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YEAST AGING

Courtesy of Alper Uzan, PhD.

Yeast as a model organism for
aging research:
X Rapid growth
X Ease of manipulation

Replicative life-span (RLS): the
number of buds a mother cell can
produce before senescence
occurs
Chronological life-span (CLS):
duration of viability after entering
the stationary-phase
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YEAST INTERACTOME

Protein Family

Glucose Receptors

Kinase Associated
Kinase Catalytic
Kinase Metabolic/Lipid

Other phosphorylation-related

Phosphatase Associated
Phosphatase Catalytic
Phosphatase Metabolic/Lipid

Transcription Factor

Mixed network: Contains both
directed (biochemical activities)
and undirected (protein-protein
interactions) edges
103,619 (63,395 non-redundant)
physical interactions among
5,691 proteins.
5,791 (5,443 non-redundant)
biochemical activities (mostly
phosphorylation events) among
2,002 kinase-substrate pairs.
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TRANSCRIPTIONAL REGULATORY NETWORK (TRN) OF

YEAST

Directed graph
Downloaded from the Yeast Search for Transcriptional
Regulators And Consensus Tracking (YEASTRACT)
Consists of 48,082 interactions between 183 transcription
factors (TF) and 6,403 target genes (TG).
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RAPAMYCIN-TREATMENT DATASET

Adopted from Fournier et al.,
2010

Rapamycin: A lipophilic macrolide that
directly binds to and inhibits TOR in vivo
Temporal analysis of gene expression
changes for 6,000 ORFs in Baker’s yeast,
Saccharomyces cerevisiae, over 6h of
rapamycin treatment.
366 repressed and 291 induced genes at a
minimum threshold of 2-fold change.
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DIRECTIONAL INFORMATION FLOW
RANDOM WALK

DEFINITION

Random walk on a graph G, initiated from vertex v , is the
sequence of transitions among vertices, starting from v . At
each step, the random walker randomly chooses the next
vertex from among the neighbors of the current node.

It is a Markov chain with the transition matrix P, where
pij = Prob(Sn+1 = vi |Sn = vj) and random variable Sn
represents the state of the random walk at the time step n.
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DIRECTIONAL INFORMATION FLOW
RANDOM WALK WITH RESTART

DEFINITION

Random walk with restart (RWR) is a modified Markov chain in
which, at each step, a random walker has the choice of either
continuing along its path, with probability α, or jump (teleport)
back to the initial vertex, with probability 1− α.

The transition matrix of the modified chain, M, can be
computed as M = αP + (1− α)ev 1T , where ev is a stochastic
vector of size n having zeros everywhere, except at index v ,
and 1 is a vector of all ones.
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DIRECTIONAL INFORMATION FLOW
STATIONARY DISTRIBUTION

The portion of time spent on each node in an infinite random
walk with restart initiated at node v , with parameter α.

DEFINITION

Stationary distribution of the modified chain

πv (α) = Mπv (α)

= (αP + (1− α)ev 1T )πv (α)

Enforcing a unit norm on the dominant eigenvector to ensure its
stochastic property, ‖ πv (α) ‖1= 1Tπv = 1, we will have:
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DIRECTIONAL INFORMATION FLOW
STATIONARY DISTRIBUTION–CONTINUE

DEFINITION

Iterative form of the information flow process:

πv (α) = αPπv (α) + (1− α)ev ,

DEFINITION

Explicit (direct) formulation of the information flow process:

πv (α) = (1− α)(I − αP)−1︸ ︷︷ ︸
Q

ev ,

Grama et al. Tissue-Specific Networks
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DIRECTIONAL INFORMATION FLOW
INTERPRETATION

DEFINITION

Expansion using the Neumann series:

πv (α) = (1− α)
∞∑

i=0

(αP)iev

Thus, πv (α) is a function of:
Distance to source node (v )
Multiplicity of paths
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SIDEBAR: FUNCTIONAL PAGERANK (PR)

Computing PageRank (PR)

PageRank as a random surfer process: Start surfing from a
random node and keep following links with probability µ
restarting with probability 1− µ; the node for restarting will be
selected based on a personalization vector v . The ranking value
xi of a node i is the probability of visiting this node during surfing.

PR can also be cast in power series representation as
x = (1− µ)

∑k
j=0 µ

jSjv ; S encodes column-stochastic
adjacencies.

Functional rankings

A general method to assign ranking values to graph nodes as
x =

∑k
j=0 ζjSjv . PR is a functional ranking, ζj = (1− µ)µj .

Terms attenuated by outdegrees in S and damping coefficients
ζj .
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FUNCTIONAL RANKINGS THROUGH MULTIDAMPING

[KOLLIAS, GALLOPOULOS, AG, TKDE’13]

1-µ
1

1-µ
2

1-µκ

µ
1

µ
2

µκ

COMPUTING µj IN MULTIDAMPING

Simulate a functional ranking by random
surfers following emanating links with
probability µj at step j given by :
µj = 1− 1

1+
ρk−j+1
1−µj−1

, j = 1, ..., k ,

where µ0 = 0 and ρk−j+1 =
ζk−j+1
ζk−j

Examples
LinearRank (LR) xLR =

∑k
j=0

2(k+1−j)
(k+1)(k+2)

S jv : µj =
j

j+2 , j = 1, ..., k .

TotalRank (TR) xTR =
∑∞

j=0
1

(j+1)(j+2)
S jv : µj =

k−j+1
k−j+2 , j = 1, ..., k .
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MULTIDAMPING AND COMPUTATIONAL COST

Advantages of multidamping

Interpretability and Design!
Reduced computational cost in approximating functional
rankings using the Monte Carlo approach. A random surfer
terminates with probability 1− µj at step j .
Inherently parallel and synchronization free computation.
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MULTIDAMPING PERFORMANCE
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For the seed node 20% of the nodes has better ranking in the Non-Personalized run.

iterations
surfers

Approximate ranking: Run n surfers to completion for graph size n.
How well does the computed ranking capture the “reference” ordering
for top-k nodes, compared to standard iterations of equivalent
computational cost/number of operations? [Left]
Approximate personalized ranking: Run less than n surfers to
completion (each called a microstep, x-axis), from a selected node
(personalized). How well can we capture the “reference” top-k
nodes, i.e., how many of them are shared (y-axis), compared to the
simple approach? [Right]Grama et al. Tissue-Specific Networks
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EXPERIMENTAL SETTINGS

We set the preference vector as:

eS(i) =

{
1
|S| if vi ∈ S,

0 O.W.

for S being the subset of vertices in the yeast interactome
corresponding to members of the TORC1 protein complex. The
diameter of the network is computed to be 6 and α parameter is
set to d

d+1 = 6
7 ∼ 0.85 accordingly to give all nodes a fair

chance of being visited.
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DISTRIBUTION OF INFORMATION FLOW SCORES

Distribution of information flow scores across nodes with similar distance from
members of TORC1 are color coded accordingly. The µ parameter is the average of
information flow scores for nodes under each distribution.
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ENRICHMENT MAP OF YEAST GOSLIM TERMS

Enriched terms are identified by mHG p-value, computed for the ranked-list of genes
based on their information flow scores. Each node represents a significant GO term
and edges represent the overlap between genesets of GO terms. Terms in different
branches of GO are color-coded with red, green, and blue. Color intensity of each node
represents the significance of its p-value, while the node size illustrates the size of its
geneset. Thickness of edges is related to the extent of overlap among genesets.
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TOR-DEPENDENT CONTROL OF TRANSCRIPTION

INITIATION

Induced subgraph in the yeast interactome, constructed from the top-ranked genes in
the information flow analysis that are annotated with the transcription initiation GO
term. Different functional subunits are marked and color-coded appropriately.
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ENRICHMENT PLOT FOR RAPAMYCIN-TREATMENT

DATASET

Enrichment score as a function of the score percentage. Computations are based on
the set of differentially expressed genes in response to Rapamycin treatment. The
peak of plot occurs at around top 15% of scores, resulting in the minimum
hypergeometric (mHG) score of ∼ 1e − 22. The exact p-value for this score is
computed, using dynamic programing, to be 3.3e − 19.
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TORC1-DEPENDENT REGULATION OF GAP1
The schematic diagram is based on literature evidence for the interactions. Each node
in the signaling pathway is annotated with the rank of its information flow score from
TORC1. Ranking of nodes based on their information flow scores respect our prior
knowledge on the structure of this pathway.
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COMPARATIVE NETWORK ANALYSIS
TRADITIONAL APPROACH

KEY CHALLENGE

⇐⇒

To project functional pathways from a well-studied organism,
such as yeast, back to a higher-order organism, such as
humans.

Grama et al. Tissue-Specific Networks



Part 1: Motivation – Constructing aging pathways in yeast
Part 2: Tissue Specific Networks and Comparative Analysis

Motivation
Materials and methods
Results and discussion

YEAST AS A KEY MODEL ORGANISM
SIMPLE YET POWERFUL

"... yeast has graduated from a position
as the premier model for eukaryotic cell
biology to become the pioneer organism
that facilitated the establishment of
entirely new fields of study called
functional genomics and systems
biology." – D. Botstein and G. Fink
(2011).
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YEAST AS A KEY MODEL ORGANISM
WHY YEAST?

Rapid growth and ease of manipulation
Mature genetic and molecular toolbox, including deletion
mutants, over-expression libraries, and green fluorescent
protein (GFP)-tagged yeast strains
Multitude of high-throughput datasets, ranging from genetic
arrays, transcriptome, proteome, and metabolome profiles
Saccharomyces Genome Database (SGD)
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CONSERVED PATHWAYS BETWEEN YEAST AND

HIGHER-ORDER ORGANISMS

Many of the underlying functionalities and associated machineries
are shared with higher eukaryotes:

Cell cycle

Programmed cell death

Protein folding, quality control, and degradation

Signaling pathways, such as MAPK, TOR, and insulin/IGF-I

Aging and CR-mediated pathways

Chronological: amount of time cells survive in post-mitotic
state
Replicative: number of times a cell can divide before
senescence occurs.
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CONSERVED PATHWAYS
CONTINUED

Fontana et al, Science (2010)
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YEAST AS A MODEL ORGANISM FOR HUMAN DISEASE
RECENT SUCCESS STORIES

Adopted from D. Tardiff et al.
(2013)

Heterologous expression of disease
gene(s)
Yeast as an unbiased phenotypic
screen
N-aryl benzimidazole (NAB) strongly
protects cells from α-synuclein toxicity
in the humanized yeast model
Validated this discovery using iPS cell
from Parkinson’s patients with α-Syn
mutation

Grama et al. Tissue-Specific Networks
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PROBLEM STATEMENT

For which tissues
is yeast a good
model organism?

Different human tissues, while inheriting a
similar genetic code, exhibit unique
anatomical and physiological properties.

What are the
shared/ missing
functional
components in
yeast, compared
to human tissues?
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TISSUE-SPECIFIC GENE EXPRESSION

The GNF Gene Atlas dataset:

79 different tissues
44,775 human transcripts
Platforms:

1. Affymetrix HG-U133A.
2. Custom GNF1H array.
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TISSUE-SPECIFIC INTERACTOMES

Vertex-induced subgraphs of the global human interactome
Based on the GNF Gene Atlas dataset
⇒ A gene is considered as present in a tissue, if its

normalized expression level is > 200 (average
difference between match-mismatch pairs).

Adopted from Bossi et al., 2009
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SEQUENCE SIMILARITY OF PROTEIN PAIRS

Protein sequences are downloaded from Ensembl
database, release 69.
Reference genomes:
. Human: GRCh37
. Yeast: EF4

Number of protein sequences:
. Human: 101,075
. Yeast: 6,692

Low-complexity regions are masked using pseg
Smith-Waterman algorithm is used to compute local
sequence alignments.

Grama et al. Tissue-Specific Networks



Part 1: Motivation – Constructing aging pathways in yeast
Part 2: Tissue Specific Networks and Comparative Analysis

Motivation
Materials and methods
Results and discussion

SPARSE NETWORK ALIGNMENT

Integer Quadratic Program– Approximated using Belief Propagation:

max
x

(αwT x +
β

2
xTSx)

Subject to:
{
Cx ≤ 1nG∗nH Matching constraints;
xii′ ∈ {0,1}, Integer constraint.

x : Matching vector

L: Bipartite graph of similarities between pair of proteins in input networks

w : Edge-weights in the graph L (based on sequence similarities)

S: Matrix encoding conserved edges in the product graph (G ⊗ H)

C: Incidence matrix of graph L

Grama et al. Tissue-Specific Networks
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SIDEBAR: NETWORK ALIGNMENT

Node similarity: Two nodes are
similar if they are linked by other
similar node pairs. By pairing
similar nodes, the two graphs
become aligned.

Let Ã and B̃ be the normalized adjacency matrices of the graphs
(normalized by columns), Hij be the independently known
similarity scores (preferences matrix) of nodes i ∈ VB and j ∈ VA,
and µ be the fractional contribution of topological similarity.

To compute X , IsoRank iterates:

X ← µB̃XÃT + (1− µ)H

Grama et al. Tissue-Specific Networks
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NETWORK SIMILARITY DECOMPOSITION (NSD)
[KOLLIAS, MOHAMMADI, AG, TKDE’12]

Network Similarity Decomposition (NSD)

In n steps of we reach
X (n) = (1− µ)

∑n−1
k=0 µ

k B̃k H(ÃT )k + µnB̃nH(ÃT )n

Assume that H = uvT (1 component). Two phases for X :
1. u(k) = B̃k u and v (k) = Ãk v (preprocess/compute iterates)
2. X (n) = (1− µ)

∑n−1
k=0 µ

k u(k)v (k)T
+ µnu(n)v (n)T

(construct X)
This idea extends to s components, H ∼

∑s
i=1 wizT

i .

NSD computes matrix-vector iterates and builds X as a sum of
outer products; these are much cheaper than triple matrix
products.

We can then apply Primal-Dual or Greedy Matching (1/2
approximation) to extract the actual node pairs.

Grama et al. Tissue-Specific Networks
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NSD: PERFORMANCE [KOLLIAS, MADAN,
MOHAMMADI, AG, BMC RN’12]

Species Nodes Edges
celeg (worm) 2805 4572
dmela (fly) 7518 25830
ecoli (bacterium) 1821 6849
hpylo (bacterium) 706 1414
hsapi (human) 9633 36386
mmusc (mouse) 290 254
scere (yeast) 5499 31898

Species pair NSD
(secs)

PDM
(secs)

GM
(secs)

IsoRank
(secs)

celeg-dmela 3.15 152.12 7.29 783.48
celeg-hsapi 3.28 163.05 9.54 1209.28
celeg-scere 1.97 127.70 4.16 949.58
dmela-ecoli 1.86 86.80 4.78 807.93
dmela-hsapi 8.61 590.16 28.10 7840.00
dmela-scere 4.79 182.91 12.97 4905.00
ecoli-hsapi 2.41 79.23 4.76 2029.56
ecoli-scere 1.49 69.88 2.60 1264.24
hsapi-scere 6.09 181.17 15.56 6714.00

We compute similarity matrices X for various pairs of species using
Protein-Protein Interaction (PPI) networks. µ = 0.80, uniform initial
conditions (outer product of suitably normalized 1’s for each pair), 20
iterations, one component.
We then extract node matches using PDM and GM.
Three orders of magnitude speedup from NSD-based approaches
compared to IsoRank.

Grama et al. Tissue-Specific Networks
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NSD: PARALLELIZATION [KKG JPDC’14 (TO APPEAR)]

Parallelization: NSD has been ported to parallel and
distributed platforms.

We have aligned up to million-node graph instances using
over 3K cores.
We process graph pairs of over a billion nodes and twenty
billion edges each (!), on MapReduce-based distributed
platforms.

Grama et al. Tissue-Specific Networks
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RANDOM MODEL FOR TISSUE-SPECIFIC NETWORKS

DEFINITION

Global human interactome: All potential interactions between human
proteins, represented by graph G = (VG,EG)

Tissue-specific network(s): Vertex-induced subgraph(s) of the Global
human interactome, represented by GT = (VT ,ET ) with nT = |VT |,
VT ⊂ VG, and ET ⊂ EG

Universal genes: Ubiquitously expressed subset of human genes
corresponding to houskeeping functions, represented by VU ⊂ VG, and
nU = |VU |
Random tissue-specific network(s): Vertex-induced subgraphs of G,
constructed from VR = VU ∪ VS , with VS being random set of vertices
of size nT − nU selected from VG \ VU

Grama et al. Tissue-Specific Networks
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SIGNIFICANCE OF NETWORK ALIGNMENT(S)

DEFINITION

Original alignment: W = wT x , O = 1
2 xT Sx

Monte-Carlo simulation: Let WR and OR be the random vectors representing the weight and overlap of
aligning kR random tissue-specific networks with yeast

Positive/Negative cases: kP is the number of random cases with both WR ≤W and . OR ≤ O. kN is
defined as the size of complement set.

p-value bounds:

δR =
kP

kR
≤ alignment p-value ≤ 1−

kN

kR
= ∆R

Alignment p-value:
p − value = Prob(α ∗O + β ∗W ≤ OWR)

Grama et al. Tissue-Specific Networks
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PARTITIONING HUMAN GENES BASED ON THEIR

EXPRESSION SELECTIVITY

DEFINITION

Selectivity p-value– Given a cluster of homogenous tissues:

p-value(X = cn) = Prob(cn ≤ X )

= HGT (cn|N, n, cN)

=

min(cN ,n)∑
x=cn

C(cN , x)C(N − cN , n − x)
C(N, n)

N: total number of tissues, n: number of tissues in the cluster, cN : number of
tissues in which a given gene is expressed, cn: number of tissue in the cluster
that the given gene is expressed.
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HUMAN-SPECIFIC OR CONSERVED?

DEFINITION

Classification of human tissue-selective genes:

Conserved: Subset of tissue-selective genes that are consistently aligned in the "majority" of aligned tissues
in the given group

Human-specific: Subset of tissue-selective genes that are consistently unaligned in the "majority" of tissues
in the given group

Unclassified: None of the above

DEFINITION

Majority voting:

Alignment consistency table: Yeast partner of each tissue-selective gene in the given cluster of tissues

Consensus rate: Minimum percentage of tissues (columns) in each row of the alignment consistency table
that have to agree to make a decision about conserved/human-specificity
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CORE GENES– THE MOST CONSERVED SUBSET OF

HOUSEKEEPING GENES
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FUNCTIONAL ENRICHMENT OF HK GENES
CORE SUBSET

Ribosome biogenesis
Translation
Protein targeting
RNA splicing
mRNA surveillance
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FUNCTIONAL ENRICHMENT OF HK GENES
HUMAN-SPECIFIC SUBSET

Anatomical structure development
Paracrine signaling
NADH dehydrogenase (mitochondrial Complex I)
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THE MOST SIMILAR TISSUES TO YEAST

Name pval lower bound overall pval pval upper bound confidence
Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1
HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998
Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996
Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991
Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988
Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984
Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947
Thymus < 1.00e-04 0.0001 0.0062 0.9938
Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914
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THE LEAST SIMILAR TISSUES TO YEAST

Name pval lower bound overall pval pval upper bound confidence
Trigeminal Ganglion 0.9947 0.9994 1 0.9947
Superior Cervical Ganglion 0.9847 0.9991 1 0.9847
Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443
Atrioventricular Node 0.8746 0.9792 0.9921 0.8825
Skin 0.8355 0.9297 0.9809 0.8546
Heart 0.7934 0.9585 0.9815 0.8119
Appendix 0.7596 0.9371 0.973 0.7866
Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348
Skeletal Muscle 0.3994 0.5902 0.7866 0.6128
Uterus Corpus 0.233 0.7736 0.8769 0.3561
Lung 0.0771 0.3853 0.5544 0.5227
Pons 0.0674 0.5201 0.6983 0.3691
Salivary Gland 0.0639 0.3449 0.5173 0.5466
Liver 0.0600 0.6857 0.8519 0.2081
Ovary 0.0388 0.2735 0.4481 0.5907
Trachea 0.0259 0.2376 0.4146 0.6113
Globus Pallidus 0.0206 0.2471 0.4336 0.587
Cerebellum 0.0127 0.1950 0.3783 0.6344
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TISSUE-TISSUE SIMILARITY NETWORK
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FIGURE : Enrichment map of unique blood-selective functions.
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BRAIN TISSUES
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ENRICHED DISEASE CLASSES

Conserved genes Human-specific genes
Disease class p-value Disease class p-value

Blood cells Cancer 2.85 ∗ 10−3 Immune 1.88 ∗ 10−9

Infection 1.00 ∗ 10−2

Brain tissues Psych 3.59 ∗ 10−4 Psych 5.70 ∗ 10−8

Chemdependency 2.60 ∗ 10−3 Neurological 2.97 ∗ 10−2

Pharmacogenomic 9.74 ∗ 10−2
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COMPARATIVE ANALYSIS OF BRAIN-SPECIFIC

PATHOLOGIES

Disorder Conserved genes Human-specific genes
schizophrenia 0.008573 8.4905E-06
autism 0.048288 0.00077448
dementia 0.0014356 -
schizophrenia; schizoaffective disorder; bipolar disorder - 0.0021433
myocardial infarct; cholesterol, HDL; triglycerides; atherosclerosis,
coronary; macular degeneration; colorectal cancer

0.0051617 -

epilepsy 0.071562 0.0064716
seizures - 0.020381
bipolar disorder 0.048288 0.022016
attention deficit disorder conduct disorder oppositional defiant disorder 0.032444 0.023865
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CONCLUDING REMARKS

Tissue-specific networks and interactions emerging as
important datasets for understanding and mitigating
pathologies.
This work represents among the first computational
investigations into tissue-specific networks.
Our results reveal a significantly refined understanding of
tissue-specific processes and their functions.
Tissue-specific networks show significant enrichment of a
number of important diseases, identifying a number of drug
targets.
Comparative analysis with yeast sheds light on humanized
yeast models and their use in identifying targets.
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