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Overview/Thesis of Talk

e Developing the Spike solver for general sparse linear Systems —
demonstrate convergence properties, processor performance,
and fime-fo-solution.

e Derive highly scalable parallel formulatfions and demonsfrafte
performance on large parallel platfforms.

e Using a pseudo-analytical performance model, derive estimates
of parallel fime, show these estimates fo be highly accurafte,
and use these estimates to argue scaling of Spike fo much
larger machine configurations.



Layout of Presentation

e SUMmMary of Spike Performance (Serial)

e Spike Parallelization Strategy

e Parallel Performance Results

e Pseudoanalytical Performance Model for Spike
e Validafion of Performance Model

e Limitations of Approach



Summary of Spike Solver

e largeted to banded, or low-rank perturbations of banded
systems (dense or sparse within the band).

e Banded approximations used as precondifioners.

e Spike is designed to optimize memory system as well as parallel
performance.



Summary of Spike Solver

Solving Ax = F with four partitions:
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Parfitioning of the matrix A and the RHS F', with p = 4.



Summary of Spike Solver

e Spike factorization is: A = D S, where D is a block-diagonadl
maftrix consisting only of the diagonal blocks A,

D = diag(Ay, ..., A4,),

e Matrix S has the following structure:
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Summary of Spike Solver

e The spikes V; and W; are given by

L,

Bj and Wj = (Aj)_l 0

c.. (1)

L,

e Spikes V; and W,, j = 2,...,p — 1, are generafed by solving,

e
A=l ] @
B 0

e Solving the system AX = F now reduces to two steps: DG = F
and SX = G.



Spike Performance (Serial)

e Spike used as a preconditioner with BiICGStab as the iterative
solver.

e Comparison with:

- ILUPACK: Multilevel ILU (Bollhofer)
http://www.math.tu-berlin.de/ilupack/
- ILUT: Incomplete LU Factorization from Sparsekit (Saad)
http://www-users.cs.umn.edu/ saad/software/SPARSKIT /spa
- ILUT-I: Improved ILUT (Benzi) (reorder using HSL-MC64 to
maximize the product of the diagonals and scale the matrix,
apply symmetric RCM reordering, incomplete factorization
via ILUT)


http://www.math.tu-berlin.de/ilupack/
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

Spike-Based Preconditioning: Preprocessing
Extracting a banded precondifioner:

e reorder using HSL-MC64 to make the diagonal zero free

e reorder ||A| + ||AT]| using HSL-MC73 to place larger elements
closest to the main diagonal

e extract a banded precondifioner, such that 99.9% of the
weight is inside the lband

e factorize the banded preconditioner



Spike Performance

Test Problems:

Matrix Name Application n nnz
1. ASIC_680K Circuit Simulation 660,000 2,638 997
2.DC1 Circuit Simulation 116, 835 766, 396
3. FINANS12 Econometrics 74, 752 596, 992
4. H20O Quantum Chemistry 67, 024 2,216, 736
5. 2D_54019_HIGHK Device Simulation 54, 019 996, 414
6. APPU NASA Benchmark 14, 000 1, 853, 104




Spike Performance

Comparison to ILUPACK AMF/PQ preconditoners on an uniprocessor

Method\Matrix Number 1 2 3 4 5 6
ILUPACK-AMF  >600 s Conv. Best Conv. Conv. Conv.
ILUPACK-PQ | >600 s Conv. Conv. Best Conv. Conv.

WSO Best Best Conv. Conv. Best Best

Outer Ilterative Solver: unrestarted GMRES, ILUPACK Parameters:
droptol : 1e-1 , bound for inv(L), inv(U): 10, elbow space: 100



Spike Performance

Comparison to ILUT and Improved-ILUT Preconditioners on an
uniprocessor

Method\Matrix Number 1 2 3 4 5 6
ILUT(1e-1, n) Fail Conv. Best Best Fail Conv.
ILUTI(1e-1,n) Conv. Conv. Conv. Conv. Conv. Conv.
ILUT(1e-3,n) Fail Conv. Conv. Conv. Fail >600s
ILUTI(1e-3,n) Conv. Conv. Conv. Conv. Conv. >600s
ILUT(0,k) Fail >600s Conv. >600s Conv. >600s
ILUTI(O0,k) Conv. >600s Conv. >600s Conv. >600s
WSO Best Best Conv. Conv. Best Best

Outer Iterative Solver : BICGStab



Spike Performance

WSO solver speedup, SGI Altix:
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Spike Performance

Reservoir Simulation (SPE10 benchmarks):

2,244,000 Problem 2 : N = 2. 462, 265.

Problem 1: N
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Spike Performance

Spike Factorization Performance:
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Spike Performance

Reservoir Simulation Benchmark 2:

Time (s)
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Spike: Parallel Steps

1. Compute the LU (via DDBTRF)
° LjUj — Aj for; =1,2,3,4
2. Compute spikes (via DIBTRS)
T
o Solve for Vy: L;U;V; = [0 -+ 0 B | forj=1,2,3

T
e Solve for Wj: LjUjo o {Cf 0--- O} for j = 2,3, 4.

3. Communicate spike tips Wj(t) (processor j sends o processor
g —1,forj=234). Wj(t) is the top k£ x k part of W,

4, Factorize the reduced system (via DGETRF)

v
j



. Modify the right hand side by solving (via DIBIRS) : L;U,g; = f;
(G=1,2,3,4

. Communicate the modified right hand side fips gj(-t) (processor
j sends to processor j — 1 for j = 2,3, 4).

. Solve the reduced system

( I V(b)>< (b)> ( (b)>
; A 4)
Wj(+)1 1 §]+)1 9j+1

. Communicate the reduced system solution gﬁl (processor j
sends to processor j 4+ 1 for j = 1,2, 3).

. Refrieve z; (j = 1,2,3,4) (via DGEMV) z; = f; — V:C(t)

b
j+1 ij§'—)1
(Vy=0and W; = 0)



Analytical Characterization of Spike Steps

Notation:

e k =kl = ku (Upper and lower bandwidths idenftical)

e the dimension of the matrix is V

e The dimension of the partitioned blocks are n = N/p.

Stage Description Cost

] Factorize the Diagonal Blocks aink® + Bink

2 Compute Spikes aonk?® + Bank

3 Communicate Tips of Spikes ask?(p — 1) + Bsk® + 3
4 Factorize The Reduced System auk® + Bak?

5 Modify the Right Hand Side asnk

6 Communicate Tips of MRHS ask(p — 1) + Bsk + 6

7 Solve the Reduced System ark?

8 Comm. Soln. of Reduced System  agk(p — 1) + Bsk + s
Q Retfrieve the Solution agnk + Bon




Analytical Characterization of Spike Steps: Observations

e Stage 1 and Stage 2 cost O(nk?) computation and O(nk)
memory references.

e Stage 4 has O(k?) computation an O(k?) memory references.
e Stage 5 has O(nk) computation and O(nk) memory references.
e Stage 7 has O(k?) computation and O(k?) memory references.

e Stage 9 has O(nk) computation for matrix vector product and
O(n) computation for vector addition.

e INn Stages 3,6,8 we model the cost by O(data) for the
communication of dafa, O(data x (p — 1)) for network saturation



Training the Analytical Model

e Digonally dominant toeplitz system of dimension 5, 000, 000.

e Training platform: Ranger Sun Constellafion Linux Cluster at
TACC (3, 936 nodes, each node has 16 cores of AMD Barcelona
Processor. Inferconnect is Infiniband.

e [rain using 16, 32,64 processors ( 1,2,4 nodes respectively) for
bandwidths k& = 15, 25, 35.

e Using a least squares approximation we find the following
parameters «;, 6;,v; fort =1, .., 9.



Cost Model Parameters

Training yields the following parameters:

i o7 B; i

1 862x10719 261 x1078% -

2 3.96x107% 3.66x10"7 -

3 907x107 121x10% 948 x 104
4 165 x10722 743 x107% -

5 285x1078 - -

6 431 x107° 4.10x 1077 3.59 x 107°
7 119x107 - -

8 257x1077 3.39x10731 6.42x 1074
Q 886 x 1078 951 x107? -

Note: Parameters also tell us what regime our algorithm operates

in:

is the computation memory or processor bound?

communication latency or bandwidth bound, etc.

B



Cost Model Verification

Validation on fwo systems — one using the same toeplitz system
used in fraining, the other, a toeplitz system of dimension
10,000,000. We verify the model for 128, 246, 512, and 1,024
[Processors.

N K p Observed Model Error
5,000,000 35 128 2.78 2.64 0.13
5,000,000 25 128 1.55 1.49 0.06
5,000,000 15 128 0.70 0.66 0.04
5,000,000 35 256 1.49 1.33 0.16
5,000,000 25 256 0.79 0.75 0.04
5,000,000 15 256 0.35 0.33 0.02
5,000,000 35 512 0.67 0.67 0.00
5,000,000 25 512 0.38 0.38 0.00
5,000,000 15 512 0.20 0.17 0.03
5,000,000 35 1,024 0.37 0.35 0.02
5,000,000 25 1,024 0.21 0.20 0.01

5,000,000 15 1,024 0.10 0.09 0.01




Cost Model Verification (contd)

N kK p Observed Model Error
10,000,000 35 128 5.36 5.27 0.09
10,000,000 25 128 3.03 2.98 0.06
10,000,000 15 128 1.36 1.31 0.05
10,000,000 35 256 2.78 2.064 0.13
10,000,000 25 256 1.55 1.49 0.06
10,000,000 15 256 0.68 0.66 0.02
10,000,000 35 512 1.51 1.33 0.18
10,000,000 25 512 0.79 0.75 0.04
10,000,000 15 512 0.35 0.33 0.02
10,000,000 35 1,024 0.69 0.68 0.01
10,000,000 25 1,024 0.45 0.38 0.07

10,000,000 15 1,024 0.19 0.17 0.02




Cost Model Verification

e Model yields outstanding accuracy in predicting performance
well beyond fraining machine size.

e Model predicts linear scaling.

Spike is an excellent candidate for emerging ulfrascale platforms.



Spike Scaling

e FOr a given problem instfance, increasing number of processors
always results in reduced efficiency.

e For a class of parallel systems (algorithm + platform), generally
referred to as scalable, increasing problem size for a given
number of processors results in increased efficiency.

e A paradllel system is scaled by increasing problem size with
increasing number of processors fo maintain good (constant)
efficiency (Isoefficiency).

e We want this rate of increase to be as small as possible (for
reasons of memory and solution tfime).

e The rate of increase can ftheoretically shown to be lower
bounded by O(p).

e Spike achieves this lower bound!



Limitations of Approach

e Serial performance is harder to characterize than parallel
performance!

- Operate in stable region of serial performance

e Analytical models may vary across platforms
- Separate models for message passing and shared address
space machines
e Granularity of aggregates

- It may not always be possible to clearly identify and
analytically characterize various steps in a parallel algorithm.



Thank Youl!



