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Biological Networks

e Interactions between biomolecules that drive cellular processes

- Genes, proteins, enzymes, chemical compounds
- Mass & energy generation, informatfion fransfer
- Coarser level than sequences in life’'s complexity pyramid

e Experimental/induced data in various forms

- Protein interaction networks
- Gene regulatory networks
- Metabolic & signaling pathways

e What do we gain from analysis of cellular networks?

- Modular analysis of cellular processes

- Understanding evolutionary relationships at a higher level

- Assigning functions to proteins through interaction information
- Intelligent drug design: block protein, preserve pathway



Protein Interaction Networks

e Inferacting proteins can be discovered experimentally

- Two-hybrid
- Mass spectrometry
- Phage display

Protein

Intferaction

S. Cerevisae protein interaction network
Source: Jeong et al. Nature 411: 41-42, 2001.



Gene Regulatory Networks

e Genes regulate each others’ expression

- A simple model: Boolean networks
- Can be derived from gene expression data
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Metabolic Pathways

e Chains of reactions that perform a particular metabolic
function

- Reactions are linked to each other through substrate-product relationships
- Directed hypergraph/ graph models
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Prior Work

e Non-orthogonal decomposition of binary matrices

- Find a compact set of vectors that represent the entire matrix
- Recursive decomposition through rank-one approximations
- Fast (linear-time) iterative heuristics for computing approximations

Analysis of gene expression data
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Analysis of Biological Networks

e Evolution thinks modular

Selective pressure on preserving interactions
Functional modules, protein complexes are highly conserved

e Computational methods for discovery and analysis modules
and complexes

Graph clustering: Functionally related entities are densely connected
Graph mining:  Common tfopological motifs, frequent interaction
pafterns reveal modularity

Graph alignment: Conservation/divergence of modules and pathways
Module maps: Canonical pathways across species

Phylogenetic analysis: Genes/proteins that belong to a common module
are likely to have co-evolved



Graph Mining

Graph database

Subgraphs with frequency 3



Extending Frequent Itemset Mining to Graph Mining

Given a set of fransactions, find sets of items that are frequent
in these fransactions

Extensively studied in data mining literature

Algorithms exploit downward closure property

- Aset is frequent only if all of its subsets are frequent
- Generate itemsets from small to large, pruning supersets of infrequent
sets

Can be generalized to mining graphs

- fransaction — graph
- item — node, edge
- itemset — subgraph

However, the graph mining problem is consderably more
difficult



Graph Mining Challenges

Subgraph Isomorphism

- For counting frequencies, it is necessary to check whether a given graph

is a subgraph of another one
- NP-complete

Canonical labeling

- To avoid redundancy while generating subbgraphs, canonical labeling of

graphs is necessary
- EqQuivalent to subgraph isomorphism

Connectivity

- Pafterns of interest are generally connected, so it is necessary to only
generate connected subgraphs

Existing algorithms mainly focus on minimizing redundancy and
mining & extending simple substructures

- AGM, FSG, gSpan, SPIM, CLOSEGRAPH



Uniquely-Labeled Graphs

Contract nodes with identical label into a single node

No subgraph isomorphism

- Graphs are uniquely identified by their edge sets

Frequent subgraphs are preserved = No informnation loss

- Subgraphs that are frequent in general graphs are also frequent in their

uniquely-labeled representation

Discovered frequent subgraphs are still biologically interpretablel




Node Contraction in Metabolic Pathways

e Uniquely-labeled directed graph model

— Nodes represent enzymes

- Global labeling by enzyme nomenclature (EC numbers)

- A directed edge from one enzyme to the other implies that the second
consumes a product of the first

2.7.1.1
2.7.1.2

51.3.3 —
2.7.1.1 '

2.7.1.63 5.1.3.3 2.7.1.63




Node Coniraction in Protein Interaction Networks

e Relating protfeins in different organisms

- Clustering: Orthologous proteins show sequence similarities

- Phlyogenetic analysis: Allows multi-resolution analysis among distant
species

- Literature, ortholog databases
e Contraction
- Inferaction between proteins — interaction between protein families
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Preservation of Subgraphs

Theorem: Let G be the uniquely-labeled graph obtained by
confracting the same-label nodes of graph G. Then, if 5 s d
subgraph of GG, S'is a subgraph of G.

Corollary: The uniquely-labeled representation of any frequent
subgraph is frequent in the set of uniquely-labeled graphs.




Simplifying the Graph Mining Problem

Observation: A uniguely-labeled graph is uniquely determined
by the set of its edges.

Maximal Frequent Subgraph Mining Problem

Given a set of labeled graphs {Gi,Gs,...,G,}, find all
connected graphs S such that S is a subgraph of at least om of
the graphs (s frequent) and no supergraph of S is frequent (is
maximal).

Maximal Frequent Edgeset Mining Problem

Given a set of edge fransactions {FEi, Es, ..., E,}. find all
connected edge sefs I such that F is a subsel of at least om
of the edge fransactions (is frequent) and no superset of F is
frequent (is maximal).



From Graphs to Edgesets

Fy= {ab, ac, de}

Fy= {ab, ac, be, de, ea}

Fs= {ab, ac, bc, ea}

F,= {ab, ce, de, ea}



MULE: Mining Uniquely Labeled Graphs

E=10

H = {1,2,3,4}

D = {ab, ac, de, ea}

D = {ab, ac, de}

E = {ab} E = {ac} E = {de} E = {ea}
C ={ac,ea} C = {ea} C = {ea} C =
H=1{1,2,3,4} H=1{1,2,3} H={1,2,4} H=1{2,3,4}
D = {ab, QN’%, ea}
E = {ab, ac} E = {ab, ea}
C ={ea} C = {de}

H = {1,2,3} H = {2,3,4}




Frequent Sub-Pathways in KEGG

Glutamate metabolism (155 organisms)

45 (29%) organisms

30 (19%) organisms

22 (14%) organisms




Frequent Interaction Patterns in DIP

e Protfein interaction networks for 7/ organisms

- Ecoli, Hpylo, Scere, Celeg, Dmela, Mmusc, Hsapi
- 44070 interactions between 16783 proteins

e Clustering with TrioeMCL & node confraction

- 30247 interactions between 6714 protein families
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Runtime Characteristics

Comparison with isomorphism-based algorithms

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 % 12 0.01 % 12

16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patters

Glutamate metabolism, o = 8% Alanine metabolism, o = 10%
Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted
pattern FSG gSpan pattern pattern FSG gSpan pattern
15 10.8 1.12 16 16 54.1 10.13 17
14 12.8 2.42 16 16 24.1 3.92 16
13 1.7 0.31 13 12 0.9 0.27 12
12 0.9 0.30 12 11 0.4 0.13 11
11 0.5 0.08 11 8 0.1 0.01 8
Total number of patterns: 56 Total number of patterns: 34
Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MuLE+gSpan: 1.72+31.0 secs.




Aligning Protein Interaction Networks

e Defining graph alignment is difficult in general

— Biological meaning
- Mathematical modeling

e Existing algorithms are based on simplified formulations

- PathBLAST aligns pathways (linear chains) to render problem computationally
fractable

- Motif search algorithms look for small tfopological motifs, do not fake into
account conservation of proteins

e Our approach

- Aligns subsets of proteins based on the observation that modules and
complexes

- Guided by models of evolution



Evolution of Protein Interaction Networks

e Duplication/divergence models for the evolution of protein
interaction networks

- Inferactions of duplicated proteins are also duplicated
- Duplicated proteins rapidly lose interactions through mutations

e This provides us with a simplified basis for solving a very hard
problem

Duplication Deletion Inserfion



Aligning Protein Interaction Networks: Input

e PINs G(U,F) and H(V, F)

e Sparse similarity function S(u,v) forall u,v e U UV

- If S(u,v) > 0, w and v are homologous

Uq U2 V1 V2

us U4y U3 V4

G H



Local Alignment Induced by Subsets of Proteins

e Alignment induced by protein subset pair P = {U € U,V € V}:
A(P) ={M,N,D}

- A maich € M correspons to two pairs of homolog proteins from each
profein subset such that both pairs inferact in both PINs. A match is
associated with score pu.

- A mismatch € N corresponds to two pairs of homolog proteins from
each PIN such that only one pair is inferacting. A mismartch is associated
with penalty v.

- A duplication € D corresponds to a pair of homolog proteins that are in
the same protein subset. A duplication is associated with penalty 6.

Alignment induced by protein subset pair

{{Ul, Uz, u3z, U4}, {”01, V2, ”03}}



Pairwise Local Alignment of PINs

e Alignment score:
U(A(P)> — ZMEM :“(M) - ZN@\/’V(N) - ZDeD 5(D)

- Matches are rewarded for conservation of interactions
- Duplications are penalized for differentiation after split
- Mismatches are penalized for divergence and experimental error

e All scores and penalties are functions of similarity between
associated proteins

e Problem: FInd all profein subset pairs with alignment score
larger than a certain threshold.

- High scoring protein subsets are likely to correspond to conserved
modules or complexes

e A graph equivalent to BLAST



Weighted Alignment Graph G(V, E)

e V consists all pairs of homolog profeins v ={u € U,v € V'}

e Anedge vv' = {uwv}{uv'} in Eis @

match edge if uu’ € E and vv’ € V, with weight w(vv') = p(uv, u'v’
mismatch edge if uu’ € E and vv’ € V or vice versa, with weight
w(vv') = —v(uv, u'v')

duplication edge if S(u,u’) > 0 or S(v,v") > 0, with weight w(vv') =
—6(u, ') orw(vv') = —=6(v,v')

{U47 ’02}

{U1,’01} ‘

{ug, v4} {uz, v1}



Maximum Weight Induced Subgraph Problem

e Definition: (IMAWISH)

- Given graph G(V,E) and a constant ¢, find V. € V such that

Zv,ue\?‘ w(vu) > e
- NP-complete

e Theorem: (MAWISH = Pairwise alignment)

- If V is a solution for the MAWISH problem on G(V, E) then P = {U,V}
induces an alignment A(P) with o(A) > e ,whereV=0U x V.,

{U4, UQ}

{ui,v1} @

{u2,U1}



A Greedy Algorithm for MAWISH

e Greedy graph growing

— Start with a heavily connected node, put it in V

— Choose v that is most heavily connected to V and put it in V until no v is
positively connected to V.

- If total weight of the subgraph induced by V is greater than a threshold,
return V

- Works in linear time.

e As modules and complexes are densely connected within the
module and loosely connected to the rest of the network, this
algorithm is expected 1o be effective.

e For adll local alignments, remove discovered subgraph and run
the greedy algorithm again.

e If the number of homologs for each protein is constant,
construction of alignment graph and solution of the MAWISH
takes O(|E| + |F]) fime.



Scoring Matches, Mismatches and Duplications

Quantizing similarity between two proteins

- Confidence in two proteins being orthologous (paralogous)
- BLAST E-value: S(u, v) = logig p(u,v)

Prandom

- Ortholog clustering: S(u, v) = c(u)c(v)

Match score

- p(uu',vv") = gmin{S(u,v), S(u',v")}

Mismnatch penalty

- v(uv',vv") = vmin{S(u,v), S(u',v")

Duplication penalty
- S(u,u) = 8(d — S(u,u’))



Alignment of Human and Mouse PINs

Homo Sapiens

3 6o & ¥ T8

BMP4 BMRA BMP6 AVRT AVRB ALK3 BMP/7 BMRB GDFS AVR2

Mus Musculus

O—0O——0 O—O0—0O

BMP4 BMRA BMP6 AVRI AVRB ALK3 BMP/7 BMRB GDFS AVR2

A conserved subnet that is part of
fransforming growth factor beta receptor signaling pathway



Alignment of Yeast and Fly PINs

Saccharomyces Cerevisiae

HS83

Drosophila Melanogaster

O—0—0

CG5393-PB HS83 CG2720-PA

A conserved subnet that is part of
response to stress



Ongoing Work on PIN Alighment

Assessing statistical significance

- Constructing a refence model based on models of evolution

BLAST-like search queries for network alignment

- Given a query graph, find all high-scoring local alignments in a database
of PINs

Multiple Graph Alignment (CLUSTAL, BLASTCLUST)

- How to combine graph mining and pairwise alignment

Web-based interface for PIN alignment queries



Constructing Module Maps

e Find functional modules in a comprehensive PIN (yeast)
through graph clustering

e Find best matfches to tThese modules in several species through
pairwise alignment

e Consfruct canonical module maps using these alignments

e Analyze canonical pathways on these mayps



Clustering Phylogeny Profiles for Module Detection

Interacting proteins are likely fo have co-evolved
Phylogeny profiles have been successful in predicting interactions

We can discover functional modules and complexes through
clustering phylogeny profiles

However, significant challenges remain

Ecoli, entire protein, 2 bins
200 T

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500 interacting protein pairs, mean=0.42, std=0.38

L 1 il 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500 non-interacting protein pairs, mean=0.06, std=0.07
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