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e Constructing reference module maps
e Building a fully functional interoperable signaling database



Biological Networks

e Interactions between biomolecules that drive cellular processes

- Genes, proteins, enzymes, chemical compounds
- Mass & energy generation, informatfion fransfer
- Coarser level than sequences in life’'s complexity pyramid

e Experimental/induced data in various forms

- Protein-protein interaction networks
- Gene regulatory networks
- Metabolic & signaling pathways

e What do we gain from analysis of cellular networks?

- Modular analysis of cellular processes

- Understanding evolutionary relationships at a higher level

- Assigning functions to proteins through interaction information
- Intelligent drug design: block protein, preserve pathway



Protein-Protein Interaction (PPl) Networks

e Inferacting proteins can be discovered experimentally

- Two-hybrid
- Mass spectrometry
- Tandem affinity purification (TAP)

Protein

Intferaction

S. Cerevisiae protein interaction network
Source: Jeong et al. Nature 411: 41-42, 2001.



Gene Regulatory Networks

e Genes regulate each others’ expression

- A simple model: Boolean networks
- Can be derived from gene expression data
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Metabolic Pathways

e Chains of reactions that perform a particular metabolic
function

- Reactions are linked to each other through substrate-product relationships
- Directed hypergraph/ graph models
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Source: Hynne et al. Biophysical Chemistry, 94, 121-163, 2001.



Discrete Algebraic Techniques in Analysis

e Non-orthogonal decomposition of binary matrices

- Find a compact set of vectors that represent the entire matrix
- Recursive decomposition through rank-one approximations
- Fast (linear-time) iterative heuristics for computing approximations

Analysis of gene expression data
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Analysis of Biological Networks

e Evolution thinks modularly

Selective pressure on preserving interactions
Functional modules, protein complexes are highly conserved

e Computational methods for discovery and analysis of modules
and complexes

Graph clustering: Functionally related entities are densely connected
Graph mining:  Common tfopological motifs, frequent interaction
pafterns reveal modularity

Graph alignment: Conservation/divergence of modules and pathways
Module maps: Canonical pathways across species

Phylogenetic analysis: Genes/proteins that belong to a common module
are likely to have co-evolved



How do we detect conserved subgraphs: Graph
Mining

(Koyuturk, Grama, Szpankowski, ISMB04, Bioinformatics04)

Graph database

Subgraphs with frequency 3



Extending Frequent Itemset Mining to Graph Mining

Given a set of fransactions, find sets of items that are frequent
in these fransactions

Extensively studied in data mining literature

Algorithms exploit downward closure property

- Aset is frequent only if all of its subsets are frequent
- Generate itemsets from small to large, pruning supersets of infrequent
sets

Can be generalized to mining graphs

- fransaction — graph
- item — node, edge
- itemset — subgraph

However, the graph mining problem is considerably more
difficult



Graph Mining Challenges

Subgraph Isomorphism

- For counting frequencies, it is necessary to check whether a given graph

is a subgraph of another one
- NP-complete

Canonical labeling

- To avoid redundancy while generating subbgraphs, canonical labeling of

graphs is necessary
- EqQuivalent to subgraph isomorphism

Connectivity

- Pafterns of interest are generally connected, so it is necessary to only
generate connected subgraphs

Existing algorithms mainly focus on minimizing redundancy and
mining & extending simple substructures

- AGM, FSG, gSpan, SPIM, CLOSEGRAPH



Uniquely-Labeled Graphs

Contract nodes with identical label into a single node

No subgraph isomorphism

- Graphs are uniquely identified by their edge sets

Frequent subgraphs are preserved = No informnation loss

- Subgraphs that are frequent in general graphs are also frequent in their

uniquely-labeled representation

Discovered frequent subgraphs are still biologically interpretablel




Node Contraction in Metabolic Pathways

e Uniquely-labeled directed graph model

— Nodes represent enzymes

- Global labeling by enzyme nomenclature (EC numbers)

- A directed edge from one enzyme to the other implies that the second
consumes a product of the first
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Node Coniraction in Protein Interaction Networks

e Relating protfeins in different organisms

- Clustering: Orthologous proteins show sequence similarities

- Phlyogenetic analysis: Allows multi-resolution analysis among distant
species

- Literature, ortholog databases
e Contraction
- Inferaction between proteins — interaction between protein families
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Preservation of Subgraphs

Theorem: Let G be the uniquely-labeled graph obtained by
confracting the same-label nodes of graph G. Then, if 5 s d
subgraph of GG, S'is a subgraph of G.

Corollary: The uniquely-labeled representation of any frequent
subgraph is frequent in the set of uniquely-labeled graphs.




Simplifying the Graph Mining Problem

Observation: A uniguely-labeled graph is uniquely determined
by the set of its edges.

Maximal Frequent Subgraph Mining Problem

Given a set of labeled graphs {Gi,Gs,...,G,}, find all
connected graphs S such that S is a subgraph of at least om of
the graphs (s frequent) and no supergraph of S is frequent (is
maximal).

Maximal Frequent Edgeset Mining Problem

Given a set of edge fransactions {FEi, Es, ..., E,}. find all
connected edge sefs I such that F is a subsel of at least om
of the edge fransactions (is frequent) and no superset of F is
frequent (is maximal).



From Graphs to Edgesets

Fy= {ab, ac, de}

Fy= {ab, ac, be, de, ea}

Fs= {ab, ac, bc, ea}

F,= {ab, ce, de, ea}



MULE: Mining Uniquely Labeled Graphs

E=10

H = {1,2,3,4}

D = {ab, ac, de, ea}

D = {ab, ac, de}

E = {ab} E = {ac} E = {de} E = {ea}
C ={ac,ea} C = {ea} C = {ea} C =
H=1{1,2,3,4} H=1{1,2,3} H={1,2,4} H=1{2,3,4}
D = {ab, QN’%, ea}
E = {ab, ac} E = {ab, ea}
C ={ea} C = {de}

H = {1,2,3} H = {2,3,4}




Frequent Sub-Pathways in KEGG

Glutamate metabolism (155 organisms)

45 (29%) organisms

30 (19%) organisms

22 (14%) organisms




Frequent Interaction Patterns in DIP

e Protfein interaction networks for 7/ organisms

- Ecoli, Hpylo, Scere, Celeg, Dmela, Mmusc, Hsapi
- 44070 interactions between 16783 proteins

e Clustering with TrioeMCL & node confraction

- 30247 interactions between 6714 protein families

Protein kinase
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Runtime Characteristics

Comparison with isomorphism-based algorithms

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 % 12 0.01 % 12

16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patters

Glutamate metabolism, o = 8% Alanine metabolism, o = 10%
Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted
pattern FSG gSpan pattern pattern FSG gSpan pattern
15 10.8 1.12 16 16 54.1 10.13 17
14 12.8 2.42 16 16 24.1 3.92 16
13 1.7 0.31 13 12 0.9 0.27 12
12 0.9 0.30 12 11 0.4 0.13 11
11 0.5 0.08 11 8 0.1 0.01 8
Total number of patterns: 56 Total number of patterns: 34
Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MuLE+gSpan: 1.72+31.0 secs.




Aligning Protein Interaction Networks
(Koyuturk, Grama, Szpankowski, RECOMBO04)

e Defining graph alignment is difficult in general

- Biological meaning
- Mathematical modeling

e Existing algorithms are based on simplified formulations

- PathBLAST aligns pathways (linear chains) to render problem computationally
fractable

- Motif search algorithms look for small tfopological motifs, do not fake into
account conservation of proteins

e Our approach

- Aligns subsets of proteins based on the observation that modules and
complexes are conserved
- Guided by models of evolution



Evolution of Protein Interaction Networks

e Duplication/divergence models for the evolution of protein
interaction networks

- Inferactions of duplicated proteins are also duplicated
- Duplicated proteins rapidly lose interactions through mutations

e This provides us with a simplified basis for solving a very hard
problem

Duplication Deletion Inserfion



Aligning Protein Interaction Networks: Input

e PPl networks G(U, E) and H(V, F)

e Sparse similarity function S(u,v) forall u,v e U UV

- If S(u,v) > 0, w and v are homologous

Uq U2 V1 V2

us U4y U3 V4

G H



Local Alignment Induced by Subsets of Proteins

e Alignment induced by protein subset pair P = {U € U,V € V}:
A(P) ={M,N,D}

- A match € M corresponds to two pairs of homolog proteins from each
protein subset such that both pairs inferact in both PPl networks. A match
is associated with score p.

- A mismatch € N corresponds to two pairs of homolog proteins from
each PPl network such that only one pair is inferacting. A mismartch is
associated with penalty v.

- A duplication € D corresponds to a pair of homolog proteins that are in
the same protein subset. A duplication is associated with penalty 6.

Alignment induced by protein subset pair

{{Ul, Uz, u3z, U4}, {”01, V2, ”03}}



Pairwise Local Alignment of PPl networks

e Alignment score:
U(A(P)> — ZMEM M(M) - ZN@\/’V(N) - ZDeD 5(D)

- Matches are rewarded for conservation of interactions
- Duplications are penalized for differentiation after split
- Mismatches are penalized for divergence and experimental error

e All scores and penalties are functions of similarity between
associated proteins

e Problem: FInd all profein subset pairs with alignment score
larger than a certain threshold.

- High scoring protein subsets are likely to correspond to conserved
modules or complexes

e A graph equivalent to BLAST



Weighted Alignment Graph G(V, E)

e V consists all pairs of homolog profeins v ={u € U,v € V'}

e Anedge vv' = {uwv}{uv'} in Eis @

match edge if uu’ € E and vv’ € V, with weight w(vv') = p(uv, u'v’
mismatch edge if uu’ € E and vv’ € V or vice versa, with weight
w(vv') = —v(uv, u'v')

duplication edge if S(u,u’) > 0 or S(v,v") > 0, with weight w(vv') =
—6(u, ') orw(vv') = —=6(v,v')

{U47 ’02}

{U1,’01} ‘

{ug, v4} {uz, v1}



Maximum Weight Induced Subgraph Problem

e Definition: (IMAWISH)

- Given graph G(V,E) and a constant ¢, find V. € V such that

Zv,ue\?‘ w(vu) > e
- NP-complete

e Theorem: (MAWISH = Pairwise alignment)

- If V is a solution for the MAWISH problem on G(V, E) then P = {U,V}
induces an alignment A(P) with o(A) > e ,whereV=0U x V.,

{U4, UQ}

{ui,v1} @

{u2,U1}



A Greedy Algorithm for MAWISH

e Greedy graph growing

— Start with a heavily connected node, put it in V

— Choose v that is most heavily connected to V and put it in V until no v is
positively connected to V.

- If total weight of the subgraph induced by V is greater than a threshold,
return V

- Works in linear time.

e As modules and complexes are densely connected within the
module and loosely connected to the rest of the network, this
algorithm is expected 1o be effective.

e For adll local alignments, remove discovered subgraph and run
the greedy algorithm again.

e If the number of homologs for each protein is constant,
construction of alignment graph and solution of the MAWISH
takes O(|E| + |F]) fime.



Scoring Matches, Mismatches and Duplications

Quantizing similarity between two proteins

- Confidence in two proteins being orthologous (paralogous)
- BLAST E-value: S(u, v) = logig p(u,v)

Prandom

- Ortholog clustering: S(u, v) = c(u)c(v)

Match score

- p(uu',vv") = gmin{S(u,v), S(u',v")}

Mismnatch penalty

- v(uu', vv") = v min{S(u,v), S(u',v")}

Duplication penalty
- S(u,u) = 8(d — S(u,u’))



Alignment of Human and Mouse PPl Networks

Homo Sapiens

3 6o & ¥ T8

BMP4 BMRA BMP6 AVRT AVRB ALK3 BMP/7 BMRB GDFS AVR2

Mus Musculus

O—0O——0 O—O0—0O

BMP4 BMRA BMP6 AVRI AVRB ALK3 BMP/7 BMRB GDFS AVR2

A conserved subnet that is part of
fransforming growth factor beta receptor signaling pathway



Alignment of Yeast and Fly PPl Networks

Saccharomyces Cerevisiae

HS83

Drosophila Melanogaster

O—0—0

CG5393-PB HS83 CG2720-PA

A conserved subnet that is part of
response to stress



Ongoing Work on PPl Network Alignment

e Assessing stafistical significance

- Constructing a refence model based on models of evolution

e BLASI-like search queries for network alignment

- Given a query graph, find all high-scoring local alignments in a database
of PPl networks

e Mulfiple Graph Alignment (CLUSTAL, BLASTCLUST)

- How to combine graph mining and pairwise alignment



Inferring Functional Modules from Phylogenetic
Information

(Kim, Koyuturk, Topkara, Grama, Subramaniam, ECCB05
(submitted))

e Functionally related proteins are likely fo have co-evolved

- Construct phylogenetic profile for each genome: Vector of E-values
signifying existence of an orthologous protein in each organism

- |ldentify pairwise functional associations based on mutual information
between phylogenetic profiles (Pellegrini et al. (1999))

- Mutual information:
I(X,Y)=H(X) - HX|Y)=>,>,p= y)logp(z,y)/r(x)p(y))

- Shown to identify functionally associated protein pairs at a coarser level
than high-throughput methods

e However, domains, not proteins, co-evolve

- How can we incorporate domain information o enhance performance
of phylogeny-based intferaction prediction?



Identification of Co-evolved Domains

e While sequence information is widely available, domain
information is not generally comprehensive

e Approximating domains between fixed-size segments (Kim &
Subramaniam (2004))

- Chop proteins into overlapping (e.g.. 30 b.p.) fixed-size (e.g., 120 b.p.)
segments

- Construct phylogenetic profile for each segment, find maximum-mutual-
information segment pair for each protein pair

- Improves single-profile based approach

- However, there is no fixed domain size

e Can we identify domains from phylogenetic information as
well?

- Residue phylogenetic profiles!



Residue-Level Phylogenetic Analysis

e Residue phylogenetic profile

- For each residue r;; on profein P;, the existence of r;; in genome Gy, is
signified by the minimum e-value of alignments between P, and G that
contain r;;

e Mutual information matrix

- Matrix of mutual information between any pair of residues each from one
protein

- M(PZ, Pj) == [mkl],
where my; = I(profile(riy), profile(r;;))



Mutual Information Matrix

w
o
o

200

100

Residue Indexes of E.coli CheB

100 200 300 400 500 600
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Mutual information matrix for proteins CheA and Cheb in E-coli.
Darker pixels indicate higher mutual information.

Co-evolved domains identified by dark rectangles!



Clustering Residue Phylogenetic Profiles

e Cluster residues to identify co-evolved domains (Kim et al.,
2005)

e FOr each protein pair

- Downsample residues of each protein (for computational efficiency)

- Construct residue phylogenetic profiles

- Compute mutual information matrix

- |dentify sufficiently large contiguous rectangles on mutual information
matrix with consistently high mutual-information

- Set phylogenetic association score of the two proteins to the maximum
of mutual information of such rectangles

e Can be used for domain identification as well!



Comparison of Domain-Profile and Single-Profile
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Comparison of Domain-Profile and Single-Profile
Methods
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Augmenting PPl Networks with Phylogenetic
Information to Enhance Module Identification

Density-based clustering of PPl networks is commonly used o
identify modules

- MCODE: Greedy graph growing based on local neighlbborhood density of
eqach protein

- MCL: Markovian clustering based on random walks on PPl network
- MCS: Recursive min-cut partitioning

Information derived from PPl networks is not comprehensive

- High-throughput methods are prune to false-negatives and even false-
positives

- Available data is generated for target functional units in cell (e.g., fly
network mostly contains signaling information)



Functional Modules and Phylogeny
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Replication Factor C complex identified on yeast
PPl network by MCODE algorithm and the phylogenetic
profiles of its proteins on 25 eukaryotic genomes

Conserved in all eukaryotic species!



Functional Modules and Phylogeny
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A component of mitochondrial ribosome identified on
yeast PPl network by MCODE algorithm and the
phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in only yeast species!



Superposing PPl Networks with Phylogenically
Predicted Networks
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(PPI) network (PGA) network PGA networks

Cluster the superposed network!



Clustering The Superposed Network

e MICODE discovers

- 15 modules on E-coli PPl network
- 11 modules on E-coli PGA network constructed by domain-profile

method
- 26 modules on PPl U PGA

PPI PGA PPl U PGA
4 proteins 4 proteins 9 proteins
@ interactions 6 phylogenetic associations 21 functional associations
molybdopterin biosynthesis molybdopterin biosynthesis molybdopterin biosynthesis
molybdochetalase molybdochetalase
MGD biosynthesis B MGD biosynthesis B
molybdopterin — MGD molybdopterin — MGD

molybdopterin biosynthesis A molybdopterin biosynthesis A
molybdopterin biosynthesis C molybdopterin biosynthesis C
DMSO reductase DMSO reductase
molybdopterin biosynthesis B
anaerobic DMSO reductase

A module of the molybdopterin biosynthesis pathway in Ecoli
that can only be partially discovered on PPl and PGA networks
is comprehensively identified on the augmented network



Building a Comprehensive Signaling Database
There are four major components to any such effort:

e The availability of up-tfo-date, curated/annotated signaling
data (The Biology WorkBench provides us with an excellent
starfing point. [TaP is in the process of mirroring the WorkBench
at Purdue.

e Developing commonly accepted (flexible, extensible) data
stfandards. These do not exist in the signaling community at this
point, although, SBML addresses a closely related community.

e Developing analysis fechniques — we are one of the leading
groups in this areaq.

e Developing interfaces and middleware - this presents a
significant opportunity for development.



Building a Comprehensive Signaling Database

Any such effort must:

e Inferoperate with other existing signaling databases in terms
of data formats, APIs for services, and standardized output
formats.

e Inferoperate with existing genotype and phenotype tools and
databases.

e Provide support for building complex tools that build on a
variety of existing data sources and APls.



Using a Signaling Database: An Example (1)

Consider the problem of predicting protfein interactions using
phylogeny data. The algorithm builds on the following sources:

e Seguence data for generating phylogenetic profiles.

e BLAST for finding matches (populating the phylogenetic
profiles).

e INn-house analyses on generafing phylogeny vectors and
inferring interactions.

e DIP for validating results.

Our current study downloads all the data and analysis fools
(including BLAST) and performs analyses locally. This is extremely
cumbersome and inaccurate, since databases are always in a

state of flux.



Using a Signaling Database: An Example (2)

Consider the problem of deftecting modules in protein

interaction networks using interaction and phylogeny datfa. The

algorithm builds on the following sources:

Sequence data and BLAST for generating profile based hyper-
edges.

DIP for protein inferactions.

In-nouse code for analysis and augmentation of inferaction
networks.

MCODE/MCL/MCS for graph clustering.

A variety of online sources for validation.

As before, even simple analyses fasks can be extremely data,
effort, and time intensive.



Building a Comprehensive Signaling Database:
Challenges
e Interfaces for data and APl conversion.

e Analysis modules for inferaction data (harden existing analyses
tfools to production quality, develop new ftools).

e [O0OIs tO enable submission of other tools To the infrastructure
(controlled vocabularies, onfologies, etc.).

e Service discovery service,

e Support for building applications (composing applications,
type-checking, consistency).

e Runtime system for RPC, debugging, and visualization.



