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Biological Networks

• Interactions between biomolecules that drive cellular processes

– Genes, proteins, enzymes, chemical compounds

– Mass & energy generation, information transfer

– Coarser level than sequences in life’s complexity pyramid

• Experimental/induced data in various forms

– Protein interaction networks

– Gene regulatory networks

– Metabolic & signaling pathways

• What do we gain from analysis of cellular networks?

– Modular analysis of cellular processes

– Understanding evolutionary relationships at a higher level

– Assigning functions to proteins through interaction information

– Intelligent drug design: block protein, preserve pathway



Protein Interaction Networks

• Interacting proteins can be discovered experimentally

– Two-hybrid

– Mass spectrometry

– Phage display

Protein

Interaction
S. Cerevisae protein interaction network

Source: Jeong et al. Nature 411: 41-42, 2001.



Gene Regulatory Networks

• Genes regulate each others’ expression

– A simple model: Boolean networks

– Can be derived from gene expression data

Gene

Down-regulation

Up-regulation

Genetic network that controls
flowering time in A. Thaliania

Source: Blazquez et al. EMBO Reports 2: 1078-1082, 2001



Metabolic Pathways

• Chains of reactions that perform a particular metabolic
function

– Reactions are linked to each other through substrate-product relationships

– Directed hypergraph/ graph models

Enzyme

Substrate

Product

Compound

Glycolysis pathway in S. Cerevisae
Source: Hynne et al. Biophysical Chemistry, 94, 121-163, 2001.



Prior Work

• Non-orthogonal decomposition of binary matrices

– Find a compact set of vectors that represent the entire matrix

– Recursive decomposition through rank-one approximations

– Fast (linear-time) iterative heuristics for computing approximations

Analysis of gene expression data

Patterns of regulation Biclustering
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“Algorithms for bounded-error correlation of “Biclustering gene-feature matrices for

high dimensional data in microarray experiments” statistically significant dense patterns”

Koyutürk, Grama, Szpankowski: CSB’03. Koyutürk, Grama, Szpankowski: CSB’04.



Analysis of Biological Networks

• Evolution thinks modular

– Selective pressure on preserving interactions

– Functional modules, protein complexes are highly conserved

• Computational methods for discovery and analysis modules
and complexes

– Graph clustering: Functionally related entities are densely connected

– Graph mining: Common topological motifs, frequent interaction

patterns reveal modularity

– Graph alignment: Conservation/divergence of modules and pathways

– Module maps: Canonical pathways across species

– Phylogenetic analysis: Genes/proteins that belong to a common module

are likely to have co-evolved



Graph Mining

Graph database

Subgraphs with frequency 3



Extending Frequent Itemset Mining to Graph Mining

• Given a set of transactions, find sets of items that are frequent
in these transactions

• Extensively studied in data mining literature

• Algorithms exploit downward closure property

– A set is frequent only if all of its subsets are frequent

– Generate itemsets from small to large, pruning supersets of infrequent

sets

• Can be generalized to mining graphs

– transaction → graph

– item → node, edge

– itemset → subgraph

• However, the graph mining problem is consderably more
difficult



Graph Mining Challenges

• Subgraph Isomorphism

– For counting frequencies, it is necessary to check whether a given graph

is a subgraph of another one

– NP-complete

• Canonical labeling

– To avoid redundancy while generating subgraphs, canonical labeling of

graphs is necessary

– Equivalent to subgraph isomorphism

• Connectivity

– Patterns of interest are generally connected, so it is necessary to only

generate connected subgraphs

• Existing algorithms mainly focus on minimizing redundancy and
mining & extending simple substructures

– AGM, FSG, gSpan, SPIM, CLOSEGRAPH



Uniquely-Labeled Graphs

• Contract nodes with identical label into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Frequent subgraphs are preserved ⇒ No information loss

– Subgraphs that are frequent in general graphs are also frequent in their

uniquely-labeled representation

• Discovered frequent subgraphs are still biologically interpretable!



Node Contraction in Metabolic Pathways

• Uniquely-labeled directed graph model

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first

267

221

668

1172

5.1.3.3

5.1.3.3

2.7.1.1

2.7.1.1

2.7.1.1

2.7.1.2

2.7.1.2

2.7.1.632.7.1.63



Node Contraction in Protein Interaction Networks

• Relating proteins in different organisms

– Clustering: Orthologous proteins show sequence similarities

– Phlyogenetic analysis: Allows multi-resolution analysis among distant

species

– Literature, ortholog databases

• Contraction

– Interaction between proteins → interaction between protein families

KAPA

KAPB

KAPC

YPT7

YPT53

cAMP GTP-binding



Preservation of Subgraphs

Theorem: Let G̃ be the uniquely-labeled graph obtained by
contracting the same-label nodes of graph G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The uniquely-labeled representation of any frequent
subgraph is frequent in the set of uniquely-labeled graphs.

G G̃



Simplifying the Graph Mining Problem

Observation: A uniquely-labeled graph is uniquely determined
by the set of its edges.

Maximal Frequent Subgraph Mining Problem

Given a set of labeled graphs {G1, G2, ..., Gm}, find all
connected graphs S such that S is a subgraph of at least σm of
the graphs (is frequent) and no supergraph of S is frequent (is
maximal).

Maximal Frequent Edgeset Mining Problem

Given a set of edge transactions {E1, E2, ..., Em}, find all
connected edge sets F such that F is a subset of at least σm

of the edge transactions (is frequent) and no superset of F is
frequent (is maximal).



From Graphs to Edgesets
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F1= {ab, ac, de}

F2= {ab, ac, bc, de, ea}

F3= {ab, ac, bc, ea}

F4= {ab, ce, de, ea}



MULE: Mining Uniquely Labeled Graphs
replacements

E = ∅

H = {1, 2, 3, 4}

D = {ab}

E = {ab}

C = {ac, ea}

H = {1, 2, 3, 4}

D = {ab, ac}

E = {ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, de}

E = {de}

C = {ea}

H = {1, 2, 4}

D = {ab, ac, de, ea}

E = {ea}

C = ∅

H = {2, 3, 4}

D = {ab, ac}
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C = {ea}

H = {1, 2, 3}
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C = {de}

H = {2, 3, 4}



Frequent Sub-Pathways in KEGG

Glutamate metabolism (155 organisms)

gltX

glnA

glmS

guaA

nadE

purF

45 (29%) organisms

30 (19%) organisms

22 (14%) organisms



Frequent Interaction Patterns in DIP

• Protein interaction networks for 7 organisms

– Ecoli, Hpylo, Scere, Celeg, Dmela, Mmusc, Hsapi

– 44070 interactions between 16783 proteins

• Clustering with TribeMCL & node contraction

– 30247 interactions between 6714 protein families
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Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patters
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.



Aligning Protein Interaction Networks

• Defining graph alignment is difficult in general

– Biological meaning

– Mathematical modeling

• Existing algorithms are based on simplified formulations

– PathBLAST aligns pathways (linear chains) to render problem computationally

tractable

– Motif search algorithms look for small topological motifs, do not take into

account conservation of proteins

• Our approach

– Aligns subsets of proteins based on the observation that modules and

complexes

– Guided by models of evolution



Evolution of Protein Interaction Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• This provides us with a simplified basis for solving a very hard
problem

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Deletion Insertion



Aligning Protein Interaction Networks: Input

• PINs G(U,E) and H(V, F )

• Sparse similarity function S(u, v) for all u, v ∈ U ∪ V

– If S(u, v) > 0, u and v are homologous

u1 u2

u3 u4

v1 v2

v3 v4

G H



Local Alignment Induced by Subsets of Proteins

• Alignment induced by protein subset pair P = {Ũ ∈ U, Ṽ ∈ V }:
A(P) = {M,N ,D}

– A match ∈ M correspons to two pairs of homolog proteins from each

protein subset such that both pairs interact in both PINs. A match is

associated with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each PIN such that only one pair is interacting. A mismatch is associated

with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same protein subset. A duplication is associated with penalty δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:

Alignment induced by protein subset pair

{{u1, u2, u3, u4}, {v1, v2, v3}}



Pairwise Local Alignment of PINs

• Alignment score:
σ(A(P )) =

∑
M∈M µ(M) −

∑
N∈N ν(N) −

∑
D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are penalized for differentiation after split

– Mismatches are penalized for divergence and experimental error

• All scores and penalties are functions of similarity between
associated proteins

• Problem: Find all protein subset pairs with alignment score
larger than a certain threshold.

– High scoring protein subsets are likely to correspond to conserved

modules or complexes

• A graph equivalent to BLAST



Weighted Alignment Graph G(V,E)

• V consists all pairs of homolog proteins v = {u ∈ U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

−δ(u, u′) or w(vv
′) = −δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ



Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ
w(vu) ≥ ǫ.

– NP-complete

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

µ

µ

-ν

-ν

-ν

-δ



A Greedy Algorithm for MAWISH

• Greedy graph growing

– Start with a heavily connected node, put it in Ṽ

– Choose v that is most heavily connected to Ṽ and put it in Ṽ until no v is

positively connected to Ṽ.

– If total weight of the subgraph induced by Ṽ is greater than a threshold,

return Ṽ

– Works in linear time.

• As modules and complexes are densely connected within the
module and loosely connected to the rest of the network, this
algorithm is expected to be effective.

• For all local alignments, remove discovered subgraph and run
the greedy algorithm again.

• If the number of homologs for each protein is constant,
construction of alignment graph and solution of the MAWISH

takes O(|E| + |F |) time.



Scoring Matches, Mismatches and Duplications

• Quantizing similarity between two proteins

– Confidence in two proteins being orthologous (paralogous)

– BLAST E-value: S(u, v) = log10
p(u,v)

prandom
– Ortholog clustering: S(u, v) = c(u)c(v)

• Match score

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)

• Duplication penalty

– δ(u, u′) = δ̄(d − S(u, u′))



Alignment of Human and Mouse PINs

Homo Sapiens

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

Mus Musculus

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

A conserved subnet that is part of
transforming growth factor beta receptor signaling pathway



Alignment of Yeast and Fly PINs

Saccharomyces Cerevisiae

HS82

HS83

STI1CNS1

Drosophila Melanogaster

HS83 CG2720-PACG5393-PB

A conserved subnet that is part of
response to stress



Ongoing Work on PIN Alignment

• Assessing statistical significance

– Constructing a refence model based on models of evolution

• BLAST-like search queries for network alignment

– Given a query graph, find all high-scoring local alignments in a database

of PINs

• Multiple Graph Alignment (CLUSTAL, BLASTCLUST)

– How to combine graph mining and pairwise alignment

• Web-based interface for PIN alignment queries



Constructing Module Maps

• Find functional modules in a comprehensive PIN (yeast)
through graph clustering

• Find best matches to these modules in several species through
pairwise alignment

• Construct canonical module maps using these alignments

• Analyze canonical pathways on these maps



Clustering Phylogeny Profiles for Module Detection

• Interacting proteins are likely to have co-evolved

• Phylogeny profiles have been successful in predicting interactions

• We can discover functional modules and complexes through
clustering phylogeny profiles

• However, significant challenges remain
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