
2.7.1.1 '
>@ ® O
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Example: Ortholog Contraction in Protein Interaction
Networks

e Inferaction between proteins — Interaction between ortholog
groups or protein families

KOG3013  KOG1068 KOG3013 KOG 1068

/
KOG3409

KOG 1068 KOG3409

Rrpo43
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Preservation of Sub-networks

Theorem: Let G be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if 5'is d
subgraph of G, S'is a subgraph of G.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
confracted graphs.
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Simplifying the Graph Analysis Problem

e Observation: An ortholog-contracted graph is uniquely
determined by the set of its edges.

- Conserved Sub-network Discovery Problem — Frequent Edge set
Discovery Problem

Fy= {ab, ac, de}

Fy= {ab, ac, be, de, ea}

Fs= {ab, ac, bc, ea}

F,= {ab, ce, de, ea}
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Extending Frequent ltemset Mining to Graph Analysis

e Given a set of fransactions, find sets of items that are frequent
iINn these fransactions

- Extensively studied in data mining literature

e Algorithms exploit downward closure property

- An edge set is frequent only if all of its subbsets are frequent
- Generate edge sefts (sub-networks) from small o large, pruning supersets
of infrequent sefts

e No redundancy

e NO subgraph enumeratfion
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MUuLE: Analyzing Ortholog-Contracted Networks

E=10

H = {1,2,3,4}

D = {ab, ac, de, ea}

D = {ab, ac, de}

E = {ab} E = {ac} E = {de} E = {ea}

C = {ac,ea}
H={1,2,3,4}

D = {ab, ac} D = {ab,ac, ea}

C = {ea}
H={1,2,3)

C ={ea}
H = {1,2,4}

E = {ab,ac} E = {ab, ea}
C ={ea} C = {de}
H={1,2,3} H={2,3,4)}

sample run of MULE for identifying maximal

C =
H={2,3,4)}

sub-networks that are common to at least 3 organisms
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Case Study: Analyzing Protein Interaction Networks

e PPl networks for @ eukaryotic organisms derived from BIND and
DIP

- A. thaliania, O. safiva, S. cerevisiae, C. elegans, D. melanogaster, H.
sapiens, B. faurus, M. musculus, R. norvegicus

- # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

- # of interactions ranges from 340 (rice) to 28829 (fruit fly)

e Ortholog contraction

- Group proteins according to existing COG ortholog clusters

- Merge Homologene groups into COG clusters

- Cluster remaining proteins via BLASTCLUST

- Ortholog-contracted fruit fly network contains 11088 inferactions
between 2849 ortholog groups

e MULE is available af
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns

Q KOG1782 CG4279 F40F8.9 Lsml

) KOG3448 CG10418 T10G3.6 Lsm2
[

) KOG3482 DebB ZK652.1 Q Smx3

C
C
() koG3459 CG1249 cs2e4.3 () smdz
C

) KOG1781 CG13277 ZK593.7 C) Lsm7
O KOG3293 CG31990 F32A5.7 O Lsm4
Pattern D. melanogaster C. elegans S. cerevisiae

Small nuclear ribonucleoprotein complex (p < 2¢ — 43)
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Conserved Protein Interaction Patterns

KOGO0677

Arp2 Arp2 Arp2
/
/

KOG3380,
|

Arp23-pl6 Arp23-p16 Arcl5

\
KOG1876\ Arp23-p20 Arp23-p20 Arcl9

KOG1523 Arp23-p41 Arp23-p41 Arc40

!
Arp23-p34 i Arp23-p34 Arc35
|
\

Arp3 \ Arp3 Arp3

I
KOG2826

KOGO0678

Pattern B. taurus H. sapiens  S. cerevisiae

Actin-related protein Arp2/3 complex (p < 9¢ — 11)
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Conserved Protein Interaction Patterns

KOG3229 Vps24 CG9779
Chmp4A -
KOG1656 Vps32 CG8055 £ - =

KOG2910 Vps20 CG4071
|
KOG2760 \/ps36 " CG10711
| \ |
KOG3341 Vps22 CG6637 ) Eap30
KOG4068 Vps25 CG14750 Eap20

Pattern S. cerevisiae D. melanogaster  H. sapiens

Endosomal sorting ( )
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Runtime Characteristics

Comparison with isomorphism-based algorithms
FSGE (Kuramochi & Karypis, IEEE TKDE, 2004), gSpan (Yan & Han, KDD, 2003)

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of
Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns
20 0.2 9 12 0.01 9 12
16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39
10 22.7 16 34 0.29 15 34
8 138.9 16 56 0.99 15 56
24 0.1 8 11 0.01 8 11
20 1.5 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21
12 112.7 17 25 1.06 16 25
10 2151 17 34 1.72 16 34
Exfraction of contracted patterns
Glutamate metabolism, o = 8% Alanine metabolism, o = 10%
Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted
pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54,1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56
Total runtime of FSG alone: 138.9 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs.

Total number of patterns: 34

Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 1.72+160.6 secs.
Total runtime of MULE+gSpan: 1.72+31.0 secs.
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Alignment of Networks

e Given two networks, identify sub-networks that are similar to
each other

- Biological implications
- Mathematical modeling

e EXisting algorithms

- PathBLAST aligns pathways (linear chains) to simplify the problem while
maintaining biological meaning (Kelley et al., PNAS, 2004)
— NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets (Sharan et al., J. Comp. Biol.,
2005)

e Our approach (Koyuttrk et al., RECOMB, 2005) (Koyuttrk et al., J. Comp.
Biol., 2006)

- Guided by models of evolution
- Scores evolutionary events
- |dentifies sets of proteins that induce high-scoring sub-network pairs
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Evolution of Networks

e Many networks evolve through the process of Duplication/ and
Divergence.

- Inferactions of duplicated nodes are also duplicated
- Duplicated nodes rapidly lose interactions through mutations

e Allows defining and scoring evolutionary events as graph-
theoretical concepts

Duplication Elimination Emergence
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Match, Mismatch, and Duplication

e Evolufionary events as graph-theoretic concepts

- A maich € M corresponds to two pairs of homolog nodes from each
network such that both pairs inferact in both networks. A martch is
associated with score pu.

- A mismatch € N corresponds to two pairs of homolog nodes from each
graph such that only one pair is inferacting. A mismatch is associated
with penalty v.

- A duplication € D corresponds to a pair of homolog nodes that are in
the same network. A duplication is associated with score §.
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Scoring Matches, Mismatches and Duplications

e Quantizing similarity between two nodes
- Confidence in two nodes being orthologous
- E-value: S(u,v) = logyg-2let)

Prandom

- Ortholog clustering: S(u, v) = c(u)c(v)

e Vatch score

- p(uu',vv") = gmin{S(u,v), S(u',v")}

e Mismatch penalty

- v(uu', vv") = vmin{S(u,v), S(u',v")}

e Duplication score

- §(u,u’) = 6(8 — S(u,u'))
- ¢ specifies threshold for sequence similarity to be considered functionally
conserved
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Pairwise Alignment of Networks as an Optimization
Problem

e Alignment score:
U(A(P)) — ZMEM M(M) — ZNe/\/’V(N) + ZDeD 5(D)

- Matches are rewarded for conservation of interactions

- Duplications are rewarded/penalized for functional conservation/differentiation
after split

- Mismatches are penalized for functional divergence (what about
experimental error?)

e Scores are functions of similarity between associated proteins

e Problem: Find all protein subset pairs with significant alignment
score

- High scoring protein subsets are likely to correspond to conserved
modules

e A graph equivalent to BLAST
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Weighted Alignment Graph

e G(V,E) : V consists of all pairs of homolog protfeins v = {u €
UveV}

e Anedge vv' = {uwv}{uv'} in Eis @

- match edge ifuu’ € E and vy’ € V, with weight w(vv') = p(uv, u'v’

- mismatch edge if uu’ € E and vv' ¢ V or vice versa, with weight
w(vv') = —v(uv, u'v’

- duplication edge if S(u,u") > 0 or S(v,v") > 0, with weight w(vv') =
5(u,u) orw(vv') = §(v,v")

{ug, va}

{u,v1} @

{U2, ’01}

{ua, va}
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Maximum Weight Induced Subgraph Problem

e Definition: (IMAWISH)

- Given graph G(V,€&) and a constant ¢, find V € V such that

Zv,ueff w(vu) > e,
- NP-complete by reduction from Maximum-Clique

e Theorem: (MAWISH = Pairwise alignment)
- If V is a solution for the MAWISH problem on G(V, £), then P = {U,V'}
induces an alignment A(P) with o(A) > e ,where YV = U x V.
e Solution: Local graph expansion

- Greedy graph growing + iterative refinement
- Linear-fime heuristic

e Source code available at
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Case Study: Alignment of Yeast and Fruit Fly Networks

Rank Score  z-score #Proteins # Mafches # Mismatches  # Dups.

| 15.97 6.6 18 (16, 5) 28 6 (4, 0)
protein amino acid phosphorylation (69%)
JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 / @G, 1
endocytosis (60%) / calcium-mediated signaling (50%)
5 8.22 13.5 @ (5. 3) 19 11 (1,0)

invasive growth (sensu Saccharomyces) (100%)
oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 O, D
ubiquitin-dependent protein catabolism (100%)
mitosis (67%)

21 4.36 6.2 @ (5. 4) 18 13 0, 5
cytokinesis (100%, 50%)

30 3.76 39.6 6 (3.5) 5 1 O, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory parficle subnet

S.Cerevisiae D.Melanogaster

‘

CG12010-PA & CG12010-F

Calcium-dependent stress-activated signaling pathway

S.Cerevisiae D.Melanogaster
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Analytical Assessment of Statistical Significance

e What is the significance of a dense component in a network?

e What is the significance of a conserved component in mulfiple
networks?

e EXxisting fechniques

- Mostly computational (e.g., Monte-Carlo simulations)

- Compute probability that the pattern exists rather than a pattern with
the property (e.g., size, density) exists

- Overestimation of significance
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Random Graph Models

e Inferaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

e Analysis simplified through independence assumption (ltzkovitz
et al., Physical Review, 2003)

e Independence assumption may cause problems for networks with arbitrary
degree distribution

e P(uv € E) = d,d,/|E|. where d, is expected degree of u, but generally
d? > |E| for PPl networks

max

e Analytical techniques based on simplified models (Koyuturk, Grama,
Szpankowski, RECOMB, 2006)

- Rigorous analysis on G(n, p) model
- Extension to piecewise G(n, p) to capture network characteristics more
accurately
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Significance of Dense Subgraphs

e A subnet of r proteins is said to be p-dense if F(r) > pr?, where
F(r) is the number of inferactions between these r proteins

e What is the expected size of the largest p-dense subgraph in a
random graph?

- Any p-dense subgraph with larger size is statistically significant!

e G(n,p) model

- n proteins, each interaction occurs with probability p

- Simple enough to facilitate rigorous analysis

- If we let p = dnax/n. largest p-dense subgraph in G(n, p) stochastically
dominates that in a graph with arbitrary degree distribution

e Piecewise G(n,p) model

- Few proteins with many interacting partners, many proteins with few
interacting partners

- Captures the basic characteristics of PPl networks

- Analysis of G(n, p) model immediately generalized o this model
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Largest Dense Subgraph

e Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

R 1
lim —2 = ), (1
n—oologn  Kk(p,p) (pr)
where |
p —p
k(p,p) = plog=—+ (1 —p)lo . 2)
(p,p) =p 2 (1—p) BT,
More precisely,
logn
P(Ey =2 10) <O (nl/ﬂ(p,p)> ’ (3)

where
~ logn —loglogn + log k(p, p)

— 4
10 k(p, p) @

for large n.
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Piecewise GG(n,p) model

e The size of largest dense subgraph is sfill proportional to logn/k
with a constant factor depending on number of hulbs

e Model:

pn ifu,veV,
Pluv e E(G)) =< p Ifu,veV
pp fueVy,veV,orueV,veV,

e Result:
Letm, = [Vil. I ny = O(1), then P(Ry(p) > r) < O (f5n ).
where

~ logn —loglogn + 2nylog B + log k(pr, p) — loge + 1

1
’f(plap)

OﬂdB:p]l;—?l—l—qb,Whereqb:1—pb0ﬂdql:1—pl.
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Algorithms Based on Statistical Significance

e |dentification of fopological modules

e Use staftistical significance as a stopping criterion for graph
clustering heuristics

e HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)

- Find a minimum-cut bipartitioning of the network
- If any of the partsis dense enough, record it as a dense cluster of proteins
— Else, further partition them recursively

e SIDES: Use statistical significance to determine whether a
subgrapnh is sufficiently dense

- For given number of proteins and interactions between them, we can
determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p <<l

>

B3 O<E0

p<<l1 p<<l1

SIDES is available at htt p: / / www. cs. pur due. edu/ pdsl


http://www.cs.purdue.edu/pdsl
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Performance of SIDES

e Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

- Estimate the statistical significance of the enrichment of each GO term
in the cluster

e Quality of the clusters with respect to GO annotations

- Assume cluster C' containing no genes is associated with ferm T' that is
affached to n genes and nqer of genes in C' are attached to T

- specificity = 100 X nor/ne

- sensitivity = 100 X nor/nr

SIDES MCODE
Min.  Max. Avg. Min.  Max. Avg.
specificity (%) 43.0 100.0 91.2 0.0 1000 77.8
sensitfivity (%) 20 100.0 558 0.0 100.0 47.6

Comparison of SIDES with MCODE (Bader & Hogue, BMC Bioinformatics, 2003)
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Performance of SIDES

~ (@)
(@) Q
T T

—log(Significance)
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T T
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* *
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Cluster size

Size vs Significance

Correlation

SIDES: 0.76
MCODE: 0.43
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oSIDES |
MCOD
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Performance of SIDES
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Functional Annotation of Pathways: From Molecules to
Systems

e Annotation is at the node level

e Map neftworks to function space (can generafte a library of
annofated modular (sub-) networks)

i
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Narada Network Annotation

@ Transcription
@ DNA metabolism
@ Response to stimulus
@ Protein metabolism
@ Cell morphogenesis
@ Localization
Signaling
@ Other metabolic processes
® Other cellular processes




