

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’10 January 9–14, 2010, Bangalore, India.
Copyright © 2010 ACM 978-1-60558-708-0/10/01…$10.00.

Improving Parallelism and Locality
with Asynchronous Algorithms

Lixia Liu

Department of Computer Science
Purdue University, West Lafayette, IN 47907

liulixia@cs.purdue.edu

Zhiyuan Li

Department of Computer Science
Purdue University, West Lafayette, IN 47907

li@cs.purdue.edu

Abstract

As multicore chips become the main building blocks for high
performance computers, many numerical applications face a per-
formance impediment due to the limited hardware capacity to
move data between the CPU and the off-chip memory. This is
especially true for large computing problems solved by iterative
algorithms because of the large data set typically used. Loop til-
ing, also known as loop blocking, was shown previously to be an
effective way to enhance data locality, and hence to reduce the
memory bandwidth pressure, for a class of iterative algorithms
executed on a single processor. Unfortunately, the tiled programs
suffer from reduced parallelism because only the loop iterations
within a single tile can be easily parallelized. In this work, we
propose to use the asynchronous model to enable effective loop
tiling such that both parallelism and locality can be attained simul-
taneously. Asynchronous algorithms were previously proposed to
reduce the communication cost and synchronization overhead
between processors. Our new discovery is that carefully con-
trolled asynchrony and loop tiling can significantly improve the
performance of parallel iterative algorithms on multicore proces-
sors due to simultaneously attained data locality and loop-level
parallelism. We present supporting evidence from experiments
with three well-known numerical kernels.
Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.4 [Programming
Languages]: Processors-Optimization

General Terms Algorithms, Performance

Keywords asynchronous algorithms, loop tiling, parallel numer-
ical programs, data locality, memory performance

1. Introduction

As multicore chips become the main building blocks for high
performance computers, many numerical applications face a per-
formance impediment due to the limited hardware capacity to
move data between the CPU and the off-chip memory [5][15][16].
This is especially true for large computing problems solved by
iterative algorithms because of the large data set typically used.

Loop tiling, also known as loop blocking, is a program trans-
formation technique for reducing the memory bandwidth pressure
by increasing data locality. In particular, a skewed version of this

technique was shown previously to be effective in enhancing the
data locality for a class of iterative algorithms [3][10][11][14].
Unfortunately, the tiled programs suffer from reduced parallelism
because only the loop iterations within a single tile can be easily
parallelized. How to achieve parallelism and locality at the same
time for iterative numerical solvers remains a challenge.

In this work, we propose to use the asynchronous model to en-
able effective loop tiling such that both parallelism and locality
can be attained simultaneously. Asynchronous algorithms were
previously proposed to reduce the communication cost and syn-
chronization overhead between processors. Our new contribution
is to show that significant performance enhancement can be
achieved by combining loop tiling with carefully controlled asyn-
chrony due to the improved data locality. We present supporting
evidence from experiments with three well-known numerical
kernels which were previously proven mathematically to converge
under the asynchronous model.

In the rest of the paper, we first present background materials
(Section 2) and the main idea (Section 3). It will be made clear
that a critical issue to the success of loop tiling under the asyn-
chronous model is to determine how often to skip the global resi-
dual tests. In Section 4, we present an adaptive scheme to make
such a decision at run time. Experimental results are presented in
Section 5, which is followed by a discussion of related work (Sec-
tion 6). Our conclusion and remarks on future work are given in
Section 7.

2. Background

In this section, we present background materials concerning the
memory bandwidth issue on multicore machines, the loop tiling
technique and the asynchronous model for iterative algorithms.

Multicore Architecture

Current design trend for CPUs used in both main-stream and high-
performance applications is to place multiple identical computa-
tion engines (or cores) on a single CPU chip or a chip-set. On
such a multicore chip or chip-set, the memory hierarchy includes
multiple levels of caches. These cores connect to off-chip DRAMs
through a common interface. Several CPUs can be connected to
form a shared-memory multiprocessor system. Currently, the
DRAMs and the CPUs are typically connected with a non-
uniform memory access architecture (NUMA). As an example,
Figure 1 shows the architecture of an AMD multicore-based sys-
tem in which each of its four CPUs connects to a “local” DRAM.
Each CPU shown in Figure 2 has four cores and a three-level
cache hierarchy that includes a 64KB private L1 data cache, a

512KB private L2 cache, and a 2MB shared L3 cache (c.f. Figure
2).

When memory accesses follow regular address strides, the
hardware prefetching mechanism can often accurately predict the
next data to be fetched well in advance in order to hide the memo-
ry latency. Unfortunately, prefetching is effective only if memory
bandwidth is sufficient to sustain the off-chip memory traffic
generated by multiple cores. By now it is a well-known fact that
the bandwidth available on today’s multicore chips is insufficient
for memory-intensive applications, including parallel programs
which solve large numerical problems [5][15][16].

Figure 1. An example of multicore-based multiprocessors

Figure 2. An example of a multicore CPU

Loop Tiling for Iterative Stencil Computation

In an iterative numerical algorithm, the same array elements are
updated repetitively following a certain stencil in different time
steps. A representative PDE and a code template for its iterative
solver are shown in Figure 3(a-b). In this template, the step update
computes the new value of array a using the previous values of
some elements in array a. This step can be executed simultaneous-
ly on multiple processors or cores when all the dependences are
satisfied.

Due to the convergence test in each time step of the iterative
algorithm, a cached array element cannot be reused across differ-
ent time steps unless a number of time steps are executed specula-
tively (i.e. before knowing whether all those steps are necessary
for convergence) such that loop tiling can be performed. With
such speculative execution, the maximum iteration count is parti-
tioned into chunks such that the exit condition is tested after the
execution of a chunk of M iterations instead of one. Each chunk of
iterations is then tiled. Obviously, such a method depends on the
fact that the exit condition is monotonic, i.e. if the delayed exit
test fails then we know that any previous time step would have
also failed the exit test.

If the semantics in the original program is strictly adhered to,
the updates during the speculative execution must be buffered
until a delayed convergence test shows that the speculatively ex-
ecuted time steps were indeed warranted, and the updates can then
be committed. Furthermore, the tiles are “skewed” to satisfy all
data dependences implied by the original program semantics. In
the event of overshooting, a recovery function is invoked to roll
back the execution, using the buffered values from the last check-
point [3]. If one is further equipped with the fact that the updates
are also monotonic, the recovery function can be omitted.

Problem:
డమ௨

డ௫మ

డమ௨

డ௬మ
ൌ ݂ሺݔ, ሻݕ

2D Grid ܽሺ݊, ݊ሻ

itmax: the maximum iteration count

(a) An illustrating problem

do t = 1,itmax
 update(a, n, f)

 ! Compute residual and convergence test
 error = residual(a, n)
 if (error .le. tol) then
 exit
 endif

end do

(b) The base implementation

do t = 1, itmax/M + 1

 ! Save the old result into buffer as checkpoint
 oldbuf(1:n, 1:n) = a(1:n, 1:n)

 ! Execute a chunk of M iterations after tiling
 update_tile(a, n, f, M)

 ! Compute residual and convergence test
 error = residual(a, n)
 if (error .le. tol) then
 call recovery(oldbuf, a, n, f)
 exit
 end if

end do

(c) The tiled version with speculation execution

do t = 1, itmax/M + 1

 ! Execute a chunk of M iterations after tiling
 update_tile(a, n, f, M)

 ! Compute residual and convergence test
 error = residual(a, n)
 if (error .le. tol) then
 exit
 end if

end do

(d) The tiled version without recovery

Figure 3. Tiling with speculative execution

Impact of tiling on parallelization

To this date, it remains a challenge how to effectively achieve
parallelism in a tiled iterative stencil computation. This is because
only the loop iterations within a single tile can be easily paralle-
lized.

Figure 4 shows an example of tiled Jacobi with odd-even dup-
lication, which is the best way known to tile Jacobi for data locali-
ty [3]. The 2D tile has the size of ܾ1 ൈ ܾ2. Prior to tiling, the step
update can be parallelized across the entire data grid, as shown in
Figure 4 (a). Each time step requires two synchronization barriers
only. Unfortunately, the tiled version can be parallelized only
within each tile due to data dependences between different tiles,
which consist of operations on behalf of different time steps (c.f.
Figure 4(b)). Hence, the tiled version suffers from small granulari-
ty of parallelism, and it increases the number of synchronization

barriers by a factor of the total number of tiles. Such overhead can

offset the performance gain from tiling considerably, and the per-
formance penalty increases with the number of cores.

Asynchronous Algorithms

Asynchronous algorithms have previously been proposed to re-
duce data communication and synchronization overhead in paral-
lel computing [1][12][13][18][19]. The basic idea of
asynchronous algorithms is to relax the data exchange require-
ment such that the update on each data point does not necessarily
use the most up-to-date values of its neighbors. For a class of
asynchronous iterative algorithms, convergence is mathematically
guaranteed, although the convergence rate may potentially be
slowed down due to the use of less recent updates of neighbors.

Under the asynchronous model, a processor, or a core, is al-
lowed to start the computation of the next iteration without wait-
ing for any other processor/core to complete the same iteration.
For example, an asynchronous Jacobi method can be used to solve
a system of linear equations ݔܣ ൌ ܾ with the solution vector ்ݔ
decomposed into q block components such that the initial vector
can be written as ݔ

் ൌ ݔൣ
ଵ, … , ݔ

൧. Each component can be as-
signed to a different processor if we have q processors. At each
iteration k, there may be components that are not updated. One
defines the sets ܬ ك ሼ1, 2, . . , ݅ ሽ and usesݍ א to denote the ݅௧ܬ
block component updated in the ݇௧ iteration.
for ݇ ൌ 1, 2, …

ݔ
 ൌ

ە
۔

ۓ ିଵݔ
 , ݅ ב ܬ

solve ݔܣ
 ൌ ܾ െ ሺ,ሻݔܣ

ୀଵ,ஷ

, ݅ א ܬ

(1)

The term ݎሺ݆, ݇ሻ is used to denote the iteration number of the
݆௧ block component being used in the computation of any partic-
ular block component in the ݇௧ iteration. The value of ݎሺ݆, ݇ሻ
depends on the freshness of the update and how soon the update is
seen by each processor. Using more up-to-date values helps acce-
lerate the convergence. More details about asynchronous algo-
rithms and their convergence properties can be found in
[1][18][19].

In addition to the synchronization and communication benefit,
the relaxed data dependences in the asynchronous model can also
simplify parallel programming. Gauss-Seidel is such an example.
As Figure 5 shows, in Gauss-Seidel, ܽሺ݅, ݆ሻ (marked by the light
grey circle) depends on two neighboring array elements ܽሺ݅ െ
1, ݆ሻ and ܽሺ݅, ݆ െ 1ሻ (dark grey circles) which are computed in the
same time step. Such dependences make it difficult to directly
parallelize Gauss-Seidel. To remove such dependences, one often
uses a red-black update scheme which partitions the data grid into
two disjoint subsets, red (circles with white dots) and black (cir-
cles without dots). These two subsets are updated in alternate
turns, but the update to each set can be parallelized. The red-black
Gauss-Seidel method requires more iterations to converge than the
sequential Gauss-Seidel because the former uses less recent values
in the computation.

Since the asynchronous model tolerates the uncertainty con-
cerning whether the latest neighboring values are used in the up-
date, one can directly parallelize the step update by partitioning
the data grid into a number of sub-grids. A number of iterations
(i.e. time steps) are executed over each sub-grid without synchro-
nizing with the operations on the other sub-grids. After a number
of such inner iterations, a barrier is set up before the step residual
which performs a global convergence test. The asynchronous

!$omp parallel do
 do 20 j = 2,n-1
 do 20 i = 2,n-1
 c(i, j)=(a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1)) / 4 - f(i, j)
 20 continue

!$omp parallel do
 do 30 j = 2,n-1
 do 30 i = 2,n-1
 a(i, j) = c(i, j)
 30 continue

(a) subroutine update(a, n, f)

 do jj = 2, n + M - 2, b1
 do ii = 2, n + M - 2, b2
 do t = max(1, min(jj, ii) - n + 2), min((max(jj + b1, ii + b2) - 2), M)
 if (mod(t, 2) .eq. 1) then
!$omp parallel do
 do j = max(2, jj - t + 1), min((jj + b1 - t), (n - 1))
 do i = max(2, ii - t + 1), min((ii + b2 - t), (n - 1))
 c(i, j) = (a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1))/4 - f(i, j)
 end do
 end do
 else
!$omp parallel do
 do j = max(2, jj – t + 1), min((jj + b1 - t), (n - 1))
 do i = max(2, ii – t + 1), min((ii + b2 - t), (n - 1))
 a(i, j) = (c(i + 1, j) + c(i - 1, j) + c(i, j + 1) + c(i, j - 1))/4 - f(i, j)
 end do
 end do
 end if
 end do
 end do
 end do

 if (mod(t, 2) .eq. 1) then
!$omp parallel do
 do 30 j = 2, n-1
 do 30 i = 2, n-1
 a(i, j) = c(i, j)
 30 continue
 end if

(b) subroutine update_tile(a, n, f, M) under the synchronous model

!$omp parallel

 ! Partition the grid to sub-grids based on thread ID
 partition = (n – 2) / omp_get_num_threads()
 tid = omp_get_thread_num()
 low = max(2, tid * partition)
 high = min(n-1, low + partition - 1)
 if (tid .eq. omp_get_num_threads() – 1) then
 high = n - 1
 end if

 ! Execute sub-grids asynchronously
 do jj = low, high + M - 1, b1
 do ii = 2, n + M - 2, b2
 do t = max(1, min(jj – high + 1, ii - n) + 2), min((max(jj + b1, ii + b2) - 2), M)
 if (mod(t, 2) .eq. 1) then
 do j = max(low, jj - t + 1), min((jj + b1 - t), high)
 do i = max(2, ii - t + 1), min((ii + b2 - t), (n - 1))
 c(i, j) = (a(i + 1, j) + a(i - 1, j) + a(i, j + 1) + a(i, j - 1))/4 - f(i, j)
 end do
 end do
 else
 do j = max(low, jj – t + 1), min((jj + b1 - t), high)
 do i = max(2, ii – t + 1), min((ii + b2 - t), (n - 1))
 a(i, j) = (c(i + 1, j) + c(i - 1, j) + c(i, j + 1) + c(i, j - 1))/4 - f(i, j)
 end do
 end do
 end if
 end do
 end do
 end do

 if (mod(t, 2) .eq. 1) then
!$omp do
 do 30 j = 2, n-1
 do 30 i = 2, n-1
 a(i, j) = c(i, j)
 30 continue
!$omp end do nowait
 end if

!$omp end parallel

(c) subroutine update_tile(a, n, f, M) underthe asynchronous model

Figure 4. Jacobi before and after tiling

Gauss-Seidel is superior to the red-black scheme due not only to
its reduced synchronization but also to its higher likelihood to use
the up-to-date neighboring elements than the latter.

3. Enabling Loop Tiling with Asynchrony

To date, the focus of asynchronous algorithm development is on
the reduction of communication and synchronization overhead,
but not on improving data locality. To see how we can exploit the
asynchronous model to increase data locality through loop tiling,
we point out three advantages offered by the asynchronous model,
namely the relaxed data dependences between neighboring array
elements, the exploitation of the monotonic exit condition, and
furthermore, the reduced number of global residual tests. This last
advantage is the result of an optimistic assumption that, by skip-
ping some of the convergence tests, which helps reduce the com-
munication cost, we do not risk executing too many, if any, extra
iterations.

Once we accept the idea of skipping a number of global tests,
we can introduce loop tiling into an asynchronous algorithm by
further partitioning the sub-grid into tiles and applying inner itera-
tions to each tile successively. With a properly chosen tile size,
data once fetched to a cache of interest (e.g. the L1 cache) can be
reused as often as the number of skipped global tests. For conven-
ience, we denote the number of inner iterations applied to each tile
the chunk size. One wants the chunk size to equal the number of
time steps between two consecutive remaining global tests in
order to obtain the greatest performance gain from tiling. Figure 4
(c) shows an asynchronous Jacobi algorithm with tiling.

Analyzing the Impact of the Chunk Size

As our experimental data (in Section 5) will show, the chunk size
has a significant impact on the effectiveness of the tiled program
under the asynchronous model. This is because a size chosen too
small will reduce data reuse, but a size chosen too large will in-
crease iteration overshooting. In order to examine the impact of
the chunk size, it is useful to start by analyzing the execution time
of a tiled program for a given chunk size. The execution time of
the original program (ܶ୭୰) and the kernel of a tiled version
(୲ܶ

୩ୣ୰୬ୣ୪) can each be represented by a linear function in terms of
k, the number of iterations:

ܶ୭୰ ൌ ܽ ൈ ݇ ܾ and ௧ܶ
୩ୣ୰୬ୣ୪ ൌ ܽ௧ ൈ ݇ ܾ௧

Take Jacobi as an example, on an AMD “Barcelona” proces-
sor, we obtain ܽ ൌ 0.23 ܽ݊݀ ܾ ൌ 0.16. Furthermore, with a
certain tile size, we obtain ܽ௧ ൌ 0.08 and ܾ௧ ൌ 0.44 for the tiled
version. We plot the time measured for different iteration counts
in Figure 6. Given the chunk size (C), the kernel of the tiled code

will be executed ቒ
ூ

ቓ times. The execution time of the tiled version

can therefore be written as

௧ܶ ൌ
ܫ
ܥ
ඈ ሺܽ௧ܥ ܾ௧ሻ compared to ܶ୭୰ ൌ ܽܫ ܾ

where ܫ is the total number of iterations taken to pass the conver-
gence test.

We use ᇞ to represent the number of extra iterations caused by
overshooting in the tiled version.

ᇞൌ ൬
ܫ
ܥ
ඈ ൈ C൰ െ 0 ,ܫ ᇞ൏ ܥ

So,

 do 20 j = 2,n - 1
 do 20 i = 2,n - 1
 a(i, j)=(a(i+1, j)+a(i-1, j)+a(i, j+1)+a(i, j-1))/4 - f(i, j)
 20 continue

(a) subroutine update(a, n, f)

(b) data flow of GS (c) data flow of red-black GS

Figure 5. Gauss-Seidel kernel and data flow

௧ܶ ൌ ܽ௧ሺܫ ᇞሻ ൬
ܫ
ܥ
ඈ൰ ܾ௧

The speedup due to tiling,
்౨ౝ

்
, is maximized when the chunk

size ܫ = ܥ.
It is more difficult to develop a cost model for tiled code under

the synchronous model due to the skewed tile shapes. Nonethe-
less, it is easy to see that the optimum chunk size for tiling with-
out recovery will be the same as the one for tiling under the
asynchronous model. Further, we can approximate the time of
tiled version with recovery by

ܶ୰ୣୡ ൌ ඌ
ܫ
ܥ
ඐ ሺܽ௧ܥ ܾ௧ሻ ሺܽሺI െ ඌ

ܫ
ܥ
ඐ ሻܥ ܾሻ

ൌ ܽ௧ሺܫ ᇞሻ ൬
ܫ
ܥ
ඈ൰ ܾ௧ ሺܥ െᇞሻܽ ܾ

To minimize ܶ୰ୣୡ is to find ܥ ൌ which minimizes כܥ

Costሺܥሻ ൌ ᇞ ܽ௧
ܫ
ܥ
ඈ ܾ௧ ሺܥ െᇞሻܽ

Figure 6. Fitting of the time model for the original Jacobi and
the kernel of a tiled version

We determine the optimum chunk size כܥ by minimizing the
cost function. To make the cost function differentiable, we ap-

proximate by replacing ቒ
ூ

ቓ with

ூ

 , the cost function then has the

differential of
 ݀ Costሺܥሻ

ܥ݀
ൎ െ

ܫ · ܾ௧
ଶܥ

 ܽ (2)

which has the root

כܥ ൌ ඨܫ
ܾ௧
ܽ

 (3)

t = 0.23*k + 0.16

t = 0.08*k + 0.44

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

T
im

e

iteration

original

tiled

Due to our earlier approximation of ቒ
ூ

ቓ by

ூ

 , the root derived

above will be an underestimate. With fixed parameter
,ܫ ܽ, ܾ, ܽ௧ and ܾ௧ , we can exhaustively search for the exact כܥ
using our timing model. Figure 7 plots such exact optimums for
different I and compare it against our approximated values. In our
experiments (c.f. Section 5), we also exhaustively measure the
performance for all possible chunk sizes. Our results show that the
timing formulas developed above for ௧ܶ and ܶ୰ୣୡ are quite accu-
rate and the execution time is highly sensitive to the choice of the
chunk size.

Figure 7. The optimum chunk size for tiling with recovery and
its approximation

4. An Adaptive Scheme for Global Test

The discussion in the previous section makes it clear that the
choice of the chunk size is highly important to the performance of
loop tiling under the asynchronous model. If the exact number of
iterations taken to converge can be known in advance, then one
can simply create a single chunk whose size equals to that num-
ber. Unfortunately, such a number is impossible to determine in
advance. Although formulas exist for estimating the convergence
rate of each well-known iterative numerical algorithm, such an
estimate is too imprecise for the purpose of choosing the chunk
size. Let ܫሺalgorithmሻ denote the number of iterations taken for a
given algorithm to converge. The following formulas are well-
known for Jacobi, Gauss-Seidel, and ideal SOR, respectively:

With ൌ െ logሺݏሻ while ݏ represents the relative residual to-
lerance in the convergence test. Let ܬ ൈ ,denote the grid size ܬ

ሺJacobiሻܫ ൎ
lnሺݏሻ

ln൫ߩJୟୡ୭ୠ୧൯
ൎ

lnሺݏሻ

ln ൬1 െ
ଶߨ
ଶ൰ܬ2

ൎ
1
2
 ଶܬ

ሺGSሻܫ ൎ
lnሺݏሻ

ln൫ߩୱ൯
ൎ

lnሺݏሻ

ln ൬1 െ
ଶߨ
ଶܬ ൰

ൎ
1
4
 ଶܬ

ሺSORሻܫ ൎ
lnሺݏሻ

lnሺߩୱ୭୰ሻ
ൎ

lnሺݏሻ

2 ln ቆ
Jୟୡ୭ୠ୧ߩ

1 ሺ1 െ Jୟୡ୭ୠ୧ߩ
ଶ ሻଵ ଶ⁄ ቇ

ൎ
1
3
 ܬ

For example, with ݏ ൌ 0.02 and ܬ ൌ 4000 , we have
ሺJacobiሻܫ ൌ 1.36E7 ሺGSሻܫ , ൌ 6.80E6 and ܫሺSORሻ ൌ 2.27E3 .
Although such formulas are useful for comparing the convergence
rate among different algorithms, the actual number of iterations
required for convergence when executing each algorithm can be
much smaller. For example, we have measured the following
numbers using the same value of ݏ and ܬ , ሺJacobiሻܫ ൌ 159 ,
ሺGSሻܫ ൌ 77, and ܫሺSORሻ ൌ 51.

Without a promising method to determine the total number of
iterations in advance, we have devised an adaptive scheme to
determine the size of each chunk before the next global residual
test. This is described as follows.

To determine the chunk size adaptively at run time, we assume
that the program converges in a similar rate to the adjacent itera-
tion. Let ߩ represent convergence rate at ݇௧ step with the chunk
size as C, and let the residual error in the previous step and the
current step be ݎିଵ and ݎ respectively. We can derive ߩ from the
following equation.

ߩ ൈ ିଵݎ ൌ ݎ

 log ሺߩሻ ൌ
log ሺ

ݎ
ିଵݎ

ሻ

ܥ

Thus, to pass the convergence test (ݎ ൏ tolሻ, we need ܰ

log ቀ
୲୭୪

ೖ
ቁ log ሺߩሻൗ more iterations to make ߩே ൈ ݎ tol.

Subsequently, we select the next chunk size as the predicted
minimum number of iterations required to pass the convergence
test. We repeat this process for each chunk of iterations.

כܥ ൌ log ൬
tol
ݎ
൰ ൈ ܥ log ൬

ݎ
ିଵݎ

൰൘ then כܥ ՜ ܥ

The advantage of this adaptive scheme is that we do not need to
know the number of iterations taken to converge in advance. Our
experimental results (in Section 5) will show that the scheme
works quite well. Figure 8 shows the code template of this adap-
tive scheme.

5. Experimental Evaluation

Experimental Setup

Three different hardware platforms are used for evaluation of the
effectiveness of our approach: (1) machine A, a quad-socket
2GHz quad-core AMD Opteron 8350 “Barcelona” processors; (2)
machine B, a 2.4GHz quad-core Intel Q6600; and 3) machine C, a
dual-socket 2.4GHz quad-core Intel Nehalem E5530. The details
of the memory hierarchy and the peak memory bandwidth (BW)
are shown in Table 1. The same table also shows the sustained
memory bandwidth SBW obtained by measuring the bandwidth
for bulk memory copy operations. We use the compiler ifort v9.1
with the -O3 -openmp flags to compile both the baseline code

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

C
h

u
n

k
S

iz
e

Iteration Count (I)

Optimum
Approx
Average
UpperBound
Lower Bound

old_error = init_error
new_M = initial_chunk
t = 0

do while (t .le. itmax)
 t = t + new_M

 ! Execute a chunk of new_M iterations with tiling
 update_tile(a, n, f, new_M)

 ! Compute the residual and perform convergence test
 error = residual(a,n)
 if (error .le. tol) then
 exit
 else
 ! Predict the next chunk size adaptively with minimal chunk size as ‘min_chunk’
 old_M = new_M
 new_M = int(log(tol / error) * old_M / log(error / old_error))
 new_M = max(min_chunk, new_M)
 old_error = error
 end if

end do

Figure 8. Code template of the adaptive scheme

(i.e. the sequential code without tiling) and the codes optimized in
various ways.

We perform experiments using three numerical kernels, Jaco-
bi, Gauss-Seidel and successive over-relaxation (SOR) to solve a
Laplace equation under the following boundary conditions.

ܽሺ0, ሻݕ ൌ ܽሺ1, ሻݕ ൌ 0, 0 ݕ 1

ܽሺݔ, 0ሻ ൌ sinሺݔߨሻ , ܽሺݔ, 1ሻ ൌ sinሺݔߨሻ ݁ି௫, 0 ݔ 1

Table 1 Memory configuration of testing system

Machine Model L1 L2 L3
BW

(GB/s)
SBW

(GB/s)

A
AMD8350
4x4 cores

64KB
private

512KB
private

4x2MB
shared

21.6 18.9

B
Q6600

1x4 cores
32KB

private
2x4MB
shared

N/A 8.5 4.79

C
E5530

2x4 cores
256KB
private

1MB
private

2x8MB
shared

51 31.5

All the experimental results are measured with a grid size of

4000 ൈ 4000 and the maximum iteration count of 1000.
For each test program, we want to find out answers to the fol-

lowing questions:
1. Does the asynchronous and tiled version (async_tiled)

outperform the asynchronous version without tiling
(async_base)?

2. Does the asynchronous and tiled version outperform both
versions of synchronous tiled codes, one with the recov-
ery function (tiled) and the other (faster) without the re-
covery function (tiled_norec)?

3. What are the impacts of the chunk size (i.e. the number of
skipped global residual tests) on the data locality and the
performance of the tiled programs, both synchronous and
asynchronous?

4. How effective is our adaptive scheme in choosing the
chunk size?

The Jacobi Program

Jacobi is a well-known numerical kernel for iterative methods.
Figure 9 illustrates the performance impact of tile size on the ma-
chine A for both sequential and parallel version. On a single core,
the best performance is obtained when the tile (about 7KB) fits
into the L1 cache. However, since the parallelism is constrained
by the tile size, the best performance is given when the tile (about
5MB) fits in the L2 cache. Figure 12 shows the impact of the tile
size on all three numerical codes transformed by various tiling
methods under both the synchronous and the asynchronous mod-
els.

From Figure 12, we obtain the best tile size for each tiling me-
thod on each machine. Using such best tile sizes, we compare the
performance between the synchronous and the asynchronous ver-
sions in Figure 10. Furthermore, we summarize the best perfor-
mance for each version in Table 2. In this table (as well as Tables
3-8), the label “parallel” is for the original code parallelized under
the synchronous model without tiling. For all three machines, the
asynchronous tiled version async-tiled improves the performance
significantly over the async-base version. This underlines the
importance of data locality. On machine B and C, the performance
level is similar between async-tiled and tiled-norec. However, on
machine A, the asynchronous tiled version shows a clear perfor-

mance advantage. The main reason is due to the limited paral-
lelism in the synchronous versions (which is restricted to the L2
cache size). Compared to machine B and C, machine A has a rela-
tively small L2 cache size. Asynchronous algorithm supports a
higher degree of parallelism and therefore a better performance.
The highest performance speedup of asynchronous version is up
to 39x while those two synchronous versions can only achieve
16x and 27x respectively.

Table 2 Summary of the best performance of each version

Machine kernel parallel tiled tiled-norec async-base async-tiled

A
16 cores

Jacobi 5.95 16.76 27.24 5.47 39.11

B
4 cores

Jacobi 1.01 2.55 3.44 1.01 3.67

C
8 cores

Jacobi 3.73 8.53 12.69 3.76 13.39

Table 3 DRAM accesses and cache misses on machine A

DRAM

l3 cache
miss

l1 cache
miss

l2 cache
miss

Ja
co

bi

parallel 9.8E+09 6.4E+09 2.5E+08 1.6E+09

tiled 1.0E+09 7.2E+08 9.4E+07 1.0E+09

tiled-norec 2.9E+08 2.3E+08 7.4E+07 8.0E+08

async-base 1.0E+10 6.4E+09 2.5E+08 1.6E+09

async-tiled 3.0E+08 1.9E+08 1.9E+08 9.5E+07

(a) Single Core performance

(b) Performance on 16 cores

Figure 9. Impact of the tile size on the performance of Jacobi
under the synchronous execution model

In Figure 10, the performance of each version fluctuates with
different chunk sizes. This fluctuation is due to the overshooting
as well as the recovery overhead if recovery is performed. The
number of overshot iterations in those two asynchronous versions
is shown in Figure 11. The fluctuation phenomenon agrees with
the analytical result of our cost model and it underlines the impor-
tance of choosing a proper chunk size to the overall performance.

Using a performance monitoring tool called Pfmon [8], we al-
so measured the count of DRAM accesses and cache misses at all

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 2 8 32 128 512 2048

S
p

ee
d

u
p

Tile size (k)

tiled

tiled-norec

0

5

10

15

20

25

4 16 64 256 1024 4096

S
p

ee
d

u
p

Tile size (k)

tiled
tiled-norec
original

Original

levels in Table 3. The statistics show that data locality is improved
under the asynchronous model, evidenced by the reduction in both
the DRAM accesses and cache misses.

Gauss-Seidel (GS)

As discussed in Section 2, it is difficult to parallelize the sequen-
tial Gauss-Seidel directly. Consequently, a red-black Gauss-Seidel
is commonly used. Figure 13 shows the speedup of tiled GS and
tiled red-black GS over the original GS on a single core. General-
ly, red-black GS performs worse than the original GS. This is
mainly because that the red-black GS converges slower than the
original GS due to the fact that the former uses less recent values
for updates.

Figure 14 compares the performance of synchronous tiled ver-
sions against two asynchronous versions on each machine. Table
4 summarizes the speedup values, with the optimum chunk size,
for each method. Table 5 lists the measured DRAM accesses and
cache misses. From these results, we see that the asynchronous
tiled version out-performs tile-norec on all machines. The perfor-
mance benefits on machine B and C can be attributed mainly to
the fact that the asynchronous model, unlike the synchronous
model, can be applied to GS directly, which avoids a slower con-
vergence suffered by the red-black parallel GS. We note that the
asynchronous tiled version does not improve performance as sig-
nificantly on machine A and C as machine B, although it reduces
the cache misses and DRAM accesses quite significantly, as
shown in Table 5. The reason for this is that machine B has a
considerably lower memory bandwidth than machine A and C,
and hence the performance benefits from the improved locality
more significantly.

Table 4 Summary of performance comparison

Machine kernel parallel tiled tiled-norec async-base async-tiled

A GS 5.49 12.76 22.02 26.19 30.09

B GS 0.68 5.69 9.25 4.90 14.72

C GS 3.54 8.20 11.86 11.00 19.56

Table 5 DRAM accesses and cache misses on machine A

DRAM l3 cache miss l1 cache miss l2 cache miss

G
S

parallel 8.8E+09 6.1E+09 1.2E+08 1.6E+09

tiled 7.7E+08 5.8E+08 9.5E+07 1.0E+09

tiled-norec 3.0E+08 2.4E+08 7.6E+07 7.6E+08

async-base 2.0E+09 1.3E+09 2.5E+07 3.4E+08

async-tiled 3.1E+08 2.0E+08 5.6E+07 5.9E+07

Table 6 Summary of performance comparison for SOR

Machine kernel parallel tiled tiled-norec async-base async-tiled

A SOR 4.50 11.99 21.25 29.08 31.42

B SOR 0.65 5.24 8.54 7.34 14.87

C SOR 3.84 7.53 11.51 11.68 19.10

Table 7 DRAM accesses and cache misses on machine A

DRAM l3 cache miss l1 cache miss l2 cache miss

S
O

R

parallel 8.2E+09 5.6E+09 1.1E+08 1.4E+09

tiled 7.0E+08 5.3E+08 1.0E+08 1.0E+09

tiled-norec 2.6E+08 2.2E+08 7.3E+07 6.8E+08

async-base 1.3E+09 8.8E+08 1.9E+07 2.3E+08

async-tiled 3.3E+08 2.3E+08 4.9E+07 6.9E+07

Figure 11. Overshooting overhead-more iterations (Both async-
base and async-tiled are the same).

SOR

SOR has the same dependence patterns as GS. Therefore, a com-
mon way to parallelize SOR also adopts a red-black partition
scheme. Figure 15 compares the performance between the red-
black SOR with SOR. Figure 16 compares the performance of
synchronous tiled versions against two asynchronous versions on
different machines. Table 6 and Table 7 summarize the speedups

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100 120 140 160 180

It
er

at
io

n
 O

ve
rh

ea
d

Chunk

async-base

async-tiled

(a) Machine A

(b) Machine B

(c) Machine C

Figure 10. Performance evaluation of multiple versions of Jacobi

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Chunk

tiled tiled-norec

0

1

2

3

4

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Chunk

tiled tiled-norec

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Chunk

tiled tiled-norec

and locality statistics, respectively. The performance result fol-
lows the same trend as Gauss-Seidel.

(a) Machine A

(b) Machine B

(c) Machine C

Figure 12. Best tile size on three machines

Figure 13. Evaluation of red-black Gauss-Seidel

(a) Machine A

(b) Machine B

(b) Machine C

Figure 14. Performance evaluation of Gauss-Seidel

Evaluation of Adaptive Chunk Size Selection

We applied our adaptive chunk size selection scheme to all three
numerical kernels and ran experiments with two choices of the
minimum chunk size, i.e. min_chunk = 1, and min_chunk = 8 (c.f.
Section 4). We name these two choices adaptive-1 and adaptive-8,
respectively. The result is shown in Figure 17, in which the initial
chunk size is varied to see the impact. For Jacobi and SOR, the
adaptive scheme achieves a performance level close to the optimal
chunk size. Unlike using a fixed chunk size, the performance of
adaptive selection scheme is stable and is insensitive to the initial
chunk size. The only exception occurs with adaptive-1 for Gauss-
Seidel, where the performance of adaptive-1 fluctuates considera-
bly due to the difficulty of predicting the next chunk size accu-
rately when the convergence rate starts slow down dramatically.
Because a chunk size does not exploit data reuse across different
iterations, we can increase the chunk size slightly to exploit data
reuse such that even if we overshoot, we do not suffer much in
performance. This is our rational of using adaptive-8. As Figure
17 shows, adaptive-8 exhibits good performance for all three ker-
nels and it does not suffer instability any more. Table 8 shows the

0
5

10
15
20
25
30
35
40
45

0.01 0.1 1 10 100 1000 10000

S
p

ee
d

u
p

Tile Size(KB)

jac-tiled-norec jac-async-tiled
gs-tiled-norec gs-async-tiled
sor-tiled-norec sor-async-tiled

jac-async-tiled

gs-async-tiled

sor-async-tiled

jac-tiled-norec

sor-tiled-norec

gs-tiled-norec

0
1
2
3
4
5
6
7
8
9

10

0.01 0.1 1 10 100 1000 10000

S
p

ee
d

u
p

Tile Size(KB)

jac-tiled-norec jac-async-tiled
gs-tiled-norec gs-async-tiled
sor-tiled-norec sor-async-tiled

gs-tiled-norec

sor-tiled-norec

0

5

10

15

20

25

0.01 0.1 1 10 100 1000 10000

S
p

ee
d

u
p

Tile Size(KB)

jac-tiled-norec jac-async-tiled
gs-tiled-norec gs-async-tiled
sor-tiled-norec sor-async-tiled

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 20 40 60 80 100 120 140

S
p

ee
d

u
p

Chunk

tiled tiled-norec
rb-tiled rb-tiled-norec

rb-tiled

tiled-norec

tiled

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

async-tiled

async-base

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

0

5

10

15

20

25

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

adaptive version can achieve comparable performance as the
asynchronous tiled version using the optimum chunk size.

Figure 15. Evaluation of red-black SOR

(a) Machine A

(b) Machine B

(c) Machine C

Figure 16. Performance evaluation of SOR

6. Related Work

A considerable amount of prior work has been conducted on the
theories of asynchronous iteration algorithms in the past of dec-
ades [12][19][20]. The evaluation of asynchronous algorithms in
[1][18][21][22] shows the benefit of reducing the communication
cost and synchronization overhead. It is commonly believed that
multiple cores placed on the same chip or chip set will have much

less communication cost and synchronization overhead when
compared to processors residing on different chip sets and sock-
ets. On the other hand, the memory bandwidth constraint on mul-
ticore is recognized as a more prominent performance bottleneck
on multicore systems [5][15][16]. Our work proposes to use asyn-
chronous model to relax dependences such that locality optimiza-
tions can be applied subsequently. To our best knowledge, this
paper is the first to improve parallelism and locality simultaneous-
ly using the asynchronous model.

Compiler researchers have applied loop tiling to improve data
locality for many years. Authors of [3][14] proposed skewed tiling
for locality enhancement on a single processor. The loops targeted
include those which are imperfectly-nested, such as the loops in
Jacobi. Work in [10][11] evaluated the parallel version of such
codes with tiling on multicore. Unfortunately, the tiled programs
suffer from reduced parallelism because only the loop iterations
within a single tile can be easily parallelized. Synchronous cache
oblivious algorithms [23][24], an alternative to tiled algorithms,
organize data accesses in a way to achieve locality irrespective of
the cache size. Such algorithms, when successful, can naturally
exploit locality at various levels of the memory hierarchy. Exist-
ing algorithms, however, have assumed the absence of a conver-
gence test in the computation and hence are not yet suitable for
the numerical problems considered in the paper. In addition, such
algorithms are yet to be adapted for parallel execution.

Table 8 Summary of adaptive performance on three machines

Machine kernel parallel async-tiled adaptive-1 adaptive-8

A

Jacobi 5.95 39.11 29.60 29.90

GS 5.49 28.02 13.92 26.50

SOR 4.50 31.42 29.78 27.38

B

Jacobi 1.01 3.67 3.23 3.33

GS 0.68 14.72 4.59 12.40

SOR 0.65 14.87 12.13 11.81

C

Jacobi 3.73 13.39 11.69 11.86

GS 3.54 19.56 12.15 18.12

SOR 3.84 19.10 17.67 16.08

7. Conclusions and Future Work

Both parallelism and locality are important for efficient use of
modern multicore CPUs. In this work, we have demonstrated the
effectiveness of using the asynchronous model to relax data and
control dependences and hence to enable effective loop tiling.
Consequently, both parallelism and locality can be attained simul-
taneously. We show that how to partition the iterations into
chunks has a major performance impact on tiled code and that the
optimum chunk size can be derived when the total iteration count
is known. On the other hand, when the total iteration count is
unknown in advance, we devise an adaptive method to determine
the chunk size between two consecutive global residual tests. This
scheme is shown to deliver a performance level that is close to the
optimum. We evaluated three well-known numerical kernels on
three different systems and collected extensive statistics to ex-
amine various factors that may have an impact on the perfor-
mance. The performance result shows a clear performance
advantage to the approach of tiling under the asynchronous model.

Through this work, we have addressed key issues concerning
the transformation from a standard synchronous application to an
asynchronous counterpart with tiling. We believe that a logical
next step is to devise easy-to-use program extension or annota-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
rb-tiled rb-tiled-norec

tiled-norec

tiled
rb-tiled

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

async-base

async-tiled

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

0

5

10

15

20

25

0 20 40 60 80 100 120

S
p

ee
d

u
p

Chunk

tiled tiled-norec
async-base async-tiled

tions based on asynchrony, such that a compiler can automatically
perform the transformations described in this work. It is also im-
portant to go beyond the numerical kernels used in our experi-
ments and investigate numerical applications which employ
similar kernels.

Acknowledgment

This work is sponsored in part by National Science Foundation
through grants ST-HEC-0444285, CPA-0702245 and CPA-
0811587, and by a Google Fellowship. The authors thank the
reviewers for their careful reviews and helpful suggestions.

(a) Jacobi

(b) Gauss-Seidel

(c) SOR

Figure 17. Performance of adaptive chunk size

References
[1] Bull, J. M. Asynchronous Jacobi iterations on local memory parallel

computers. M. Sc. Thesis, University of Manchester, Manchester,
UK, 1991.

[2] Solving PDEs: Grid Computations, Chapter 16.

[3] Song, Y. and Li, Z. New tiling techniques to improve cache temporal
locality. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 1999.

[4] Dougals, C. C., Hasse, G., and Langer, U. A Tutorial on Elliptic
PDE Solvers and Their Parallelization, SIAM.

[5] Liu, L., Li, Z., and Sameh, A. H. Analyzing memory access intensity
in parallel programs on multicore. In Proceedings of the 22nd An-
nual international Conference on Supercomputing, Jun 2008.

[6] Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B. B.,
Garzarán, M. J., Padua, D., and von Praun, C. Programming for par-
allelism and locality with hierarchically tiled arrays. In Proceedings
of the Eleventh ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 2008.

[7] SPEC benchmark. http://www.spec.org

[8] Perfmon2, the hardware-based performance monitoring interface for
Linux. http://perfmon2.sourceforge.net/

[9] Jin, H., Frumkin, M., and Yan, J. The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performance. NAS technical re-
port NAS-99-011, NASA Ames Research Center.

[10] Renganarayana, L., Harthikote-Matha, M., Dewri, R., and Rajopad-
hye, S.. Towards Optimal Multi-level Tiling for Stencil Computa-
tions. In Parallel and Distributed Processing Symposium, 2007.

[11] Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P. A
practical automatic polyhedral parallelizer and locality optimizer. In
SIGPLAN Not. 43, 6, May 2008.

[12] Frommer, A. and Szyld, D. B. Asynchronous two-stage iterative
methods. In Numer. Math. 69, 2, Dec 1994.

[13] Meyers, R. and Li, Z. ASYNC Loop Constructs for Relaxed Syn-
chronization. In Languages and Compilers For Parallel Computing:
21th international Workshop, Aug 2008.

[14] Huang, Q., Xue, J., and Vera, X. Code tiling for improving the cache
performance of PDE solvers. In Proceedings of International Confe-
rence on Parallel Processing, Oct 2003.

[15] Alam S. R., Barrett, B. F., Kuehn J. A., Roth P. C., and Vetter J. S.
Characterization of Scientific Workloads on Systems with Multi-
Core Processors. In International Symposium on Workload Charac-
terization, 2006.

[16] Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Dem-
mel, J. Optimization of sparse matrix-vector multiplication on
emerging multicore platforms. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, 2007.

[17] Pugh, W., Rosser, E., and Shpeisman, T. Exploiting Monotone Con-
vergence Functions in Parallel Programs. Technical Report. UMI
Order Number: CS-TR-3636., University of Maryland at College
Park.

[18] Blathras, K., Szyld, D. B., and Shi, Y. Timing models and local
stopping criteria for asynchronous iterative algorithms. In Journal of
Parallel and Distributed Computing, 1999.

[19] Bertsekas, D. P. and Tsitsiklis, J. N. Convergence rate and termina-
tion of asynchronous iterative algorithms. In Proceedings of the 3rd
international Conference on Supercomputing, 1989.

[20] Baudet, G. M. Asynchronous Iterative Methods for Multiprocessors.
J. ACM 25, 226-244, Apr 1978.

[21] Blathras, K., Szyld, D. B., and Shi, Y. Parallel processing of linear
systems using asynchronous. Preprint, Temple University, Philadel-
phia, PA, April 1997.

[22] Venkatasubramanian, S. and Vuduc, R. W. Tuned and wildly asyn-
chronous stencil kernels for hybrid CPU/GPU systems. In Proceed-
ings of the 23rd international Conference on Supercomputing, June
2009.

[23] Prokop, H. Cache-oblivious algorithms. Master's thesis, MIT, June
1999.

[24] Frigo, M. and Strumpen, V. The memory behavior of cache obli-
vious stencil computations. J. Supercomput. 39, 2, 93-112. Feb 2007.

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160

S
p

ee
d

u
p

Initial Chunk

async-tiled
adaptive-1
adaptive-8

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80

S
p

ee
d

u
p

Initial Chunk

async-tiled
adaptive-1
adaptive-8

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

S
p

ee
d

u
p

Initial Chunk

async-tiled
adaptive-1
adaptive-8

