
Parallel banded preconditioners for

non-symmetric linear system solvers

Ahmed Sameh, Faisal Saied, and Ananth Grama

Department of Computer Science, Purdue University

{sameh,fsaied,ayg }@purdue.edu

Sept 5, 2008

Acknowledgment: Funding for this work was provided by the Department of

Energy and the National Science Foundation

Overview/Thesis of Talk

• Developing the Spike solver for general sparse linear Systems –
demonstrate convergence properties, processor performance,
and time-to-solution.

• Derive highly scalable parallel formulations and demonstrate
performance on large parallel platforms.

• Using a pseudo-analytical performance model, derive estimates
of parallel time, show these estimates to be highly accurate,
and use these estimates to argue scaling of Spike to much
larger machine configurations.

Layout of Presentation

• Summary of Spike Performance (Serial)

• Spike Parallelization Strategy

• Parallel Performance Results

• Pseudoanalytical Performance Model for Spike

• Validation of Performance Model

• Limitations of Approach

Summary of Spike Solver

• Targeted to banded, or low-rank perturbations of banded
systems (dense or sparse within the band).

• Banded approximations used as preconditioners.

• Spike is designed to optimize memory system as well as parallel
performance.

Summary of Spike Solver

Solving Ax = F with four partitions:

Partitioning of the matrix A and the RHS F , with p = 4.

Summary of Spike Solver

• Spike factorization is: A = D S, where D is a block-diagonal
matrix consisting only of the diagonal blocks Aj,

D = diag(A1, ..., Ap),

• Matrix S has the following structure:

Summary of Spike Solver

• The spikes Vj and Wj are given by

Vj = (Aj)
−1

[

0

Im

]

Bj, and Wj = (Aj)
−1

[

Im

0

]

Cj. (1)

• Spikes Vj and Wj, j = 2, ..., p− 1, are generated by solving,

Aj

[

Vj,Wj

]

=

0 Cj

... 0

0 ...

Bj 0

. (2)

• Solving the system AX = F now reduces to two steps: DG = F
and SX = G.

Spike Performance (Serial)

• Spike used as a preconditioner with BiCGStab as the iterative
solver.

• Comparison with:

– ILUPACK: Multilevel ILU [Bollhofer]
http://www.math.tu-berlin.de/ilupack/

– ILUT: Incomplete LU Factorization from Sparsekit [Saad]
http://www-users.cs.umn.edu/˜saad/software/SPARSKIT /spa

– ILUT-I: Improved ILUT [Benzi] (reorder using HSL-MC64 to
maximize the product of the diagonals and scale the matrix,
apply symmetric RCM reordering, incomplete factorization
via ILUT)

http://www.math.tu-berlin.de/ilupack/
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

Spike-Based Preconditioning: Preprocessing

Extracting a banded preconditioner:

• reorder using HSL-MC64 to make the diagonal zero free

• reorder ‖A‖ + ‖AT‖ using HSL-MC73 to place larger elements
closest to the main diagonal

• extract a banded preconditioner, such that 99.9% of the
weight is inside the band

• factorize the banded preconditioner

Spike Performance

Test Problems:

Spike Performance

Comparison to ILUPACK AMF/PQ preconditoners on an uniprocessor

Outer Iterative Solver: unrestarted GMRES, ILUPACK Parameters:
droptol : 1e-1 , bound for inv(L), inv(U): 10 , elbow space: 100

Spike Performance

Comparison to ILUT and Improved-ILUT Preconditioners on an
uniprocessor

Outer Iterative Solver : BiCGStab

Spike Performance

WSO solver speedup, SGI Altix:

Spike Performance

Reservoir Simulation (SPE10 benchmarks): Problem 1: N =
2, 244, 000 Problem 2 : N = 2, 462, 265.

Spike Performance

Spike Factorization Performance:

Spike Performance

Reservoir Simulation Benchmark 2:

Spike: Parallel Steps

1. Compute the LU (via DDBTRF)

• LjUj ← Aj for j = 1, 2, 3, 4

2. Compute spikes (via DTBTRS)

• Solve for Vj: LjUjVj =
[

0 · · · 0 BT
j

]T

for j = 1, 2, 3

• Solve for Wj: LjUjWj =
[

CT
j 0 · · · 0

]T

for j = 2, 3, 4.

3. Communicate spike tips W
(t)
j (processor j sends to processor

j − 1, for j = 2, 3, 4). W
(t)
j is the top k × k part of Wj.

4. Factorize the reduced system (via DGETRF)

(

I V
(b)
j

W
(t)
j I

)

(3)

5. Modify the right hand side by solving (via DTBTRS) : LjUjgj = fj

(j = 1, 2, 3, 4)

6. Communicate the modified right hand side tips g
(t)
j (processor

j sends to processor j − 1 for j = 2, 3, 4).

7. Solve the reduced system

(

I V
(b)
j

W
(t)
j+1 I

)(

x
(b)
j

x
(t)
j+1

)

=

(

g
(b)
j

g
(t)
j+1

)

(4)

8. Communicate the reduced system solution g
(t)
j+1 (processor j

sends to processor j + 1 for j = 1, 2, 3).

9. Retrieve xj (j = 1, 2, 3, 4) (via DGEMV) xj = fj − Vjx
(t)
j+1 −Wjx

(b)
j−1

(V4 = 0 and W1 = 0)

Analytical Characterization of Spike Steps

Notation:

• k = kl = ku (upper and lower bandwidths identical)

• the dimension of the matrix is N

• the dimension of the partitioned blocks are n = N/p.

Stage Description Cost

1 Factorize the Diagonal Blocks α1nk2 + β1nk

2 Compute Spikes α2nk2 + β2nk

3 Communicate Tips of Spikes α3k
2(p − 1) + β3k

2 + γ3

4 Factorize The Reduced System α4k
3 + β4k

2

5 Modify the Right Hand Side α5nk

6 Communicate Tips of MRHS α6k(p − 1) + β6k + γ6

7 Solve the Reduced System α7k
2

8 Comm. Soln. of Reduced System α8k(p − 1) + β8k + γ8

9 Retrieve the Solution α9nk + β9n

Analytical Characterization of Spike Steps: Observations

• Stage 1 and Stage 2 cost O(nk2) computation and O(nk)
memory references.

• Stage 4 has O(k3) computation an O(k2) memory references.

• Stage 5 has O(nk) computation and O(nk) memory references.

• Stage 7 has O(k2) computation and O(k2) memory references.

• Stage 9 has O(nk) computation for matrix vector product and
O(n) computation for vector addition.

• In Stages 3, 6, 8 we model the cost by O(data) for the
communication of data, O(data× (p−1)) for network saturation

Training the Analytical Model

• Digonally dominant toeplitz system of dimension 5, 000, 000.

• Training platform: Ranger Sun Constellation Linux Cluster at
TACC (3, 936 nodes, each node has 16 cores of AMD Barcelona
Processor. Interconnect is Infiniband.

• Train using 16, 32, 64 processors (1, 2, 4 nodes respectively) for
bandwidths k = 15, 25, 35.

• Using a least squares approximation we find the following
parameters αi, βi, γi for i = 1, .., 9.

Cost Model Parameters

Training yields the following parameters:

i αi βi γi

1 8.62× 10−10 2.61× 10−8 -

2 3.96× 10−8 3.66× 10−7 -

3 9.07× 10−14 1.21× 10−6 9.48× 10−4

4 1.65× 10−29 7.43× 10−6 -

5 2.85× 10−8 - -

6 4.31× 10−9 4.10× 10−7 3.59× 10−5

7 1.19× 10−7 - -

8 2.57× 10−7 3.39× 10−31 6.42× 10−4

9 8.86× 10−8 9.51× 10−9 -

Note: Parameters also tell us what regime our algorithm operates
in: is the computation memory or processor bound? is
communication latency or bandwidth bound, etc.

Cost Model Verification

Validation on two systems – one using the same toeplitz system
used in training, the other, a toeplitz system of dimension
10, 000, 000. We verify the model for 128, 246, 512, and 1, 024
processors.

N k p Observed Model Error

5, 000, 000 35 128 2.78 2.64 0.13

5, 000, 000 25 128 1.55 1.49 0.06

5, 000, 000 15 128 0.70 0.66 0.04

5, 000, 000 35 256 1.49 1.33 0.16

5, 000, 000 25 256 0.79 0.75 0.04

5, 000, 000 15 256 0.35 0.33 0.02

5, 000, 000 35 512 0.67 0.67 0.00

5, 000, 000 25 512 0.38 0.38 0.00

5, 000, 000 15 512 0.20 0.17 0.03

5, 000, 000 35 1, 024 0.37 0.35 0.02

5, 000, 000 25 1, 024 0.21 0.20 0.01

5, 000, 000 15 1, 024 0.10 0.09 0.01

Cost Model Verification (contd)

N k p Observed Model Error

10, 000, 000 35 128 5.36 5.27 0.09

10, 000, 000 25 128 3.03 2.98 0.06

10, 000, 000 15 128 1.36 1.31 0.05

10, 000, 000 35 256 2.78 2.64 0.13

10, 000, 000 25 256 1.55 1.49 0.06

10, 000, 000 15 256 0.68 0.66 0.02

10, 000, 000 35 512 1.51 1.33 0.18

10, 000, 000 25 512 0.79 0.75 0.04

10, 000, 000 15 512 0.35 0.33 0.02

10, 000, 000 35 1, 024 0.69 0.68 0.01

10, 000, 000 25 1, 024 0.45 0.38 0.07

10, 000, 000 15 1, 024 0.19 0.17 0.02

Cost Model Verification

• Model yields outstanding accuracy in predicting performance
well beyond training machine size.

• Model predicts linear scaling.

Spike is an excellent candidate for emerging ultrascale platforms.

Spike Scaling

• For a given problem instance, increasing number of processors
always results in reduced efficiency.

• For a class of parallel systems (algorithm + platform), generally
referred to as scalable, increasing problem size for a given
number of processors results in increased efficiency.

• A parallel system is scaled by increasing problem size with
increasing number of processors to maintain good (constant)
efficiency (Isoefficiency).

• We want this rate of increase to be as small as possible (for
reasons of memory and solution time).

• The rate of increase can theoretically shown to be lower
bounded by O(p).

• Spike achieves this lower bound!

Limitations of Approach

• Serial performance is harder to characterize than parallel
performance!

– Operate in stable region of serial performance

• Analytical models may vary across platforms

– Separate models for message passing and shared address
space machines

• Granularity of aggregates

– It may not always be possible to clearly identify and
analytically characterize various steps in a parallel algorithm.

Thank You!

