
Weighted Bandwidth Reduction and

Preconditioning Sparse Systems

Murat Manguoglu, Mehmet Koyuturk, and Ananth Grama

Department of Computer Science, Purdue University

{mmanguog,koyuturk,ayg}@cs.purdue.edu

July 9, 2007

Acknowledgment: Funding for this work was provided by the US

Department of Defense under the High Productivity Computing Systems

Program.

Background

• Emerging architectures increasingly rely on parallelism (chip-
level and system-level) for performance.

• Concurrency and localization play critical roles in overall
performance of programs.

• Chip multiprocessors (multicore, multiscalar, cell-type) put
increasing pressure on the memory subsystem.

• Algorithms and programs for such platforms must explicitly
account for concurrency and memory references as primary
metrics (as opposed to FLOP counts).

Conventional Architectures

IBM Power 5 Intel/Conroe

Sun Niagara 2 AMD Opteron

%�����(�

������������)������* � 2�� ��������3�2�
�	��������	

� �	�����4����53�20
����3�+60"�(�
�������!�

� 7��������0�	������
7�)/��������(�
����������

� *"��+8-+����$����
 ����"-��������
 ������
����
������������

��������

� ������/0$�%2�+.8�
 ���

� 9++�������/-�3�
+2:+������

Implications for Sparse Linear System Solvers

• Maximal use of dense kernels in sparse solvers.

• Develop methods that optimize concurrency – iterative
methods with preconditioners that have dense kernels.

• A natural candidate for such a preconditioner is a banded
matrix.

Banded Preconditioners for Iterative Methods

• Derive banded approximations to the matrix, which can act as
good preconditioners.

• Bands must be narrow and capture much of the matrix norm.

• Use banded solvers with high FLOP counts and concurrency.

Key questions:

• How do we derive such narrow-banded preconditioners (non-
symmetric permutations)?

• Can such simple preconditioners be competitive against
traditional preconditioners in terms of iteration counts, FLOPS,
FLOP counts, and parallelism?

Contributions and Results

• Banded preconditioners (with suitable reordering) can significantly
outperform ILU preconditioners in terms of iteration counts,
FLOP counts, as well as concurrency for large classes of
matrices!

• Reordering schemes based on weighted spectral methods are
highly effective in deriving narrow banded preconditioners.

• The overhead of such reordering schemes is easily offset by the
lower solution cost for the system.

• A number of banded solvers (LAPACK, Spike) can be used for
the inner solve.

Bandwidth Reduction

• Traditional algorithms (e.g., Cuthill-McKee [Cuthill & McKee, 1969],
Spectral reordering [Barnard et al., 1995]) are aimed at minimizing
the bandwidth

BW (A) = max
i,j:A(i,j)>0

|i − j|

• Heavy (high-magnitude) nonzeros that are distant from
the diagonal may significantly degrade the performance
(convergence rate)

– Particularly, for ill conditioned matrices.

Accounting for Heavy Entries

• We generalize the definition of bandwith

• For given b, we define bandweight as

wb(A) =
∑

i,j:|i−j|<b

|A(i, j)|

• Then, for given α, we define α-bandwidth as the smallest
bandwidth that encapsulates an α fraction of total matrix
weight

BWα(A) = min b such that wb(A) ≥ α ×
∑

i,j

|A(i, j)|

– Observe that this is a generalization of bandwidth, such that BW1(A) =

BW (A)

Spectral Ordering

• Commonly used in graph-theoretic applications and matrix
algorithms

• Find x that minimizes

∑

i,j:A(i,j)>0

(x(i) − x(j))2

– Reorder rows and columns of A accordingly

• The eigenvector that corresponds to the smallest non-zero
eigenvalue of the Laplacian

L(i, j) = −1 if i 6= j ∧ A(i, j) > 0

L(i, i) = |{j : A(i, j) > 0}|,

a.k.a, Fiedler vector, minimizes this cost function [Fiedler, 1973]

– Can be computed effectively using iterative techniques (e.g., CG [Kruyt,

1995])

Weighted Spectral Ordering

• Fiedler’s result generalizes to weighted graphs (matrices) as
well

• Define Weighted Laplacian as

L̄(i, j) = −|A(i, j)| if i 6= j

L̄(i, i) =
∑

j |A(i, j)|

• The eigenvector that corresponds to the smallest non-zero
eigenvalue of the weighted Laplacian minimizes

xT L̄x =
∑

i,j

|A(i, j)|(x(i) − x(j))2,

• Observe that xTLx is closely related to
∑

i,j |A(i, j)|−wb(A), with
proper quantization

Weighted Bandwidth Reduction

• For large enough α, use Weighted Spectral Ordering as a
heuristic to minimize α-bandwidth

– Find x̂, the eigenvector corresponding to smallest non-zero eigenvalue

of L̄

– Find permutation Π = {i1, i2, ..., in : if j < k, x(ij) < x(ik)}

– Reorder rows and columns of A accordingly to obtain Ā = A(Π, Π)

• Observe that the heavy entries of the reordered matrix, Ā

are close to its diagonal, i.e., Ā has a smaller α-bandwidth
compared to A

• Drop all entries that are outside α-bandwidth of Ā

Ã = {Ã(i, j) : Ã(i, j) = Ā(i, j) if |i − j| ≤ BWα(Ā), 0 else}

• Use Ã as a banded preconditioner to solve the system A

Experimental Results

• Matrices gathered from UF Sparse Matrix Collection

– All software is implemented in Fortran

– Sequential timings were done on a clovertown machine

– BICGSTAB is used as the iterative solver

– All matrices are first reordered using MC64, to move heaviest entries to

the diagonal

Experimental Results

• Application of Weighted Spectral Ordering (WSO)

– Reorder |A| + |AT | using MC73

– Find the bandwidth that encapsulates 99% of overall matrix norm (α = 0.99)

– Drop entries that fall out of this bandwidth to obtain the Weighted Spectral

Preconditioner

Experimental Results

• Comparison with no preconditioner and ILU

– ILUT [Saad, 1994] is used as a basis for comparison.

– Fill-in is set to match the storage required for dense storage of WSO’s

required bandwidth (ILUBW)

– Drop tolerance is set to 10−1 (ILU1), 10−3 (ILU3)

epb0 Matrix

• Plate-fin heat exchanger w/ simple model

– 1794 × 1794, 7764 non-zeros

Original Matrix Reordered Matrix

0 400 800 1200 1600 1794

0

400

800

1200

1600

1794
0 400 800 1200 1600 1794

0

400

800

1200

1600

1794

Bandwidth: 3587 Bandwidth: 76

99% of matrix norm lies within a bandwidth of 19 after WSO

epb0 Results

Residual Plot Runtime Performance

50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

10
2

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

WSO
ILUBW
ILU1
ILU3
NOPREC
TOLERANCE

WSO ILUBW ILU3
0

0.01

0.02

0.03

0.04

0.05

0.06

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB converges in 14 iterations with WSO preconditioner

– No convergence after 300 iterations with no preconditioner or ILU with

drop tolerance 10−1

ASIC 680k Matrix

• Sandia, Xyce circuit simulation matrix (stripped)

– 682862 × 682862, 2638997 non-zeros

Original Matrix Reordered Matrix

0 140000 280000 420000 560000 682862

0

140000

280000

420000

560000

682862
0 140000 280000 420000 560000 682862

0

140000

280000

420000

560000

682862

Bandwidth: 1328578 Bandwidth: 1328726

99% of matrix norm lies within a bandwidth of 5 after WSO

ASIC 680k Results

Residual Plot Runtime Performance

50 100 150 200 250 300

10
−6

10
−4

10
−2

10
0

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

WSO
ILUBW
NOPREC
TOLERANCE

WSO ILUBW
0

50

100

150

200

250

300

350

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB converges in 9 iterations with WSO preconditioner

– ILU with fill-in equivalent to bandwith of WSO preconditioner converges

faster (4 iterations), but factorization takes too much time

– ILU factorization unsucessful for drop tolerance 10−1,10−3

– No convergence after 300 iterations with no preconditioner

lhr01 Matrix

• Light hydrocarbon recovery

– 14777 × 14777, 18427 non-zeros

Original Matrix Reordered Matrix

0 300 600 900 1200 1477

0

300

600

900

1200

1477
0 300 600 900 1200 1477

0

300

600

900

1200

1477

Bandwidth: 2537 Bandwidth: 1341

99% of matrix norm lies within a bandwidth of 601 after WSO

lhr01 Results

Residual Plot Runtime Performance

20 40 60 80 100 120 140 160

10
−6

10
−4

10
−2

10
0

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

WSO
NOPREC
TOLERANCE

WSO
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB converges in only 4 iterations with WSO preconditioner!

– No convergence with no preconditioner in 300 iterations

– ILU factorization unsucessful for all variants

west0479 Matrix

• U8 stage column section, all sections rigorous (chemical
engineering)

– 479 × 479, 1888 non-zeros

– Known as a horror matrix

Original Matrix Reordered Matrix

0 100 200 300 400 479

0

100

200

300

400

479
0 100 200 300 400 479

0

100

200

300

400

479

Bandwidth: 726 Bandwidth: 872

99% of matrix norm lies within a bandwidth of 221 after WSO

west0479 Results

Residual Plot Runtime Performance

50 100 150 200 250 300

10
−6

10
−4

10
−2

10
0

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

WSO
NOPREC
TOLERANCE

WSO
0

0.05

0.1

0.15

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB converges in 293 iterations with WSO preconditioner

– No convergence with no preconditioner in 300 iterations

– ILU factorization unsucessful for all variants

fp Matrix

• 2-D Fokker Planck equation, electron dynamics in external field

– 7548 × 7548, 834222 non-zeros

Original Matrix Reordered Matrix

0 1600 3200 4800 6400 7548

0

1600

3200

4800

6400

7548
0 1600 3200 4800 6400 7548

0

1600

3200

4800

6400

7548

Bandwidth: 15086 Bandwidth: 12368

99% of matrix norm lies within a bandwidth of 5 after WSO

fp Results

Residual Plot Runtime Performance

1 2 3 4 5 6 7 8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

WSO
ILUBW
ILU3
NOPREC
TOLERANCE

WSO ILUBW ILU3 NOPREC
0

5

10

15

20

25

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB converges in 2 iterations with WSO preconditioner, as
well as ILU with 10−3 drop tolerance, 2 fill-in

– Convergence in 7 iterations with no preconditioner

– Reordering, factorization take too much time as compared to

preconditioner savings

matrix 9 Matrix

• Semiconductor device problem

– 103430 × 103430, 1205518 non-zeros

Original Matrix Reordered Matrix

0 30000 60000 90000 103430

0

30000

60000

90000

103430
0 30000 60000 90000 103430

0

30000

60000

90000

103430

Bandwidth: 107410 Bandwidth: 198951

99% of matrix norm lies within a bandwidth of 10673 after WSO

fp Results

Residual Plot Runtime Performance

50 100 150 200 250 300
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BICGSTAB ITERATIONS

R
E

LA
T

IV
E

 R
E

S
ID

IU
A

L

ILUBW
ILU3
NOPREC
TOLERANCE

ILUBW ILU3
0

5

10

15

20

25

30

35

40

T
IM

E
 (

S
E

C
O

N
D

S
)

REORDERING
FACTORIZATION
BICGSTAB

• BICGSTAB runs out of memory with WSO preconditioner

– BICGSTAB does not converge with no preconditioner

– ILU with 10−3 fill-in tolerance converges in 16 iterations

Summary

Preconditioner

Matrix None ILUBW ILU1 ILU3 WSO

epb0 > 0.019 0.018 > 0.029 0.059 0.009

> 300 33 > 300 135 14

ASIC 680k > 38.2 329.8 ∞ ∞ 10.1

> 300 4 ∞ ∞ 9

lhr01 > 0.02 ∞ ∞ ∞ 0.11

> 300 ∞ ∞ ∞ 4

west0479 > 0.009 ∞ ∞ ∞ 0.094

> 300 ∞ ∞ ∞ 293

fp 0.05 21.97 ∞ 2.09 0.68

7 2 ∞ 2 2

matrix 9 > 8.2 39.2 ∞ 3.5 ∞

> 300 91 ∞ 16 ∞

Total runtime (reordering+factorization+bicgstab) is reported in seconds.

Number of iterations are reported on the row below.

Remarks

• Banded preconditioners with suitable reordering techniques
can be very powerful for diverse classes of applications.

• Banded preconditioners typically yield much better CPU
performance and parallel performance.

• Due to memory reuse associated with dense kernels, they are
well-suited to conventional chip multiprocessor architectures.

References

[1] E. Cuthill and J. McKee. Reducing the bandwidth of sparse
symmetric matrices. In In Proc. 24th Nat. Conf. ACM, pages
157–172, 1969.

[2] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 1973.

[3] Y. Saad. I ILUT: A dual threshold incomplete ILU factorization.
Numerical Linear Algebra with Applications, 1:387–402, 1994.

[4] S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm
for envelope reduction of sparse matrices. Numerical Linear
Algebra with Applications, 2(4):317–334, 1995.

[5] N. P. Kruyt. A conjugate gradient method for the spectral
partitioning of graphs. Parallel Computing, 22(11):1493–1502,
1996.

