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YEAST AGING

@ Yeast as a model organism for
aging research:
v Rapid growth
v Ease of manipulation
@ Replicative life-span (RLS): the
number of buds a mother cell can
produce before senescence
occurs
”““‘"”"“’ Aper Uzan, PhD. @ Chronological life-span (CLS):
duration of viability after entering
the stationary-phase
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YEAST INTERACTOME

@ Mixed network: Contains both
directed (biochemical activities)
and undirected (protein-protein
interactions) edges

@ 103,619 (63,395 non-redundant)
physical interactions among
5,691 proteins.

@ 5,791 (5,443 non-redundant)
biochemical activities (mostly
phosphorylation events) among
2,002 kinase-substrate pairspyrpur
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TRANSCRIPTIONAL REGULATORY NETWORK (TRN) OF
YEAST

@ Directed graph

@ Downloaded from the Yeast Search for Transcriptional
Regulators And Consensus Tracking (YEASTRACT)

@ Consists of 48,082 interactions between 183 transcription
factors (TF) and 6,403 target genes (TG).

PURDUE
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RAPAMYCIN-TREATMENT DATASET

° Rapamycin treatment
(min) protein
o p ® & & P 4 name

@ Rapamycin: A lipophilic macrolide that
directly binds to and inhibits TOR in vivo

@ Temporal analysis of gene expression
changes for 6,000 ORFs in Baker’s yeast,
Saccharomyces cerevisiae, over 6h of
rapamycin treatment.

@ 366 repressed and 291 induced genes at a
minimum threshold of 2-fold change.

3.0 00 +3.0
Signal-to-Noise ratio

Adopted from Fournier et al., PURDUE
2010
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DIRECTIONAL INFORMATION FLOW

RANDOM WALK

Random walk on a graph G, initiated from vertex v, is the
sequence of transitions among vertices, starting from v. At
each step, the random walker randomly chooses the next
vertex from among the neighbors of the current node.

It is a Markov chain with the transition matrix P, where
pjj = Prob(Sn+1 = vi|Sn = v;) and random variable S,
represents the state of the random walk at the time step n.

PURDUE

Grama et al. Tissue-Specific Networks



Overview
Materials and Methods
Results and Discussion

Part 1: Motivation — Constructing aging pathways in yeast

DIRECTIONAL INFORMATION FLOW

RANDOM WALK WITH RESTART

Random walk with restart (RWR) is a modified Markov chain in
which, at each step, a random walker has the choice of either
continuing along its path, with probability «, or jump (teleport)
back to the initial vertex, with probability 1 — «.

The transition matrix of the modified chain, M, can be
computed as M = aP + (1 — a)e, 17, where e, is a stochastic
vector of size n having zeros everywhere, except at index v,
and 1 is a vector of all ones.

PURDUE

Grama et al. Tissue-Specific Networks



Overview
Materials and Methods
Results and Discussion

Part 1: Motivation — Constructing aging pathways in yeast

DIRECTIONAL INFORMATION FLOW

STATIONARY DISTRIBUTION

The portion of time spent on each node in an infinite random
walk with restart initiated at node v, with parameter «.

Stationary distribution of the modified chain

m(a) = Mny(a)
(P + (1 —a)e,1 M) my(a)

Enforcing a unit norm on the dominant eigenvector to ensure its
stochastic property, || 7, (a) ||1= 177, = 1, we will have:
PURDUE
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DIRECTIONAL INFORMATION FLOW

STATIONARY DISTRIBUTION—CONTINUE

DEFINITION

lterative form of the information flow process:

(o) = aPmy(a)+ (1 —a)ey,

DEFINITION

Explicit (direct) formulation of the information flow process:

mv(e) = (1—a)(/—aP) ey,
Q

FURDUE
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DIRECTIONAL INFORMATION FLOW

INTERPRETATION

Expansion using the Neumann series:

m(a) = (1-0a)) (aP)e,
i=0

Thus, 7, («) is a function of:
@ Distance to source node (v)
@ Multiplicity of paths

PURDUE
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SIDEBAR: FUNCTIONAL PAGERANK (PR)

Computing PageRank (PR)

@ PageRank as a random surfer process: Start surfing from a
random node and keep following links with probability
restarting with probability 1 — 1; the node for restarting will be
selected based on a personalization vector v. The ranking value
x; of a node i is the probability of visiting this node during surfing.

@ PR can also be cast in power series representation as
x=(1-p) Z/;'(:o W Sv; S encodes column-stochastic
adjacencies.

Functional rankings

@ A general method to assign ranking values to graph nodes as
X = Z/,'(:o ¢;S'v. PRis a functional ranking, ¢; = (1 — p)/.

@ Terms attenuated by outdegrees in S and damping coefficienfBURDUE
G-
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FUNCTIONAL RANKINGS THROUGH MULTIDAMPING
[KOLLIAS, GALLOPOULOS, AG, TKDE’13]

/'CD COMPUTING j IN MULTIDAMPING
Hy

Simulate a functional ranking by random
surfers following emanating links with
probability 1; at step j given by :

pw=1- ﬁa/ =1,..,k,

T
Ck—j+1

where Mo = 0 and Pk—j+1 = T—j

Examples }
LinearRank (LR) x'* = Yo 2 Sv sy = oLy j =1, . k.

TotalRank (TR) x™® = zfomsw W= ";j;,jzu...,k.

PURDUE
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MULTIDAMPING AND COMPUTATIONAL COST

Advantages of multidamping

@ Interpretability and Design!

@ Reduced computational cost in approximating functional
rankings using the Monte Carlo approach. A random surfer
terminates with probability 1 — x; at step j.

@ Inherently parallel and synchronization free computation.

PURDUE
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MULTIDAMPING PERFORMANCE

TotalRank: Kendal tau vs step for TopK=1000 nodes (uk-2005)

Kendala
nare noes (max=30)

|

|

|

|

|

|

\

How well does the computed ranking capture the “reference” ordering

for top—k nodes, compared to standard iterations of equivalent
computational cost/number of operations? [Left]

Approximate personalized ranking: Run less than n surfers to
completion (each called a microstep, x-axis), from a selected node
(personalized). How well can we capture the “reference” top-k PURDUE
nodes, i.e., how many of them are shared (y-axis), compared to the
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EXPERIMENTAL SETTINGS

We set the preference vector as:

1 ifveS
N ) TS IT Vv )
es(l) =
s {o O.W.

for S being the subset of vertices in the yeast interactome
corresponding to members of the TORC1 protein complex. The
diameter of the network is computed to be 6 and « parameter is
set to O% = % ~ 0.85 accordingly to give all nodes a fair
chance of being visited.

PURDUE
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DISTRIBUTION OF INFORMATION FLOW SCORES

Distribution of information flow scores across nodes with similar distance from
members of TORC1 are color coded accordingly. The p parameter is the average of
information flow scores for nodes under each distribution.

05 T T T T

i ‘,

- Imh‘ltul. -
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ENRICHMENT MAP OF YEAST GOSLIM TERMS

Enriched terms are identified by mHG p-value, computed for the ranked-list of genes
based on their information flow scores. Each node represents a significant GO term
and edges represent the overlap between genesets of GO terms. Terms in different
branches of GO are color-coded with red, green, and blue. Color intensity of each node
represents the significance of its p-value, while the node size illustrates the size of its
geneset. Thickness of edges is related to the extent of overlap among genesets.
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TOR-DEPENDENT CONTROL OF TRANSCRIPTION
INITIATION

Induced subgraph in the yeast interactome, constructed from the top-ranked genes in
the information flow analysis that are annotated with the transcription initiation GO
term. Different functional subunits are marked and color-coded appropriately.
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ENRICHMENT PLOT FOR RAPAMYCIN-TREATMENT
DATASET

Enrichment score as a function of the score percentage. Computations are based on
the set of differentially expressed genes in response to Rapamycin treatment. The
peak of plot occurs at around top 15% of scores, resulting in the minimum
hypergeometric (mHG) score of ~ 1e — 22. The exact p-value for this score is
computed, using dynamic programing, to be 3.3e — 19.

PURDUE

Grama et al. Tissue-Specific Networks




Overview
Materials and Methods
Results and Discussion

Part 1: Motivation — Constructing aging pathways in yeast

TORCI1-DEPENDENT REGULATION OF GAP1

The schematic diagram is based on literature evidence for the interactions. Each node
in the signaling pathway is annotated with the rank of its information flow score from
TORC1. Ranking of nodes based on their information flow scores respect our prior
knowledge on the structure of this pathway.

Tap42-PPase|

PURDUE
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COMPARATIVE NETWORK ANALYSIS

TRADITIONAL APPROACH

KEY CHALLENGE

To project functional pathways from a well-studied organism,
such as yeast, back to a higher-order organism, suchas  pygrpur
humans.

Grama et al. Tissue-Specific Networks
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YEAST AS A KEY MODEL ORGANISM

SIMPLE YET POWERFUL

"... yeast has graduated from a position
as the premier model for eukaryotic cell
biology to become the pioneer organism
that facilitated the establishment of
entirely new fields of study called
functional genomics and systems
biology." — D. Botstein and G. Fink
(2011).

PURDUE
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YEAST AS A KEY MODEL ORGANISM

WHY YEAST?

@ Rapid growth and ease of manipulation

@ Mature genetic and molecular toolbox, including deletion
mutants, over-expression libraries, and green fluorescent
protein (GFP)-tagged yeast strains

@ Multitude of high-throughput datasets, ranging from genetic
arrays, transcriptome, proteome, and metabolome profiles

@ Saccharomyces Genome Database (SGD)
@ Saccharomyces
GENOME DATABASE
PURDUE
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CONSERVED PATHWAYS BETWEEN YEAST AND
HIGHER-ORDER ORGANISMS

Many of the underlying functionalities and associated machineries
are shared with higher eukaryotes:

@ Cell cycle

@ Programmed cell death

@ Protein folding, quality control, and degradation

@ Signaling pathways, such as MAPK, TOR, and insulin/IGF-I
@ Aging and CR-mediated pathways

@ Chronological: amount of time cells survive in post-mitotic
state

@ Replicative: number of times a cell can divide before
senescence occurs.

Grama et al. Tissue-Specific Networks

PURDUE



Motivation
Materials and methods
Results and discussion

Part 2: Tissue Specific Networks and Comparative Analysis

CONSERVED PATHWAYS

CONTINUED

Conserved Nutrient Signaling Pathways Regulating Longevity

Yeast Worms Flies Mammals

Dietary restriction Dietary restriction Dietary restriction Dietary restriction

e | U

oar2

Acet
)

PURDUE
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YEAST AS A MODEL ORGANISM FOR HUMAN DISEASE

RECENT SUCCESS STORIES

@ Heterologous expression of disease

gene(s)
@ Yeast as an unbiased phenotypic
screen
& . @ N-aryl benzimidazole (NAB) strongly
protects cells from a-synuclein toxicity
et = S in the humanized yeast model
%ﬁ @ Validated this discovery using iPS cell
Adoped from . Tadi o . from Earkinson’s patients with a-Syn
mutation

PURDUE
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PROBLEM STATEMENT

What are the
shared/ missing
functional
components in
yeast, compared
to human tissues?

For which tissues i
is yeast a good

model organism? T Yl o

Epithelial tissue

Different human tissues, while inheriting a
similar genetic code, exhibit unique
anatomical and physiological properties.

PURDUE
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TISSUE-SPECIFIC GENE EXPRESSION

The GNF Gene Atlas dataset:

@BiocPs 8 @ 79 different tissues

e —— @ 44,775 human transcripts
@ Platforms:

— == I. Affymetrix HG-U133A.
— 2. Custom GNF1H array.

PURDUE
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TISSUE-SPECIFIC INTERACTOMES

@ Vertex-induced subgraphs of the global human interactome
@ Based on the GNF Gene Atlas dataset
= A gene is considered as present in a tissue, if its
normalized expression level is > 200 (average
difference between match-mismatch pairs).

B [
‘Global human protein interactome 20 25 _Ances( roteins
80,922 interactions, 10,229 proteins — Al proteins o
9
;g; 20
15 o
§ 15
k<
B
210
Expression profiles for 79 human cells and tissues <
£
g s
&
5
)
O ® o I & & O 2 SIS @ W Q Q
NI B0 NI S8
N »:*wn} 'S‘), u\b \}a NORY QY '5‘)‘ » 6‘}9@ A
Skeletal muscle  B-cell Pancreatic islet
interactome  interactome  interactome Number of tissues in which Number of tissues in which
protein is expressed protein is expressed
Adopted from Bossi et al., 2009 PURDUE
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SEQUENCE SIMILARITY OF PROTEIN PAIRS

@ Protein sequences are downloaded from Ensembl
database, release 69.

@ Reference genomes:

> Human: GRCh37
> Yeast: EF4

@ Number of protein sequences:

> Human: 101,075
> Yeast: 6,692

@ Low-complexity regions are masked using pseg

@ Smith-Waterman algorithm is used to compute local
sequence alignments. PURDUE
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SPARSE NETWORK ALIGNMENT

Integer Quadratic Program— Approximated using Belief Propagation:

max (aw'x + ngSx)

Subiect to- Cx < 15,.n, Matching constraints;
) ' xi» € {0,1}, Integer constraint.

x: Matching vector

L: Bipartite graph of similarities between pair of proteins in input networks

w: Edge-weights in the graph L (based on sequence similarities)

&: Matrix encoding conserved edges in the product graph (G ® H)

C: Incidence matrix of graph L

PURDUE
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SIDEBAR: NETWORK ALIGNMENT

@ Node similarity: Two nodes are
similar if they are linked by other
similar node pairs. By pairing
similar nodes, the two graphs
become aligned.

@ Let A and B be the normalized adjacency matrices of the graphs
(normalized by columns), Hj be the independently known
similarity scores (preferences matrix) of nodes i € Vg and j € Vj,
and p be the fractional contribution of topological similarity.

@ To compute X, IsoRank iterates:

X « uBXAT + (1 — p)H BUTOOE

Grama et al. Tissue-Specific Networks
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NETWORK SIMILARITY DECOMPOSITION (NSD)
[KOLLIAS, MOHAMMADI, AG, TKDE’12]

Network Similarity Decomposition (NSD)

@ In n steps of we reach
X = (1 = p) S5 n*BEH(AT)* + "B H(AT)"

@ Assume that H = uv’ (1 component). Two phases for X:

1. u) = Bfy and vk) = Akv (preprocess/compute iterates)
2. X = (1 = ) 05 pkutk) v Ly (construct X)
This idea extends to s components, H ~ 37, w;z/.

@ NSD computes matrix-vector iterates and builds X as a sum of
outer products; these are much cheaper than triple matrix
products.

We can then apply Primal-Dual or Greedy Matching (1/2
approximation) to extract the actual node pairs.

Grama et al. Tissue-Specific Networks
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NSD: PERFORMANCE [KOLLIAS, MADAN,
MOHAMMADI, AG, BMC RN’ 12]

Species pair NSD PDM GM IsoRank

(secs) | (secs) (secs) (secs)

Species Nodes  Edges celeg-dmela 3.15 15212 | 7.29 783.48
celeg (worm) 2805 4572 celeg-hsapi 3.28 163.05 | 9.54 1209.28

dmela (fly) 7518 25830 celeg-scere 1.97 127.70 4.16 949.58

ecoli (bacterium) 1821 6849 dmela-ecoli 1.86 86.80 4.78 807.93
hpylo (bacterium) 706 1414 dmela-hsapi 8.61 590.16 | 28.10 7840.00
hsapi (human) 9633 36386 dmela-scere 4.79 182.91 12.97 4905.00
mmusc (mouse) 290 254 ecoli-hsapi 2.41 79.23 4.76 2029.56
scere (yeast) 5499 31898 ecoli-scere 1.49 69.88 2.60 1264.24
hsapi-scere 6.09 181.17 | 15.56 6714.00

@ We compute similarity matrices X for various pairs of species using
Protein-Protein Interaction (PPI) networks. p = 0.80, uniform initial
conditions (outer product of suitably normalized 1’s for each pair), 20
iterations, one component.

@ We then extract node matches using PDM and GM.

@ Three orders of magnitude speedup from NSD-based approaches PURDUE
compared to IsoRank.
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NSD: PARALLELIZATION [KKG JPDC’ 14 (TO APPEAR)]

Parallelization: NSD has been ported to parallel and
distributed platforms.

@ We have aligned up to million-node graph instances using
over 3K cores.

@ We process graph pairs of over a billion nodes and twenty
billion edges each (!), on MapReduce-based distributed
platforms.

PURDUE
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RANDOM MODEL FOR TISSUE-SPECIFIC NETWORKS

DEFINITION

@ Global human interactome: All potential interactions between human
proteins, represented by graph G = (Vg, Eg)

@ Tissue-specific network(s): Vertex-induced subgraph(s) of the Global
human interactome, represented by Gr = (Vr, Er) with ny = | V7|,
Vr C V(;, and Er C EG

@ Universal genes: Ubiquitously expressed subset of human genes
corresponding to houskeeping functions, represented by V,, C Vg, and
ny = |Vu|

@ Random tissue-specific network(s): Vertex-induced subgraphs of G,
constructed from Vr = Vi U Vs, with Vs being random set of vertices
of size nr — ny selected from Vg \ Wy

runDUE
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SIGNIFICANCE OF NETWORK ALIGNMENT(S)

DEFINITION

@ Original alignment: W = wa, O = %xTSx
@ Monte-Carlo simulation: Let Wz and O be the random vectors representing the weight and overlap of
aligning k. random tissue-specific networks with yeast
@ Positive/Negative cases: kp is the number of random cases with both Wz < Wand. Or < O. kyis
defined as the size of complement set.
@ p-value bounds:
kp ) kn
dr = — < alignmentp-value <1 — — = A
kr kr

@ Alignment p-value:

p — value = Prob(a + © + B+ W < OWxR)

PURDUE
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PARTITIONING HUMAN GENES BASED ON THEIR
EXPRESSION SELECTIVITY

DEFINITION
Selectivity p-value— Given a cluster of homogenous tissues:

p-value(X = cn) Prob(c, < X)

HGT (cn|N, n, cn)

B m’"(if’"’ Cen, X)C(N — ey, n — X)
- C(N, n)

X=Cp

N: total number of tissues, n: number of tissues in the cluster, cy: number of
tissues in which a given gene is expressed, ¢,: number of tissue in the cluster
that the given gene is expressed.

r unDUE
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HUMAN-SPECIFIC OR CONSERVED?

Classification of human tissue-selective genes:
@ Conserved: Subset of tissue-selective genes that are consistently aligned in the "majority" of aligned tissues
in the given group
@ Human-specific: Subset of tissue-selective genes that are consistently unaligned in the "majority" of tissues
in the given group

@ Unclassified: None of the above

Majority voting:

@ Alignment consistency table: Yeast partner of each tissue-selective gene in the given cluster of tissues

@ Consensus rate: Minimum percentage of tissues (columns) in each row of the alignment consistency table
that have to agree to make a decision about conserved/human-specificity

PURDUE
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SUMMARY

Protein Sequence
to Yeast

Similarities

Input Networks

Tissue-Tissue

. Assess Significance Tissues Similar
>| Network Alignment of Alignments
- g s

Identify
Tissue Groups

Similarity Network

‘ Dissected Alignment Graph ‘

| |

Tissue-Specific
Shared Core Sub—Networks.

| |

Partition Based on Conservation Under Alignment

Human-Specific
Core Functions

Human-Specific
Tissue—Functions

PURDUE
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CORE GENES— THE MOST CONSERVED SUBSET OF
HOUSEKEEPING GENES

PURDUE
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FUNCTIONAL ENRICHMENT OF HK GENES

CORE SUBSET

@ Ribosome biogenesis
@ Translation

@ Protein targeting

@ RNA splicing

@ mRNA surveillance

PURDUE
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FUNCTIONAL ENRICHMENT OF HK GENES

HUMAN-SPECIFIC SUBSET

@ Anatomical structure development
@ Paracrine signaling
@ NADH dehydrogenase (mitochondrial Complex 1)

PURDUE
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THE MOST SIMILAR TISSUES TO YEAST

Name pval lower bound overall pval pval upper bound confidence
Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1
HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998
Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996
Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991
Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988
Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984
Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947
Thymus < 1.00e-04 0.0001 0.0062 0.9938
Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914
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THE LEAST SIMILAR TISSUES TO YEAST

Name pval lower bound overall pval pval upper bound confidence
Trigeminal Ganglion 0.9947 0.9994 1 0.9947
Superior Cervical Ganglion 0.9847 0.9991 1 0.9847
Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443
Atrioventricular Node 0.8746 0.9792 0.9921 0.8825
Skin 0.8355 0.9297 0.9809 0.8546
Heart 0.7934 0.9585 0.9815 0.8119
Appendix 0.7596 0.9371 0.973 0.7866
Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348
Skeletal Muscle 0.3994 0.5902 0.7866 0.6128
Uterus Corpus 0.233 0.7736 0.8769 0.3561
Lung 0.0771 0.3853 0.5544 0.5227
Pons 0.0674 0.5201 0.6983 0.3691
Salivary Gland 0.0639 0.3449 0.5173 0.5466
Liver 0.0600 0.6857 0.8519 0.2081
Ovary 0.0388 0.2735 0.4481 0.5907
Trachea 0.0259 0.2376 0.4146 0.6113
Globus Pallidus 0.0206 0.2471 0.4336 0.587
Cerebellum 0.0127 0.1950 0.3783 0.6344
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TISSUE-TISSUE SIMILARITY NETWORK

Testis tissues.

/Ganglion tissues

Blood cells.

Brain tissues
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BLOOD CELLS

(a) Conserved (b) Human-specific

FIGURE : Enrichment map of unique blood-selective functions.
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BRAIN TISSUES

(a) Conserved (b) Human-specific
FIGURE : Enrichment map of unique brain-selective functions.
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ENRICHED DISEASE CLASSES

Conserved genes Human-specific genes
Disease class p-value Disease class p-value
Blood cells Cancer 2.85% 1073 Immune 1.88 % 109
Infection 1.00 « 102
Brain tissues Psych 3.59 1074 Psych 5.70  10~8
Chemdependency 2.60 « 103 Neurological 2.97 % 102
Pharmacogenomic ~ 9.74 x 102
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COMPARATIVE ANALYSIS OF BRAIN-SPECIFIC
PATHOLOGIES

Disorder Conserved genes Human-specific genes
schizophrenia 0.008573 8.4905E-06
autism 0.048288 0.00077448
dementia 0.0014356 -
schizophrenia; schizoaffective disorder; bipolar disorder - 0.0021433
myocardial infarct; cholesterol, HDL; triglycerides; atherosclerosis, 0.0051617 -
coronary; macular degeneration; colorectal cancer
epilepsy 0.071562 0.0064716
seizures - 0.020381
bipolar disorder 0.048288 0.022016
attention deficit disorder conduct disorder oppositional defiant disorder 0.032444 0.023865
PURDUE
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CONCLUDING REMARKS

@ Tissue-specific networks and interactions emerging as
important datasets for understanding and mitigating
pathologies.

@ This work represents among the first computational
investigations into tissue-specific networks.

@ Our results reveal a significantly refined understanding of
tissue-specific processes and their functions.

@ Tissue-specific networks show significant enrichment of a
number of important diseases, identifying a number of drug

targets.
@ Comparative analysis with yeast sheds light on humanized
yeast models and their use in identifying targets. PURDUE
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