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1. Biological Networks

• Definition, problems, practical implications

2. Current Work

• Mining biological networks for frequent molecular interaction patterns

• Alignment of protein interaction networks based on evolutionary models

• Module identification based on phylogenetic profiles

3. Ongoing and Future Work

• Constructing reference module maps

• Building a fully functional interoperable signaling database



Biological Networks

• Interactions between biomolecules that drive cellular processes

– Genes, proteins, enzymes, chemical compounds

– Mass & energy generation, information transfer

– Coarser level than sequences in life’s complexity pyramid

• Experimental/induced data in various forms

– Protein-protein interaction networks

– Gene regulatory networks

– Metabolic & signaling pathways

• What do we gain from analysis of cellular networks?

– Modular analysis of cellular processes

– Understanding evolutionary relationships at a higher level

– Assigning functions to proteins through interaction information

– Intelligent drug design: block protein, preserve pathway



Protein-Protein Interaction (PPI) Networks

• Interacting proteins can be discovered experimentally

– Two-hybrid

– Mass spectrometry

– Tandem affinity purification (TAP)

Protein

Interaction
S. Cerevisiae protein interaction network

Source: Jeong et al. Nature 411: 41-42, 2001.



Gene Regulatory Networks

• Genes regulate each others’ expression

– A simple model: Boolean networks

– Can be derived from gene expression data

Gene

Down-regulation

Up-regulation

Genetic network that controls
flowering time in A. Thaliania

Source: Blazquez et al. EMBO Reports 2: 1078-1082, 2001



Metabolic Pathways

• Chains of reactions that perform a particular metabolic
function

– Reactions are linked to each other through substrate-product relationships

– Directed hypergraph/ graph models

Enzyme

Substrate

Product

Compound

Glycolysis pathway in S. Cerevisiae
Source: Hynne et al. Biophysical Chemistry, 94, 121-163, 2001.



Discrete Algebraic Techniques in Analysis

• Non-orthogonal decomposition of binary matrices

– Find a compact set of vectors that represent the entire matrix

– Recursive decomposition through rank-one approximations

– Fast (linear-time) iterative heuristics for computing approximations

Analysis of gene expression data

Patterns of regulation Biclustering
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Koyutürk, Grama, Szpankowski: CSB’03. Koyutürk, Grama, Szpankowski: CSB’04.



Analysis of Biological Networks

• Evolution thinks modularly

– Selective pressure on preserving interactions

– Functional modules, protein complexes are highly conserved

• Computational methods for discovery and analysis of modules
and complexes

– Graph clustering: Functionally related entities are densely connected

– Graph mining: Common topological motifs, frequent interaction

patterns reveal modularity

– Graph alignment: Conservation/divergence of modules and pathways

– Module maps: Canonical pathways across species

– Phylogenetic analysis: Genes/proteins that belong to a common module

are likely to have co-evolved



How do we detect conserved subgraphs: Graph

Mining

[Koyuturk, Grama, Szpankowski, ISMB04, Bioinformatics04]

Graph database

Subgraphs with frequency 3



Extending Frequent Itemset Mining to Graph Mining

• Given a set of transactions, find sets of items that are frequent
in these transactions

• Extensively studied in data mining literature

• Algorithms exploit downward closure property

– A set is frequent only if all of its subsets are frequent

– Generate itemsets from small to large, pruning supersets of infrequent

sets

• Can be generalized to mining graphs

– transaction → graph

– item → node, edge

– itemset → subgraph

• However, the graph mining problem is considerably more
difficult



Graph Mining Challenges

• Subgraph Isomorphism

– For counting frequencies, it is necessary to check whether a given graph

is a subgraph of another one

– NP-complete

• Canonical labeling

– To avoid redundancy while generating subgraphs, canonical labeling of

graphs is necessary

– Equivalent to subgraph isomorphism

• Connectivity

– Patterns of interest are generally connected, so it is necessary to only

generate connected subgraphs

• Existing algorithms mainly focus on minimizing redundancy and
mining & extending simple substructures

– AGM, FSG, gSpan, SPIM, CLOSEGRAPH



Uniquely-Labeled Graphs

• Contract nodes with identical label into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Frequent subgraphs are preserved ⇒ No information loss

– Subgraphs that are frequent in general graphs are also frequent in their

uniquely-labeled representation

• Discovered frequent subgraphs are still biologically interpretable!



Node Contraction in Metabolic Pathways

• Uniquely-labeled directed graph model

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first
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Node Contraction in Protein Interaction Networks

• Relating proteins in different organisms

– Clustering: Orthologous proteins show sequence similarities

– Phlyogenetic analysis: Allows multi-resolution analysis among distant

species

– Literature, ortholog databases

• Contraction

– Interaction between proteins → interaction between protein families

KAPA

KAPB

KAPC

YPT7

YPT53

cAMP GTP-binding



Preservation of Subgraphs

Theorem: Let G̃ be the uniquely-labeled graph obtained by
contracting the same-label nodes of graph G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The uniquely-labeled representation of any frequent
subgraph is frequent in the set of uniquely-labeled graphs.

G G̃



Simplifying the Graph Mining Problem

Observation: A uniquely-labeled graph is uniquely determined
by the set of its edges.

Maximal Frequent Subgraph Mining Problem

Given a set of labeled graphs {G1, G2, ..., Gm}, find all
connected graphs S such that S is a subgraph of at least σm of
the graphs (is frequent) and no supergraph of S is frequent (is
maximal).

Maximal Frequent Edgeset Mining Problem

Given a set of edge transactions {E1, E2, ..., Em}, find all
connected edge sets F such that F is a subset of at least σm

of the edge transactions (is frequent) and no superset of F is
frequent (is maximal).



From Graphs to Edgesets
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G3 G4

F1= {ab, ac, de}

F2= {ab, ac, bc, de, ea}

F3= {ab, ac, bc, ea}

F4= {ab, ce, de, ea}



MULE: Mining Uniquely Labeled Graphs
replacements

E = ∅

H = {1, 2, 3, 4}

D = {ab}

E = {ab}

C = {ac, ea}

H = {1, 2, 3, 4}

D = {ab, ac}

E = {ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, de}

E = {de}

C = {ea}

H = {1, 2, 4}

D = {ab, ac, de, ea}

E = {ea}

C = ∅

H = {2, 3, 4}

D = {ab, ac}

E = {ab, ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, ea}

E = {ab, ea}

C = {de}

H = {2, 3, 4}



Frequent Sub-Pathways in KEGG

Glutamate metabolism (155 organisms)

gltX

glnA

glmS

guaA

nadE

purF

45 (29%) organisms

30 (19%) organisms

22 (14%) organisms



Frequent Interaction Patterns in DIP

• Protein interaction networks for 7 organisms

– Ecoli, Hpylo, Scere, Celeg, Dmela, Mmusc, Hsapi

– 44070 interactions between 16783 proteins

• Clustering with TribeMCL & node contraction

– 30247 interactions between 6714 protein families
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Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patters
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.



Aligning Protein Interaction Networks

[Koyuturk, Grama, Szpankowski, RECOMB04]

• Defining graph alignment is difficult in general

– Biological meaning

– Mathematical modeling

• Existing algorithms are based on simplified formulations

– PathBLAST aligns pathways (linear chains) to render problem computationally

tractable

– Motif search algorithms look for small topological motifs, do not take into

account conservation of proteins

• Our approach

– Aligns subsets of proteins based on the observation that modules and

complexes are conserved

– Guided by models of evolution



Evolution of Protein Interaction Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• This provides us with a simplified basis for solving a very hard
problem

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Deletion Insertion



Aligning Protein Interaction Networks: Input

• PPI networks G(U,E) and H(V, F )

• Sparse similarity function S(u, v) for all u, v ∈ U ∪ V

– If S(u, v) > 0, u and v are homologous

u1 u2

u3 u4

v1 v2

v3 v4

G H



Local Alignment Induced by Subsets of Proteins

• Alignment induced by protein subset pair P = {Ũ ∈ U, Ṽ ∈ V }:
A(P) = {M,N ,D}

– A match ∈ M corresponds to two pairs of homolog proteins from each

protein subset such that both pairs interact in both PPI networks. A match

is associated with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each PPI network such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same protein subset. A duplication is associated with penalty δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:

Alignment induced by protein subset pair

{{u1, u2, u3, u4}, {v1, v2, v3}}



Pairwise Local Alignment of PPI networks

• Alignment score:
σ(A(P )) =

∑
M∈M µ(M) −

∑
N∈N ν(N) −

∑
D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are penalized for differentiation after split

– Mismatches are penalized for divergence and experimental error

• All scores and penalties are functions of similarity between
associated proteins

• Problem: Find all protein subset pairs with alignment score
larger than a certain threshold.

– High scoring protein subsets are likely to correspond to conserved

modules or complexes

• A graph equivalent to BLAST



Weighted Alignment Graph G(V,E)

• V consists all pairs of homolog proteins v = {u ∈ U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

−δ(u, u′) or w(vv
′) = −δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ



Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ
w(vu) ≥ ǫ.

– NP-complete

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

µ

µ

-ν

-ν

-ν

-δ



A Greedy Algorithm for MAWISH

• Greedy graph growing

– Start with a heavily connected node, put it in Ṽ

– Choose v that is most heavily connected to Ṽ and put it in Ṽ until no v is

positively connected to Ṽ.

– If total weight of the subgraph induced by Ṽ is greater than a threshold,

return Ṽ

– Works in linear time.

• As modules and complexes are densely connected within the
module and loosely connected to the rest of the network, this
algorithm is expected to be effective.

• For all local alignments, remove discovered subgraph and run
the greedy algorithm again.

• If the number of homologs for each protein is constant,
construction of alignment graph and solution of the MAWISH

takes O(|E| + |F |) time.



Scoring Matches, Mismatches and Duplications

• Quantizing similarity between two proteins

– Confidence in two proteins being orthologous (paralogous)

– BLAST E-value: S(u, v) = log10
p(u,v)

prandom
– Ortholog clustering: S(u, v) = c(u)c(v)

• Match score

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)}

• Duplication penalty

– δ(u, u′) = δ̄(d − S(u, u′))



Alignment of Human and Mouse PPI Networks

Homo Sapiens

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

Mus Musculus

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

A conserved subnet that is part of
transforming growth factor beta receptor signaling pathway



Alignment of Yeast and Fly PPI Networks

Saccharomyces Cerevisiae

HS82

HS83

STI1CNS1

Drosophila Melanogaster

HS83 CG2720-PACG5393-PB

A conserved subnet that is part of
response to stress



Ongoing Work on PPI Network Alignment

• Assessing statistical significance

– Constructing a refence model based on models of evolution

• BLAST-like search queries for network alignment

– Given a query graph, find all high-scoring local alignments in a database

of PPI networks

• Multiple Graph Alignment (CLUSTAL, BLASTCLUST)

– How to combine graph mining and pairwise alignment



Inferring Functional Modules from Phylogenetic

Information

[Kim, Koyuturk, Topkara, Grama, Subramaniam, ECCB05
(submitted)]

• Functionally related proteins are likely to have co-evolved

– Construct phylogenetic profile for each genome: Vector of E-values

signifying existence of an orthologous protein in each organism

– Identify pairwise functional associations based on mutual information

between phylogenetic profiles [Pellegrini et al. (1999)]

– Mutual information:

I(X, Y ) = H(X) − H(X|Y ) =
P

x

P

y p(x, y) log(p(x, y)/p(x)p(y))

– Shown to identify functionally associated protein pairs at a coarser level

than high-throughput methods

• However, domains, not proteins, co-evolve

– How can we incorporate domain information to enhance performance

of phylogeny-based interaction prediction?



Identification of Co-evolved Domains

• While sequence information is widely available, domain
information is not generally comprehensive

• Approximating domains between fixed-size segments [Kim &
Subramaniam (2004)]

– Chop proteins into overlapping (e.g., 30 b.p.) fixed-size (e.g., 120 b.p.)

segments

– Construct phylogenetic profile for each segment, find maximum-mutual-

information segment pair for each protein pair

– Improves single-profile based approach

– However, there is no fixed domain size

• Can we identify domains from phylogenetic information as
well?

– Residue phylogenetic profiles!



Residue-Level Phylogenetic Analysis

• Residue phylogenetic profile

– For each residue rij on protein Pi, the existence of rij in genome Gk is

signified by the minimum e-value of alignments between Pi and Gk that

contain rij

• Mutual information matrix

– Matrix of mutual information between any pair of residues each from one

protein

– M(Pi, Pj) = [mkl],

where mkl = I(profile(rik), profile(rjl))



Mutual Information Matrix
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Darker pixels indicate higher mutual information.

Co-evolved domains identified by dark rectangles!



Clustering Residue Phylogenetic Profiles

• Cluster residues to identify co-evolved domains [Kim et al.,
2005]

• For each protein pair

– Downsample residues of each protein (for computational efficiency)

– Construct residue phylogenetic profiles

– Compute mutual information matrix

– Identify sufficiently large contiguous rectangles on mutual information

matrix with consistently high mutual-information

– Set phylogenetic association score of the two proteins to the maximum

of mutual information of such rectangles

• Can be used for domain identification as well!



Comparison of Domain-Profile and Single-Profile

Methods
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Comparison of Domain-Profile and Single-Profile

Methods
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Augmenting PPI Networks with Phylogenetic

Information to Enhance Module Identification

• Density-based clustering of PPI networks is commonly used to
identify modules

– MCODE: Greedy graph growing based on local neighborhood density of

each protein

– MCL: Markovian clustering based on random walks on PPI network

– MCS: Recursive min-cut partitioning

• Information derived from PPI networks is not comprehensive

– High-throughput methods are prune to false-negatives and even false-

positives

– Available data is generated for target functional units in cell (e.g., fly

network mostly contains signaling information)



Functional Modules and Phylogeny

CTF18

RFC3

RFC5

CTF8

RFC2

RFC4
PF TB EC SP SC DH KL CG YL AG CE HS PT MM RN GG DR FR TN AM AN DM TP AT OS

RFC2

CTF18

RFC4

CTF8

RFC3

RFC5

Replication Factor C complex identified on yeast
PPI network by MCODE algorithm and the phylogenetic

profiles of its proteins on 25 eukaryotic genomes

Conserved in all eukaryotic species!



Functional Modules and Phylogeny

YDR116C

MRPL19 YML025C MRPL9

MHR1 MRP20

YDR115WMRP8
PF TB EC SP SC DH KL CG YL AG CE HS PT MM RN GG DR FR TN AM AN DM TP AT OS

MRPL9

MRPL19

YDR116C

YML025C

MHR1

MRP20

YDR115W

MRP8

A component of mitochondrial ribosome identified on
yeast PPI network by MCODE algorithm and the

phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in only yeast species!



Superposing PPI Networks with Phylogenically

Predicted Networks

Protein Interaction Phylogenetic Association Superposition of PPI and
(PPI) network (PGA) network PGA networks

Cluster the superposed network!



Clustering The Superposed Network

• MCODE discovers

– 15 modules on E-coli PPI network

– 11 modules on E-coli PGA network constructed by domain-profile

method

– 26 modules on PPI ∪ PGA

PPI PGA PPI ∪ PGA

4 proteins 4 proteins 9 proteins

9 interactions 6 phylogenetic associations 21 functional associations

molybdopterin biosynthesis molybdopterin biosynthesis molybdopterin biosynthesis

molybdochetalase molybdochetalase

MGD biosynthesis B MGD biosynthesis B

molybdopterin → MGD molybdopterin → MGD

molybdopterin biosynthesis A molybdopterin biosynthesis A

molybdopterin biosynthesis C molybdopterin biosynthesis C

DMSO reductase DMSO reductase

molybdopterin biosynthesis B

anaerobic DMSO reductase

A module of the molybdopterin biosynthesis pathway in Ecoli

that can only be partially discovered on PPI and PGA networks

is comprehensively identified on the augmented network



Building a Comprehensive Signaling Database

There are four major components to any such effort:

• The availability of up-to-date, curated/annotated signaling
data (The Biology WorkBench provides us with an excellent
starting point. ITaP is in the process of mirroring the WorkBench
at Purdue.

• Developing commonly accepted (flexible, extensible) data
standards. These do not exist in the signaling community at this
point, although, SBML addresses a closely related community.

• Developing analysis techniques – we are one of the leading
groups in this area.

• Developing interfaces and middleware – this presents a
significant opportunity for development.



Building a Comprehensive Signaling Database

Any such effort must:

• Interoperate with other existing signaling databases in terms
of data formats, APIs for services, and standardized output
formats.

• Interoperate with existing genotype and phenotype tools and
databases.

• Provide support for building complex tools that build on a
variety of existing data sources and APIs.



Using a Signaling Database: An Example (1)

Consider the problem of predicting protein interactions using
phylogeny data. The algorithm builds on the following sources:

• Sequence data for generating phylogenetic profiles.

• BLAST for finding matches (populating the phylogenetic
profiles).

• In-house analyses on generating phylogeny vectors and
inferring interactions.

• DIP for validating results.

Our current study downloads all the data and analysis tools
(including BLAST) and performs analyses locally. This is extremely
cumbersome and inaccurate, since databases are always in a

state of flux.



Using a Signaling Database: An Example (2)

Consider the problem of detecting modules in protein
interaction networks using interaction and phylogeny data. The

algorithm builds on the following sources:

• Sequence data and BLAST for generating profile based hyper-
edges.

• DIP for protein interactions.

• In-house code for analysis and augmentation of interaction
networks.

• MCODE/MCL/MCS for graph clustering.

• A variety of online sources for validation.

As before, even simple analyses tasks can be extremely data,
effort, and time intensive.



Building a Comprehensive Signaling Database:

Challenges

• Interfaces for data and API conversion.

• Analysis modules for interaction data (harden existing analyses
tools to production quality, develop new tools).

• Tools to enable submission of other tools to the infrastructure
(controlled vocabularies, ontologies, etc.).

• Service discovery service.

• Support for building applications (composing applications,
type-checking, consistency).

• Runtime system for RPC, debugging, and visualization.


