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Abstract  

As multicore chips become the main building blocks for high 
performance computers, many numerical applications face a per-
formance impediment due to the limited hardware capacity to 
move data between the CPU and the off-chip memory. This is 
especially true for large computing problems solved by iterative 
algorithms because of the large data set typically used. Loop til-
ing, also known as loop blocking, was shown previously to be an 
effective way to enhance data locality, and hence to reduce the 
memory bandwidth pressure, for a class of iterative algorithms 
executed on a single processor. Unfortunately, the tiled programs 
suffer from reduced parallelism because only the loop iterations 
within a single tile can be easily parallelized. In this work, we 
propose to use the asynchronous model to enable effective loop 
tiling such that both parallelism and locality can be attained simul-
taneously. Asynchronous algorithms were previously proposed to 
reduce the communication cost and synchronization overhead 
between processors. Our new discovery is that carefully con-
trolled asynchrony and loop tiling can significantly improve the 
performance of parallel iterative algorithms on multicore proces-
sors due to simultaneously attained data locality and loop-level 
parallelism. We present supporting evidence from experiments 
with three well-known numerical kernels. 
Categories and Subject Descriptors   D.1.3 [Programming 
Techniques]: Concurrent Programming; D.3.4 [Programming 
Languages]: Processors-Optimization 

General Terms Algorithms, Performance 

Keywords asynchronous algorithms, loop tiling, parallel numer-
ical programs, data locality, memory performance 

1. Introduction 

As multicore chips become the main building blocks for high 
performance computers, many numerical applications face a per-
formance impediment due to the limited hardware capacity to 
move data between the CPU and the off-chip memory [5][15][16]. 
This is especially true for large computing problems solved by 
iterative algorithms because of the large data set typically used.  

Loop tiling, also known as loop blocking, is a program trans-
formation technique for reducing the memory bandwidth pressure 
by increasing data locality. In particular, a skewed version of this 

technique was shown previously to be effective in enhancing the 
data locality for a class of iterative algorithms [3][10][11][14]. 
Unfortunately, the tiled programs suffer from reduced parallelism 
because only the loop iterations within a single tile can be easily 
parallelized. How to achieve parallelism and locality at the same 
time for iterative numerical solvers remains a challenge. 

In this work, we propose to use the asynchronous model to en-
able effective loop tiling such that both parallelism and locality 
can be attained simultaneously. Asynchronous algorithms were 
previously proposed to reduce the communication cost and syn-
chronization overhead between processors. Our new contribution 
is to show that significant performance enhancement can be 
achieved by combining loop tiling with carefully controlled asyn-
chrony due to the improved data locality. We present supporting 
evidence from experiments with three well-known numerical 
kernels which were previously proven mathematically to converge 
under the asynchronous model. 

In the rest of the paper, we first present background materials 
(Section 2) and the main idea (Section 3). It will be made clear 
that a critical issue to the success of loop tiling under the asyn-
chronous model is to determine how often to skip the global resi-
dual tests. In Section 4, we present an adaptive scheme to make 
such a decision at run time. Experimental results are presented in 
Section 5, which is followed by a discussion of related work (Sec-
tion 6). Our conclusion and remarks on future work are given in 
Section 7. 

2. Background 

In this section, we present background materials concerning the 
memory bandwidth issue on multicore machines, the loop tiling 
technique and the asynchronous model for iterative algorithms. 

Multicore Architecture 

Current design trend for CPUs used in both main-stream and high-
performance applications is to place multiple identical computa-
tion engines (or cores) on a single CPU chip or a chip-set. On 
such a multicore chip or chip-set, the memory hierarchy includes 
multiple levels of caches. These cores connect to off-chip DRAMs 
through a common interface. Several CPUs can be connected to 
form a shared-memory multiprocessor system. Currently, the 
DRAMs and the CPUs are typically connected with a non-
uniform memory access architecture (NUMA). As an example, 
Figure 1 shows the architecture of an AMD multicore-based sys-
tem in which each of its four CPUs connects to a “local” DRAM. 
Each CPU shown in Figure 2 has four cores and a three-level 
cache hierarchy that includes a 64KB private L1 data cache, a 



512KB private L2 cache, and a 2MB shared L3 cache (c.f. Figure 
2). 

When memory accesses follow regular address strides, the 
hardware prefetching mechanism can often accurately predict the 
next data to be fetched well in advance in order to hide the memo-
ry latency. Unfortunately, prefetching is effective only if memory 
bandwidth is sufficient to sustain the off-chip memory traffic 
generated by multiple cores. By now it is a well-known fact that 
the bandwidth available on today’s multicore chips is insufficient 
for memory-intensive applications, including parallel programs 
which solve large numerical problems [5][15][16]. 

Figure 1. An example of multicore-based multiprocessors  

 

Figure 2. An example of a multicore CPU 

Loop Tiling for Iterative Stencil Computation 

In an iterative numerical algorithm, the same array elements are 
updated repetitively following a certain stencil in different time 
steps. A representative PDE and a code template for its iterative 
solver are shown in Figure 3(a-b). In this template, the step update 
computes the new value of array a using the previous values of 
some elements in array a. This step can be executed simultaneous-
ly on multiple processors or cores when all the dependences are 
satisfied.  

Due to the convergence test in each time step of the iterative 
algorithm, a cached array element cannot be reused across differ-
ent time steps unless a number of time steps are executed specula-
tively (i.e. before knowing whether all those steps are necessary 
for convergence) such that loop tiling can be performed. With 
such speculative execution, the maximum iteration count is parti-
tioned into chunks such that the exit condition is tested after the 
execution of a chunk of M iterations instead of one. Each chunk of 
iterations is then tiled. Obviously, such a method depends on the 
fact that the exit condition is monotonic, i.e. if the delayed exit 
test fails then we know that any previous time step would have 
also failed the exit test.  

If the semantics in the original program is strictly adhered to, 
the updates during the speculative execution must be buffered 
until a delayed convergence test shows that the speculatively ex-
ecuted time steps were indeed warranted, and the updates can then 
be committed. Furthermore, the tiles are “skewed” to satisfy all 
data dependences implied by the original program semantics. In 
the event of overshooting, a recovery function is invoked to roll 
back the execution, using the buffered values from the last check-
point [3]. If one is further equipped with the fact that the updates 
are also monotonic, the recovery function can be omitted. 

Problem:
డమ௨

డ௫మ


డమ௨

డ௬మ
ൌ ݂ሺݔ,   ሻݕ

2D Grid ܽሺ݊, ݊ሻ  

itmax: the maximum iteration count 

(a) An illustrating problem 

do t = 1,itmax 
 update(a, n, f) 

 ! Compute residual and convergence test 
 error = residual(a, n) 
 if (error .le. tol) then 
  exit 
 endif 

end do 

(b) The base implementation 

do t = 1, itmax/M + 1 

 ! Save the old result into buffer as checkpoint 
 oldbuf(1:n, 1:n) = a(1:n, 1:n) 

 ! Execute a chunk of M iterations after tiling 
 update_tile(a, n, f, M) 

 ! Compute residual and convergence test 
 error = residual(a, n) 
 if (error .le. tol) then 
  call recovery(oldbuf, a, n, f) 
  exit 
 end if 

end do 

(c) The tiled version with speculation execution 

do t = 1, itmax/M + 1 

 ! Execute a chunk of M iterations after tiling 
 update_tile(a, n, f, M) 

 ! Compute residual and convergence test 
 error = residual(a, n) 
 if (error .le. tol) then 
  exit 
 end if 

end do 

(d) The tiled version without recovery 

Figure 3. Tiling with speculative execution 

Impact of tiling on parallelization 

To this date, it remains a challenge how to effectively achieve 
parallelism in a tiled iterative stencil computation. This is because 
only the loop iterations within a single tile can be easily paralle-
lized. 

Figure 4 shows an example of tiled Jacobi with odd-even dup-
lication, which is the best way known to tile Jacobi for data locali-
ty [3]. The 2D tile has the size of ܾ1 ൈ ܾ2. Prior to tiling, the step 
update can be parallelized across the entire data grid, as shown in 
Figure 4 (a). Each time step requires two synchronization barriers 
only. Unfortunately, the tiled version can be parallelized only 
within each tile due to data dependences between different tiles, 
which consist of operations on behalf of different time steps (c.f. 
Figure 4(b)). Hence, the tiled version suffers from small granulari-
ty of parallelism, and it increases the number of synchronization 



barriers by a factor of the total number of tiles. Such overhead can 

offset the performance gain from tiling considerably, and the per-
formance penalty increases with the number of cores.  

Asynchronous Algorithms 

Asynchronous algorithms have previously been proposed to re-
duce data communication and synchronization overhead in paral-
lel computing [1][12][13][18][19]. The basic idea of 
asynchronous algorithms is to relax the data exchange require-
ment such that the update on each data point does not necessarily 
use the most up-to-date values of its neighbors. For a class of 
asynchronous iterative algorithms, convergence is mathematically 
guaranteed, although the convergence rate may potentially be 
slowed down due to the use of less recent updates of neighbors. 

Under the asynchronous model, a processor, or a core, is al-
lowed to start the computation of the next iteration without wait-
ing for any other processor/core to complete the same iteration. 
For example, an asynchronous Jacobi method can be used to solve 
a system of linear equations ݔܣ ൌ ܾ with the solution vector ்ݔ 
decomposed into q block components such that the initial vector 
can be written as ݔ

் ൌ ݔൣ
ଵ, … , ݔ

൧. Each component can be as-
signed to a different processor if we have q processors. At each 
iteration k, there may be components that are not updated. One 
defines the sets ܬ ك ሼ1, 2, . . , ݅ ሽ and usesݍ א   to denote the ݅௧ܬ
block component updated in the ݇௧ iteration. 
for ݇  ൌ  1, 2, … 

ݔ
 ൌ

ە
۔

ۓ ିଵݔ
 , ݅ ב ܬ

solve ݔܣ
 ൌ ܾ െ  ሺ,ሻݔܣ





ୀଵ,ஷ

, ݅ א ܬ
 

(1) 

The term ݎሺ݆, ݇ሻ is used to denote the iteration number of the 
݆௧ block component being used in the computation of any partic-
ular block component in the ݇௧  iteration. The value of ݎሺ݆, ݇ሻ 
depends on the freshness of the update and how soon the update is 
seen by each processor. Using more up-to-date values helps acce-
lerate the convergence. More details about asynchronous algo-
rithms and their convergence properties can be found in 
[1][18][19]. 

In addition to the synchronization and communication benefit, 
the relaxed data dependences in the asynchronous model can also 
simplify parallel programming. Gauss-Seidel is such an example. 
As Figure 5 shows, in Gauss-Seidel, ܽሺ݅, ݆ሻ (marked by the light 
grey circle) depends on two neighboring array elements ܽሺ݅ െ
1, ݆ሻ and ܽሺ݅, ݆ െ 1ሻ (dark grey circles) which are computed in the 
same time step. Such dependences make it difficult to directly 
parallelize Gauss-Seidel. To remove such dependences, one often 
uses a red-black update scheme which partitions the data grid into 
two disjoint subsets, red (circles with white dots) and black (cir-
cles without dots). These two subsets are updated in alternate 
turns, but the update to each set can be parallelized. The red-black 
Gauss-Seidel method requires more iterations to converge than the 
sequential Gauss-Seidel because the former uses less recent values 
in the computation. 

Since the asynchronous model tolerates the uncertainty con-
cerning whether the latest neighboring values are used in the up-
date, one can directly parallelize the step update by partitioning 
the data grid into a number of sub-grids. A number of iterations 
(i.e. time steps) are executed over each sub-grid without synchro-
nizing with the operations on the other sub-grids. After a number 
of such inner iterations, a barrier is set up before the step residual 
which performs a global convergence test. The asynchronous 

!$omp parallel do 
 do 20 j = 2,n-1 
 do 20 i = 2,n-1 
  c(i, j)=( a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1) ) / 4 - f(i, j) 
 20 continue 

!$omp parallel do 
 do 30 j = 2,n-1 
 do 30 i = 2,n-1 
  a(i, j) = c(i, j) 
 30 continue 

(a) subroutine update(a, n, f) 

 do  jj = 2, n + M - 2, b1 
 do  ii = 2, n + M - 2, b2 
 do  t = max(1, min(jj, ii) - n + 2), min( (max(jj + b1, ii + b2) - 2), M) 
  if (mod(t, 2) .eq. 1) then 
!$omp parallel do 
   do j = max(2, jj - t + 1), min( (jj + b1 - t), (n - 1)) 
   do i = max(2, ii - t + 1), min( (ii + b2 - t), (n - 1)) 
    c(i, j) = (a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1))/4 - f(i, j) 
   end do 
   end do 
  else 
!$omp parallel do 
   do j = max(2, jj – t + 1), min( (jj + b1 - t), (n - 1)) 
   do i = max(2, ii – t + 1), min( (ii + b2 - t), (n - 1)) 
    a(i, j) = (c(i + 1, j) + c(i - 1, j) + c(i, j + 1) + c(i, j - 1))/4 - f(i, j) 
   end do 
   end do 
  end if 
 end do 
 end do 
 end do  

 if (mod(t, 2) .eq. 1) then 
!$omp parallel do 
  do 30 j = 2, n-1 
  do 30 i = 2, n-1 
   a(i, j) = c(i, j) 
  30 continue 
 end if 

(b) subroutine update_tile(a, n, f, M) under the synchronous model 

!$omp parallel  

 ! Partition the grid to sub-grids based on thread ID 
 partition = (n – 2) / omp_get_num_threads() 
 tid = omp_get_thread_num() 
 low = max(2, tid * partition) 
 high = min(n-1, low + partition - 1) 
 if (tid .eq. omp_get_num_threads() – 1) then 
  high = n - 1 
 end if 

 ! Execute sub-grids asynchronously  
 do  jj = low, high + M - 1, b1 
 do  ii = 2, n + M - 2, b2 
 do  t = max(1, min(jj – high + 1, ii - n) + 2), min( (max(jj + b1, ii + b2) - 2), M) 
  if (mod(t, 2) .eq. 1) then 
   do j = max(low, jj - t + 1), min( (jj + b1 - t), high) 
   do i = max(2, ii - t + 1), min( (ii + b2 - t), (n - 1)) 
    c(i, j) = (a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1))/4 - f(i, j) 
   end do 
   end do 
  else 
   do j = max(low, jj – t + 1), min( (jj + b1 - t), high) 
   do i = max(2, ii – t + 1), min( (ii + b2 - t), (n - 1)) 
    a(i, j) = (c(i + 1, j) + c(i - 1, j) + c(i, j + 1) + c(i, j - 1))/4 - f(i, j) 
   end do 
   end do 
  end if 
 end do 
 end do 
 end do  

 if (mod(t, 2) .eq. 1) then 
!$omp do 
  do 30 j = 2, n-1 
  do 30 i = 2, n-1 
   a(i, j) = c(i, j) 
  30 continue 
!$omp end do nowait 
 end if 

!$omp end parallel 

(c) subroutine update_tile(a, n, f, M) underthe  asynchronous model 

Figure 4. Jacobi before and after tiling  



Gauss-Seidel is superior to the red-black scheme due not only to 
its reduced synchronization but also to its higher likelihood to use 
the up-to-date neighboring elements than the latter. 

3. Enabling Loop Tiling with Asynchrony 

To date, the focus of asynchronous algorithm development is on 
the reduction of communication and synchronization overhead, 
but not on improving data locality. To see how we can exploit the 
asynchronous model to increase data locality through loop tiling, 
we point out three advantages offered by the asynchronous model, 
namely the relaxed data dependences between neighboring array 
elements, the exploitation of the monotonic exit condition, and 
furthermore, the reduced number of global residual tests. This last 
advantage is the result of an optimistic assumption that, by skip-
ping some of the convergence tests, which helps reduce the com-
munication cost, we do not risk executing too many, if any, extra 
iterations. 

Once we accept the idea of skipping a number of global tests, 
we can introduce loop tiling into an asynchronous algorithm by 
further partitioning the sub-grid into tiles and applying inner itera-
tions to each tile successively. With a properly chosen tile size, 
data once fetched to a cache of interest (e.g. the L1 cache) can be 
reused as often as the number of skipped global tests. For conven-
ience, we denote the number of inner iterations applied to each tile 
the chunk size. One wants the chunk size to equal the number of 
time steps between two consecutive remaining global tests in 
order to obtain the greatest performance gain from tiling. Figure 4 
(c) shows an asynchronous Jacobi algorithm with tiling. 

Analyzing the Impact of the Chunk Size 

As our experimental data (in Section 5) will show, the chunk size 
has a significant impact on the effectiveness of the tiled program 
under the asynchronous model. This is because a size chosen too 
small will reduce data reuse, but a size chosen too large will in-
crease iteration overshooting. In order to examine the impact of 
the chunk size, it is useful to start by analyzing the execution time 
of a tiled program for a given chunk size. The execution time of 
the original program (ܶ୭୰ ) and the kernel of a tiled version 
( ୲ܶ

୩ୣ୰୬ୣ୪) can each be represented by a linear function in terms of 
k, the number of iterations: 

ܶ୭୰ ൌ ܽ ൈ ݇  ܾ    and      ௧ܶ
୩ୣ୰୬ୣ୪ ൌ ܽ௧ ൈ ݇  ܾ௧ 

Take Jacobi as an example, on an AMD “Barcelona” proces-
sor, we obtain ܽ ൌ 0.23 ܽ݊݀ ܾ ൌ 0.16.  Furthermore, with a 
certain tile size, we obtain ܽ௧ ൌ 0.08 and ܾ௧ ൌ 0.44 for the tiled 
version. We plot the time measured for different iteration counts 
in Figure 6. Given the chunk size (C), the kernel of the tiled code 

will be executed ቒ
ூ


ቓ times. The execution time of the tiled version 

can therefore be written as 

௧ܶ ൌ 
ܫ
ܥ
ඈ ሺܽ௧ܥ  ܾ௧ሻ     compared to      ܶ୭୰ ൌ ܽܫ  ܾ 

where ܫ is the total number of iterations taken to pass the conver-
gence test. 

We use ᇞ to represent the number of extra iterations caused by 
overshooting in the tiled version. 

ᇞൌ ൬
ܫ
ܥ
ඈ ൈ C൰ െ 0   ,ܫ  ᇞ൏  ܥ

So, 

 do 20 j = 2,n - 1 
 do 20 i = 2,n - 1 
  a(i, j)=(a(i+1, j)+a(i-1, j)+a(i, j+1)+a(i, j-1))/4 - f(i, j) 
 20 continue 

(a) subroutine update(a, n, f) 

 
 

 

(b) data flow of GS (c) data flow of red-black GS 

Figure 5. Gauss-Seidel kernel and data flow 

௧ܶ ൌ ܽ௧ሺܫ ᇞሻ  ൬
ܫ
ܥ
ඈ൰ ܾ௧ 

The speedup due to tiling, 
்౨ౝ

்
, is maximized when the chunk 

size ܫ = ܥ. 
It is more difficult to develop a cost model for tiled code under 

the synchronous model due to the skewed tile shapes. Nonethe-
less, it is easy to see that the optimum chunk size for tiling with-
out recovery will be the same as the one for tiling under the 
asynchronous model. Further, we can approximate the time of 
tiled version with recovery by 

ܶ୰ୣୡ ൌ ඌ
ܫ
ܥ
ඐ ሺܽ௧ܥ  ܾ௧ሻ  ሺܽሺI െ ඌ

ܫ
ܥ
ඐ ሻܥ  ܾሻ 

ൌ ܽ௧ሺܫ ᇞሻ  ൬
ܫ
ܥ
ඈ൰ ܾ௧  ሺܥ െᇞሻܽ  ܾ 

To minimize ܶ୰ୣୡ is to find ܥ ൌ  which minimizes כܥ

Costሺܥሻ ൌ ᇞ ܽ௧  
ܫ
ܥ
ඈ ܾ௧  ሺܥ െᇞሻܽ 

Figure 6. Fitting of the time model for the original Jacobi and 
the kernel of a tiled version 

We determine the optimum chunk size כܥ by minimizing the 
cost function. To make the cost function differentiable, we ap-

proximate by replacing ቒ
ூ


ቓ with 

ூ


 , the cost function then has the 

differential of 
 ݀ Costሺܥሻ

ܥ݀
ൎ െ

ܫ · ܾ௧
ଶܥ

 ܽ (2) 

which has the root 
 

כܥ ൌ  ඨܫ 
ܾ௧
ܽ

 (3) 

t = 0.23*k + 0.16

t = 0.08*k + 0.44
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Due to our earlier approximation of  ቒ
ூ


ቓ by 

ூ


 , the root derived 

above will be an underestimate. With fixed parameter 
,ܫ ܽ, ܾ, ܽ௧ and ܾ௧ , we can exhaustively search for the exact כܥ 
using our timing model. Figure 7 plots such exact optimums for 
different I and compare it against our approximated values. In our 
experiments (c.f. Section 5), we also exhaustively measure the 
performance for all possible chunk sizes. Our results show that the 
timing formulas developed above for ௧ܶ and ܶ୰ୣୡ are quite accu-
rate and the execution time is highly sensitive to the choice of the 
chunk size. 

Figure 7. The optimum chunk size for tiling with recovery and 
its approximation 

4. An Adaptive Scheme for Global Test 

The discussion in the previous section makes it clear that the 
choice of the chunk size is highly important to the performance of 
loop tiling under the asynchronous model. If the exact number of 
iterations taken to converge can be known in advance, then one 
can simply create a single chunk whose size equals to that num-
ber. Unfortunately, such a number is impossible to determine in 
advance. Although formulas exist for estimating the convergence 
rate of each well-known iterative numerical algorithm, such an 
estimate is too imprecise for the purpose of choosing the chunk 
size. Let ܫሺalgorithmሻ denote the number of iterations taken for a 
given algorithm to converge. The following formulas are well-
known for Jacobi, Gauss-Seidel, and ideal SOR, respectively: 

With  ൌ െ logሺݏሻ while ݏ represents the relative residual to-
lerance in the convergence test. Let ܬ ൈ  ,denote the grid size ܬ

ሺJacobiሻܫ ൎ
lnሺݏሻ

ln൫ߩJୟୡ୭ୠ୧൯
ൎ

lnሺݏሻ

ln ൬1 െ
ଶߨ
ଶ൰ܬ2

ൎ
1
2
 ଶܬ

ሺGSሻܫ ൎ
lnሺݏሻ

ln൫ߩୱ൯
ൎ

lnሺݏሻ

ln ൬1 െ
ଶߨ
ଶܬ ൰

ൎ
1
4
 ଶܬ

ሺSORሻܫ  ൎ
lnሺݏሻ

lnሺߩୱ୭୰ሻ
ൎ

lnሺݏሻ

2 ln ቆ
Jୟୡ୭ୠ୧ߩ

1  ሺ1 െ Jୟୡ୭ୠ୧ߩ
ଶ ሻଵ ଶ⁄ ቇ

ൎ
1
3
 ܬ

For example, with ݏ ൌ 0.02  and ܬ  ൌ 4000 , we have 
ሺJacobiሻܫ ൌ  1.36E7 ሺGSሻܫ , ൌ 6.80E6  and ܫሺSORሻ ൌ 2.27E3 . 
Although such formulas are useful for comparing the convergence 
rate among different algorithms, the actual number of iterations 
required for convergence when executing each algorithm can be 
much smaller. For example, we have measured the following 
numbers using the same value of ݏ  and ܬ , ሺJacobiሻܫ  ൌ 159 , 
ሺGSሻܫ ൌ 77, and ܫሺSORሻ ൌ 51. 

Without a promising method to determine the total number of 
iterations in advance, we have devised an adaptive scheme to 
determine the size of each chunk before the next global residual 
test. This is described as follows. 

To determine the chunk size adaptively at run time, we assume 
that the program converges in a similar rate to the adjacent itera-
tion. Let ߩ represent convergence rate at ݇௧ step with the chunk 
size as C, and let the residual error in the previous step and the 
current step be ݎିଵ and ݎ respectively. We can derive ߩ from the 
following equation. 

ߩ ൈ ିଵݎ ൌ  ݎ

 log ሺߩሻ ൌ
log ሺ

ݎ
ିଵݎ

ሻ

ܥ
 

Thus, to pass the convergence test (ݎ ൏ tolሻ, we need ܰ 

log ቀ
୲୭୪

ೖ
ቁ log ሺߩሻൗ  more iterations to make ߩே ൈ ݎ  tol. 

Subsequently, we select the next chunk size as the predicted 
minimum number of iterations required to pass the convergence 
test. We repeat this process for each chunk of iterations. 

כܥ ൌ log ൬
tol
ݎ
൰ ൈ ܥ log ൬

ݎ
ିଵݎ

൰൘    then   כܥ ՜  ܥ

The advantage of this adaptive scheme is that we do not need to 
know the number of iterations taken to converge in advance. Our 
experimental results (in Section 5) will show that the scheme 
works quite well. Figure 8 shows the code template of this adap-
tive scheme. 

5. Experimental Evaluation 

Experimental Setup 

Three different hardware platforms are used for evaluation of the 
effectiveness of our approach: (1) machine A, a quad-socket 
2GHz quad-core AMD Opteron 8350 “Barcelona” processors; (2) 
machine B, a 2.4GHz quad-core Intel Q6600; and 3) machine C, a 
dual-socket 2.4GHz quad-core Intel Nehalem E5530. The details 
of the memory hierarchy and the peak memory bandwidth (BW) 
are shown in Table 1. The same table also shows the sustained 
memory bandwidth SBW obtained by measuring the bandwidth 
for bulk memory copy operations. We use the compiler ifort v9.1 
with the -O3 -openmp flags to compile both the baseline code 
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old_error = init_error 
new_M = initial_chunk 
t = 0 

do while (t .le. itmax) 
 t = t + new_M 

 ! Execute a chunk of new_M iterations with tiling 
 update_tile(a, n, f, new_M) 

 ! Compute the residual and perform convergence test 
 error = residual(a,n) 
 if (error .le. tol) then 
  exit 
 else 
  ! Predict the next chunk size adaptively with minimal chunk size as ‘min_chunk’ 
  old_M = new_M 
  new_M = int(log(tol / error) * old_M / log(error / old_error)) 
  new_M = max(min_chunk, new_M) 
  old_error = error 
 end if 

end do 

Figure 8. Code template of the adaptive scheme 



(i.e. the sequential code without tiling) and the codes optimized in 
various ways. 

We perform experiments using three numerical kernels, Jaco-
bi, Gauss-Seidel and successive over-relaxation (SOR) to solve a 
Laplace equation under the following boundary conditions. 

ܽሺ0, ሻݕ ൌ ܽሺ1, ሻݕ ൌ 0, 0  ݕ  1 

ܽሺݔ, 0ሻ ൌ sinሺݔߨሻ , ܽሺݔ, 1ሻ ൌ sinሺݔߨሻ ݁ି௫, 0  ݔ  1 

Table 1 Memory configuration of testing system 

Machine Model L1 L2 L3 
BW 

(GB/s) 
SBW 

(GB/s) 

A 
AMD8350 
4x4 cores 

64KB 
private 

512KB 
private 

4x2MB 
shared 

21.6 18.9 

B 
Q6600 

1x4 cores 
32KB 

private 
2x4MB 
shared 

N/A 8.5 4.79 

C 
E5530 

2x4 cores 
256KB 
private 

1MB 
private 

2x8MB
shared 

51 31.5 

 
All the experimental results are measured with a grid size of 

4000 ൈ 4000 and the maximum iteration count of 1000.  
For each test program, we want to find out answers to the fol-

lowing questions: 
1. Does the asynchronous and tiled version (async_tiled) 

outperform the asynchronous version without tiling 
(async_base)? 

2. Does the asynchronous and tiled version outperform both 
versions of synchronous tiled codes, one with the recov-
ery function (tiled) and the other (faster) without the re-
covery function (tiled_norec)? 

3. What are the impacts of the chunk size (i.e. the number of 
skipped global residual tests) on the data locality and the 
performance of the tiled programs, both synchronous and 
asynchronous? 

4. How effective is our adaptive scheme in choosing the 
chunk size? 

The Jacobi Program 

Jacobi is a well-known numerical kernel for iterative methods. 
Figure 9 illustrates the performance impact of tile size on the ma-
chine A for both sequential and parallel version. On a single core, 
the best performance is obtained when the tile (about 7KB) fits 
into the L1 cache. However, since the parallelism is constrained 
by the tile size, the best performance is given when the tile (about 
5MB) fits in the L2 cache. Figure 12 shows the impact of the tile 
size on all three numerical codes transformed by various tiling 
methods under both the synchronous and the asynchronous mod-
els.  

From Figure 12, we obtain the best tile size for each tiling me-
thod on each machine. Using such best tile sizes, we compare the 
performance between the synchronous and the asynchronous ver-
sions in Figure 10. Furthermore, we summarize the best perfor-
mance for each version in Table 2. In this table (as well as Tables 
3-8), the label “parallel” is for the original code parallelized under 
the synchronous model without tiling. For all three machines, the 
asynchronous tiled version async-tiled improves the performance 
significantly over the async-base version. This underlines the 
importance of data locality. On machine B and C, the performance 
level is similar between async-tiled and tiled-norec. However, on 
machine A, the asynchronous tiled version shows a clear perfor-

mance advantage. The main reason is due to the limited paral-
lelism in the synchronous versions (which is restricted to the L2 
cache size). Compared to machine B and C, machine A has a rela-
tively small L2 cache size. Asynchronous algorithm supports a 
higher degree of parallelism and therefore a better performance. 
The highest performance speedup of asynchronous version is up 
to 39x while those two synchronous versions can only achieve 
16x and 27x respectively. 

Table 2 Summary of the best performance of each version 

Machine kernel parallel tiled tiled-norec async-base async-tiled 

A 
16 cores

Jacobi 5.95 16.76 27.24 5.47 39.11 

B 
4 cores 

Jacobi 1.01 2.55 3.44 1.01 3.67 

C 
8 cores 

Jacobi 3.73 8.53 12.69 3.76 13.39 

Table 3 DRAM accesses and cache misses on machine A 

  
DRAM 

l3 cache 
miss 

l1 cache 
miss 

l2 cache 
miss 

Ja
co

bi
 

parallel 9.8E+09 6.4E+09 2.5E+08 1.6E+09 

tiled 1.0E+09 7.2E+08 9.4E+07 1.0E+09 

tiled-norec 2.9E+08 2.3E+08 7.4E+07 8.0E+08 

async-base 1.0E+10 6.4E+09 2.5E+08 1.6E+09 

async-tiled 3.0E+08 1.9E+08 1.9E+08 9.5E+07 

 

(a) Single Core performance 

(b) Performance on 16 cores  

Figure 9. Impact of the tile size on the performance of Jacobi 
under the synchronous execution model 

In Figure 10, the performance of each version fluctuates with 
different chunk sizes. This fluctuation is due to the overshooting 
as well as the recovery overhead if recovery is performed. The 
number of overshot iterations in those two asynchronous versions 
is shown in Figure 11. The fluctuation phenomenon agrees with 
the analytical result of our cost model and it underlines the impor-
tance of choosing a proper chunk size to the overall performance. 

Using a performance monitoring tool called Pfmon [8], we al-
so measured the count of DRAM accesses and cache misses at all 
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levels in Table 3. The statistics show that data locality is improved 
under the asynchronous model, evidenced by the reduction in both 
the DRAM accesses and cache misses. 

Gauss-Seidel (GS) 

As discussed in Section 2, it is difficult to parallelize the sequen-
tial Gauss-Seidel directly. Consequently, a red-black Gauss-Seidel 
is commonly used. Figure 13 shows the speedup of tiled GS and 
tiled red-black GS over the original GS on a single core. General-
ly, red-black GS performs worse than the original GS. This is 
mainly because that the red-black GS converges slower than the 
original GS due to the fact that the former uses less recent values 
for updates. 

Figure 14 compares the performance of synchronous tiled ver-
sions against two asynchronous versions on each machine. Table 
4 summarizes the speedup values, with the optimum chunk size, 
for each method. Table 5 lists the measured DRAM accesses and 
cache misses. From these results, we see that the asynchronous 
tiled version out-performs tile-norec on all machines. The perfor-
mance benefits on machine B and C can be attributed mainly to 
the fact that the asynchronous model, unlike the synchronous 
model, can be applied to GS directly, which avoids a slower con-
vergence suffered by the red-black parallel GS. We note that the 
asynchronous tiled version does not improve performance as sig-
nificantly on machine A and C as machine B, although it reduces 
the cache misses and DRAM accesses quite significantly, as 
shown in Table 5. The reason for this is that machine B has a 
considerably lower memory bandwidth than machine A and C, 
and hence the performance benefits from the improved locality 
more significantly. 

Table 4 Summary of performance comparison 

Machine kernel parallel tiled tiled-norec async-base async-tiled 

A GS 5.49 12.76 22.02 26.19 30.09 

B GS 0.68 5.69 9.25 4.90 14.72 

C GS 3.54 8.20 11.86 11.00 19.56 

Table 5 DRAM accesses and cache misses on machine A 

DRAM l3 cache miss l1 cache miss l2 cache miss 

G
S

 

parallel 8.8E+09 6.1E+09 1.2E+08 1.6E+09 

tiled 7.7E+08 5.8E+08 9.5E+07 1.0E+09 

tiled-norec 3.0E+08 2.4E+08 7.6E+07 7.6E+08 

async-base 2.0E+09 1.3E+09 2.5E+07 3.4E+08 

async-tiled 3.1E+08 2.0E+08 5.6E+07 5.9E+07 

Table 6 Summary of performance comparison for SOR 

Machine kernel parallel tiled tiled-norec async-base async-tiled 

A SOR 4.50 11.99 21.25 29.08 31.42 

B SOR 0.65 5.24 8.54 7.34 14.87 

C SOR 3.84 7.53 11.51 11.68 19.10 

Table 7 DRAM accesses and cache misses on machine A 

DRAM l3 cache miss l1 cache miss l2 cache miss 

S
O

R
 

parallel 8.2E+09 5.6E+09 1.1E+08 1.4E+09 

tiled 7.0E+08 5.3E+08 1.0E+08 1.0E+09 

tiled-norec 2.6E+08 2.2E+08 7.3E+07 6.8E+08 

async-base 1.3E+09 8.8E+08 1.9E+07 2.3E+08 

async-tiled 3.3E+08 2.3E+08 4.9E+07 6.9E+07 

 

Figure 11. Overshooting overhead-more iterations (Both async-
base and async-tiled are the same). 

SOR 

SOR has the same dependence patterns as GS. Therefore, a com-
mon way to parallelize SOR also adopts a red-black partition 
scheme. Figure 15 compares the performance between the red-
black SOR with SOR. Figure 16 compares the performance of 
synchronous tiled versions against two asynchronous versions on 
different machines. Table 6 and Table 7 summarize the speedups 
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Figure 10. Performance evaluation of multiple versions of Jacobi 
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and locality statistics, respectively. The performance result fol-
lows the same trend as Gauss-Seidel. 
 

(a) Machine A 

(b) Machine B 

 
(c) Machine C 

Figure 12. Best tile size on three machines 

Figure 13. Evaluation of red-black Gauss-Seidel 

(a) Machine A 

(b) Machine B 

(b) Machine C 

Figure 14. Performance evaluation of Gauss-Seidel 

Evaluation of Adaptive Chunk Size Selection 

We applied our adaptive chunk size selection scheme to all three 
numerical kernels and ran experiments with two choices of the 
minimum chunk size, i.e. min_chunk = 1, and min_chunk = 8 (c.f. 
Section 4). We name these two choices adaptive-1 and adaptive-8, 
respectively. The result is shown in Figure 17, in which the initial 
chunk size is varied to see the impact. For Jacobi and SOR, the 
adaptive scheme achieves a performance level close to the optimal 
chunk size. Unlike using a fixed chunk size, the performance of 
adaptive selection scheme is stable and is insensitive to the initial 
chunk size. The only exception occurs with adaptive-1 for Gauss-
Seidel, where the performance of adaptive-1 fluctuates considera-
bly due to the difficulty of predicting the next chunk size accu-
rately when the convergence rate starts slow down dramatically. 
Because a chunk size does not exploit data reuse across different 
iterations, we can increase the chunk size slightly to exploit data 
reuse such that even if we overshoot, we do not suffer much in 
performance. This is our rational of using adaptive-8. As Figure 
17 shows, adaptive-8 exhibits good performance for all three ker-
nels and it does not suffer instability any more. Table 8 shows the 
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adaptive version can achieve comparable performance as the 
asynchronous tiled version using the optimum chunk size. 

Figure 15. Evaluation of red-black SOR 

(a) Machine A 

(b) Machine B 

(c) Machine C 

Figure 16. Performance evaluation of SOR 

6. Related Work 

A considerable amount of prior work has been conducted on the 
theories of asynchronous iteration algorithms in the past of dec-
ades [12][19][20]. The evaluation of asynchronous algorithms in 
[1][18][21][22] shows the benefit of reducing the communication 
cost and synchronization overhead. It is commonly believed that 
multiple cores placed on the same chip or chip set will have much 

less communication cost and synchronization overhead when 
compared to processors residing on different chip sets and sock-
ets. On the other hand, the memory bandwidth constraint on mul-
ticore is recognized as a more prominent performance bottleneck 
on multicore systems [5][15][16]. Our work proposes to use asyn-
chronous model to relax dependences such that locality optimiza-
tions can be applied subsequently. To our best knowledge, this 
paper is the first to improve parallelism and locality simultaneous-
ly using the asynchronous model. 

Compiler researchers have applied loop tiling to improve data 
locality for many years. Authors of [3][14] proposed skewed tiling 
for locality enhancement on a single processor. The loops targeted 
include those which are imperfectly-nested, such as the loops in 
Jacobi. Work in [10][11] evaluated the parallel version of such 
codes with tiling on multicore. Unfortunately, the tiled programs 
suffer from reduced parallelism because only the loop iterations 
within a single tile can be easily parallelized. Synchronous cache 
oblivious algorithms [23][24], an alternative to tiled algorithms, 
organize data accesses in a way to achieve locality irrespective of 
the cache size. Such algorithms, when successful, can naturally 
exploit locality at various levels of the memory hierarchy. Exist-
ing algorithms, however, have assumed the absence of a conver-
gence test in the computation and hence are not yet suitable for 
the numerical problems considered in the paper. In addition, such 
algorithms are yet to be adapted for parallel execution. 

Table 8 Summary of adaptive performance on three machines 

Machine kernel parallel async-tiled adaptive-1 adaptive-8 

A 

Jacobi 5.95 39.11 29.60 29.90 

GS 5.49 28.02 13.92 26.50 

SOR 4.50 31.42 29.78 27.38 

B 

Jacobi 1.01 3.67 3.23 3.33 

GS 0.68 14.72 4.59 12.40 

SOR 0.65 14.87 12.13 11.81 

C 

Jacobi 3.73 13.39 11.69 11.86 

GS 3.54 19.56 12.15 18.12 

SOR 3.84 19.10 17.67 16.08 

7. Conclusions and Future Work 

Both parallelism and locality are important for efficient use of 
modern multicore CPUs. In this work, we have demonstrated the 
effectiveness of using the asynchronous model to relax data and 
control dependences and hence to enable effective loop tiling. 
Consequently, both parallelism and locality can be attained simul-
taneously. We show that how to partition the iterations into 
chunks has a major performance impact on tiled code and that the 
optimum chunk size can be derived when the total iteration count 
is known. On the other hand, when the total iteration count is 
unknown in advance, we devise an adaptive method to determine 
the chunk size between two consecutive global residual tests. This 
scheme is shown to deliver a performance level that is close to the 
optimum. We evaluated three well-known numerical kernels on 
three different systems and collected extensive statistics to ex-
amine various factors that may have an impact on the perfor-
mance. The performance result shows a clear performance 
advantage to the approach of tiling under the asynchronous model. 

Through this work, we have addressed key issues concerning 
the transformation from a standard synchronous application to an 
asynchronous counterpart with tiling. We believe that a logical 
next step is to devise easy-to-use program extension or annota-
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tions based on asynchrony, such that a compiler can automatically 
perform the transformations described in this work. It is also im-
portant to go beyond the numerical kernels used in our experi-
ments and investigate numerical applications which employ 
similar kernels. 
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(a) Jacobi 

(b) Gauss-Seidel 

(c) SOR 

Figure 17. Performance of adaptive chunk size 
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