Weighted Bandwidth Reduction and Preconditioning Sparse Systems

Murat Manguoglu, Mehmet Koyuturk, and Ananth Grama Department of Computer Science, Purdue University

 $\{\texttt{mmanguog},\texttt{koyuturk},\texttt{ayg}\}\texttt{@cs.purdue.edu}$

July 9, 2007

Acknowledgment: Funding for this work was provided by the US Department of Defense under the High Productivity Computing Systems Program.

Background

- Emerging architectures increasingly rely on parallelism (chiplevel and system-level) for performance.
- Concurrency and localization play critical roles in overall performance of programs.
- Chip multiprocessors (multicore, multiscalar, cell-type) put increasing pressure on the memory subsystem.
- Algorithms and programs for such platforms must explicitly account for concurrency and memory references as primary metrics (as opposed to FLOP counts).

Conventional Architectures

IBM Power 5

Sun Niagara 2

Niagara-2 Chip Overview

♦Sun

- 8 Sparc cores, 8 threads each
- Shared 4MB L2, 8banks, 16-way associative
- Four dual-channel FBDIMM memory controllers
- Two 10/1 Gb Enet ports w/onboard packet classification and filtering
- One PCI-E x8 1.0 port
- 711 signal I/O, 1831 total

Intel/Conroe

AMD Opteron

AMD Athlon ™ 64 X2 Dual-Core Processor Design

Implications for Sparse Linear System Solvers

- Maximal use of dense kernels in sparse solvers.
- Develop methods that optimize concurrency iterative methods with preconditioners that have dense kernels.
- A natural candidate for such a preconditioner is a banded matrix.

Banded Preconditioners for Iterative Methods

- Derive banded approximations to the matrix, which can act as good preconditioners.
- Bands must be narrow and capture much of the matrix norm.
- Use banded solvers with high FLOP counts and concurrency.

Key questions:

- How do we derive such narrow-banded preconditioners (nonsymmetric permutations)?
- Can such simple preconditioners be competitive against traditional preconditioners in terms of iteration counts, FLOPS, FLOP counts, and parallelism?

Contributions and Results

- Banded preconditioners (with suitable reordering) can significantly outperform ILU preconditioners in terms of iteration counts, FLOP counts, as well as concurrency for large classes of matrices!
- Reordering schemes based on weighted spectral methods are highly effective in deriving narrow banded preconditioners.
- The overhead of such reordering schemes is easily offset by the lower solution cost for the system.
- A number of banded solvers (LAPACK, Spike) can be used for the inner solve.

Bandwidth Reduction

• Traditional algorithms (*e.g.*, Cuthill-McKee (Cuthill & McKee, 1969), Spectral reordering (Barnard *et al.*, 1995)) are aimed at minimizing the bandwidth

$$BW(A) = \max_{i,j:A(i,j)>0} |i-j|$$

- Heavy (high-magnitude) nonzeros that are distant from the diagonal may significantly degrade the performance (convergence rate)
 - Particularly, for ill conditioned matrices.

Accounting for Heavy Entries

- We generalize the definition of bandwith
- For given b, we define bandweight as

$$w_b(A) = \sum_{i,j:|i-j| < b} |A(i,j)|$$

• Then, for given α , we define α -bandwidth as the smallest bandwidth that encapsulates an α fraction of total matrix weight

$$BW_{\alpha}(A) = \min b$$
 such that $w_b(A) \ge \alpha \times \sum_{i,j} |A(i,j)|$

– Observe that this is a generalization of bandwidth, such that $BW_1(A)=BW(A)$

Spectral Ordering

- Commonly used in graph-theoretic applications and matrix algorithms
- Find x that minimizes

$$\sum_{i,j:A(i,j)>0} (x(i) - x(j))^2$$

- Reorder rows and columns of A accordingly
- The eigenvector that corresponds to the smallest non-zero eigenvalue of the Laplacian

$$L(i,j) = -1 \quad \text{if } i \neq j \land A(i,j) > 0$$

$$L(i,i) = |\{j : A(i,j) > 0\}|,$$

a.k.a, Fiedler vector, minimizes this cost function (Fiedler, 1973)

- Can be computed effectively using iterative techniques (*e.g.*, CG (Kruyt, 1995))

Weighted Spectral Ordering

- Fiedler's result generalizes to weighted graphs (matrices) as well
- Define Weighted Laplacian as

$$\begin{split} \bar{L}(i,j) &= -|A(i,j)| & \text{if } i \neq j \\ \bar{L}(i,i) &= \sum_j |A(i,j)| \end{split}$$

• The eigenvector that corresponds to the smallest non-zero eigenvalue of the weighted Laplacian minimizes

$$x^T \bar{L}x = \sum_{i,j} |A(i,j)| (x(i) - x(j))^2,$$

• Observe that $x^T L x$ is closely related to $\sum_{i,j} |A(i,j)| - w_b(A)$, with proper quantization

Weighted Bandwidth Reduction

- For large enough α , use Weighted Spectral Ordering as a heuristic to minimize α -bandwidth
 - Find \hat{x} , the eigenvector corresponding to smallest non-zero eigenvalue of \bar{L}
 - Find permutation $\Pi = \{i_1, i_2, ..., i_n : \text{ if } j < k, \ x(i_j) < x(i_k)\}$
 - Reorder rows and columns of A accordingly to obtain $\bar{A}=A(\Pi,\Pi)$
- Observe that the heavy entries of the reordered matrix, \bar{A} are close to its diagonal, *i.e.*, \bar{A} has a smaller α -bandwidth compared to A
- Drop all entries that are outside α -bandwidth of \bar{A}

$$\tilde{A} = \{\tilde{A}(i,j) : \tilde{A}(i,j) = \bar{A}(i,j) \text{ if } |i-j| \le BW_{\alpha}(\bar{A}), \text{ } 0 \text{ else}\}$$

• Use \tilde{A} as a banded preconditioner to solve the system A

Experimental Results

- Matrices gathered from UF Sparse Matrix Collection
 - All software is implemented in Fortran
 - Sequential timings were done on a clovertown machine
 - BICGSTAB is used as the iterative solver
 - All matrices are first reordered using MC64, to move heaviest entries to the diagonal

Experimental Results

- Application of Weighted Spectral Ordering (WSO)
 - Reorder $|A| + |A^T|$ using MC73
 - Find the bandwidth that encapsulates 99% of overall matrix norm ($\alpha = 0.99$)
 - Drop entries that fall out of this bandwidth to obtain the Weighted Spectral Preconditioner

Experimental Results

- Comparison with no preconditioner and ILU
 - ILUT (Saad, 1994) is used as a basis for comparison.
 - Fill-in is set to match the storage required for dense storage of WSO's required bandwidth (ILUBW)
 - Drop tolerance is set to 10^{-1} (ILU1), 10^{-3} (ILU3)

epb0 Matrix

- Plate-fin heat exchanger w/ simple model
 - 1794×1794 , 7764 non-zeros

99% of matrix norm lies within a bandwidth of $19~{\rm after}~{\rm WSO}$

epb0 Results

Runtime Performance

- BICGSTAB converges in 14 iterations with WSO preconditioner
 - No convergence after 300 iterations with no preconditioner or ILU with drop tolerance 10^{-1}

ASIC_680k Matrix

- Sandia, Xyce circuit simulation matrix (stripped)
 - 682862×682862 , 2638997 non-zeros

99% of matrix norm lies within a bandwidth of $5~{\rm after}~{\rm WSO}$

ASIC_680k Results

Runtime Performance

- BICGSTAB converges in 9 iterations with WSO preconditioner
 - ILU with fill-in equivalent to bandwith of WSO preconditioner converges faster (4 iterations), but factorization takes too much time
 - ILU factorization unsucessful for drop tolerance 10^{-1} , 10^{-3} _
 - No convergence after 300 iterations with no preconditioner

Ihr01 Matrix

- Light hydrocarbon recovery
 - 14777×14777 , 18427 non-zeros

99% of matrix norm lies within a bandwidth of 601 after WSO

Ihr01 Results

- BICGSTAB converges in only 4 iterations with WSO preconditioner!
 - No convergence with no preconditioner in 300 iterations
 - ILU factorization unsucessful for all variants

west0479 Matrix

- U8 stage column section, all sections rigorous (chemical engineering)
 - 479×479 , 1888 non-zeros
 - Known as a horror matrix

Original Matrix

99% of matrix norm lies within a bandwidth of 221 after WSO

west0479 Results

- BICGSTAB converges in 293 iterations with WSO preconditioner
 - No convergence with no preconditioner in 300 iterations
 - ILU factorization unsucessful for all variants

fp Matrix

- 2-D Fokker Planck equation, electron dynamics in external field
 - $7548 \times 7548, 834222$ non-zeros

99% of matrix norm lies within a bandwidth of 5 after WSO

fp Results

- BICGSTAB converges in 2 iterations with WSO preconditioner, as well as ILU with 10^{-3} drop tolerance, 2 fill-in
 - Convergence in 7 iterations with no preconditioner
 - Reordering, factorization take too much time as compared to preconditioner savings

matrix_9 Matrix

- Semiconductor device problem
 - 103430×103430 , 1205518 non-zeros

99% of matrix norm lies within a bandwidth of $10673~\mathrm{after}~\mathrm{WSO}$

fp Results

- BICGSTAB runs out of memory with WSO preconditioner
 - BICGSTAB does not converge with no preconditioner
 - ILU with 10^{-3} fill-in tolerance converges in 16 iterations

Summary

	Preconditioner				
Matrix	None	ILUBW	ILU1	ILU3	WSO
epb0	> 0.019	0.018	> 0.029	0.059	0.009
	> 300	33	> 300	135	14
ASIC_680k	> 38.2	329.8	∞	∞	10.1
	> 300	4	∞	∞	9
lhr01	> 0.02	∞	∞	∞	0.11
	> 300	∞	∞	∞	4
west0479	> 0.009	∞	∞	∞	0.094
	> 300	∞	∞	∞	293
fp	0.05	21.97	∞	2.09	0.68
	7	2	∞	2	2
matrix_9	> 8.2	39.2	∞	3.5	∞
	> 300	91	∞	16	∞

Total runtime (reordering+factorization+bicgstab) is reported in seconds. Number of iterations are reported on the row below.

Remarks

- Banded preconditioners with suitable reordering techniques can be very powerful for diverse classes of applications.
- Banded preconditioners typically yield much better CPU performance and parallel performance.
- Due to memory reuse associated with dense kernels, they are well-suited to conventional chip multiprocessor architectures.

References

- (1) E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In *In Proc. 24th Nat. Conf. ACM*, pages 157–172, 1969.
- (2) M. Fiedler. Algebraic connectivity of graphs. *Czechoslovak Mathematical Journal*, 1973.
- (3) Y. Saad. I ILUT: A dual threshold incomplete ILU factorization. *Numerical Linear Algebra with Applications*, 1:387–402, 1994.
- (4) S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope reduction of sparse matrices. *Numerical Linear Algebra with Applications*, 2(4):317–334, 1995.
- (5) N. P. Kruyt. A conjugate gradient method for the spectral partitioning of graphs. *Parallel Computing*, 22(11):1493–1502, 1996.