
Performace Prediction Model for Spike Algorithm

on Large Number of Processors

Murat Manguoglu ∗

mmanguog@cs.purdue.edu

Ananth Grama∗

ayg@cs.purdue.edu

April 29, 2008

∗Department of Computer Science, Purdue University

1

1 Introduction

2

2 Algorithm Description and Cost Analysis

2.1 Algorithm Description

Given a diagonally dominant linear system

Ax = f (1)

We describe a version of truncated spike algorithm. To illustrate the
algorithm we assume 4 partitions as follows

A =

A1

A2

A3

A4

B1

B2

B3

C2

C3

C4

x =

x1

x2

x3

x4

f =

f1

f2

f3

f4

(1)

(2)

(3)

(4)

Figure 1: Illustration of the partitioning of the linear system

1. Compute the LU (via DDBTRF)

• LjUj ← Aj for j = 1, 2, 3, 4

2. Compute spikes (via DTBTRS)

• Solve for Vj : LjUjVj =
[

0 · · · 0 BT
j

]T
for j = 1, 2, 3

• Solve for Wj: LjUjWj =
[

CT
j 0 · · · 0

]T
for j = 2, 3, 4.

3. Communicate spike tips W
(t)
j (processor j sends to processor j-1 , for

j = 2, 3, 4). W
(t)
j is the top k × k part of Wj.

4. Factorize the reduced system (via DGETRF)
(

I V
(b)
j

W
(t)
j I

)

(2)

for j = 2, 3, 4.

3

5. Modify the right hand side by solving (via DTBTRS) : LjUjgj = fj

(j = 1, 2, 3, 4)

6. Communicate the modified righ hand side tips g
(t)
j (processor j sends

to processor j-1 for j = 2, 3, 4).

7. Solve the reduced system

(

I V
(b)
j

W
(t)
j+1 I

)(

x
(b)
j

x
(t)
j+1

)

=

(

g
(b)
j

g
(t)
j+1

)

(3)

for j = 2, 3, 4.

8. Communicate the reduced system solution g
(t)
j+1 (processor j sends to

processor j+1 for j = 1, 2, 3) .

9. Retrieve xj (j = 1, 2, 3, 4) (via DGEMV) xj = fj − Vjx
(t)
j+1 −Wjx

(b)
j−1

(V4 = 0 and W1 = 0)

2.2 Cost of the algorithm

Here we assume, k = kl = ku, i.e. upper and lover bandwidths of the matrix
are equal to k. The dimension of the matrix is N . The dimension of the
partitioned blocks are n = N/p.

We model the each stage of the algorithm described in the previous
section. Stages 1, 2, 4, 5, 7, 9 are computations and memory references, while
3, 6, 8 are communications and memory references. In Table 1, we depict a
cost model for each of these stages.

Table 1: Truncated Spike Algorithm Cost Model
Stage Description Cost

1 Factorize the Diagonal Blocks α1nk2 + β1nk
2 Compute Spikes α2nk2 + β2nk
3 Communicate Tips of Spikes α3k

2(p− 1) + β3k
2 + γ3

4 Factorize The Reduced System α4k
3 + β4k

2

5 Modify the Right Hand Side α5nk
6 Communicate Tips of MRHS α6k(p− 1) + β6k + γ6

7 Solve the Reduced System α7k
2

8 Communicate Solution of the Reduced System α8k(p− 1) + β8k + γ8

9 Retrieve the Solution α9nk + β9n

4

Both Stage 1 and Stage 2 cost O(nk2) computation and O(nk) memory
references. In Stage 4, the cost is O(k3) computation an O(k2) memory
references. In Stage 5, we have O(nk) computation and O(nk) memory ref-
erences. Similary in Stage 7 we have O(k2) computation and O(k2) memory
references. Finally, in Stage 9 there are O(nk) computation for matrix vector
product and O(n) computation for vector addition. The memory references
for the last stage are O(nk) and O(n).

In Stages 3, 6, 8 we model the cost by O(data) for the communication of
data, O(data× (p−1)) for the saturation of the network, and a constant for
MPI communication the overhead. Where data is the amount of data to be
communicated between neighboring processors.

5

3 Training

For training we used a digonally dominant toeplitz system of dimension
5, 000, 000 with 4.0 on the main diagonal −1.0 on the first off diagonals and
−0.01 on all other off diagonals with a right hand side vector of all ones.

First platform we trained the model is Ranger Sun Constellation Linux
Cluster at TACC. Ranger has 3, 936 nodes and each node has 16 cores (of
AMD Barcelona Processor) . Interconnection network between nodes is
Infiniband.

Training is done using 16, 32, 64 processors (1, 2, 4 nodes respectively) for
bandwidths k = 15, 25, 35. We timed the individual stages of the algorithm
via wall clock time on each processor independently and use the maximum
among each MPI process as the time consumed in that stage.

Using a least squares approximation we find the following parameters
αi, βi, γi for i = 1, .., 9.

Table 2: Cost Model Parameters
i αi βi γi

1 8.62 × 10−10 2.61 × 10−8 -
2 3.96 × 10−8 3.66 × 10−7 -
3 9.07 × 10−14 1.21 × 10−6 9.48 × 10−4

4 1.65 × 10−29 7.43 × 10−6 -
5 2.85 × 10−8 - -
6 4.31 × 10−9 4.10 × 10−7 3.59 × 10−5

7 1.19 × 10−7 - -
8 2.57 × 10−7 3.39 × 10−31 6.42 × 10−4

9 8.86 × 10−8 9.51 × 10−9 -

6

4 Verification

In order to verify the model we used two different systems one with the same
toeplitz system used in the training and the other one is another toeplitz
system with dimension 10, 000, 000. We verify the model for 128, 246, 512,
and 1, 024 processors for these two systems.

Table 3: Model Verification
N k p Observed Model Error

5, 000, 000 35 128 2.78 2.64 0.13
5, 000, 000 25 128 1.55 1.49 0.06
5, 000, 000 15 128 0.70 0.66 0.04

5, 000, 000 35 256 1.49 1.33 0.16
5, 000, 000 25 256 0.79 0.75 0.04
5, 000, 000 15 256 0.35 0.33 0.02

5, 000, 000 35 512 0.67 0.67 0.00
5, 000, 000 25 512 0.38 0.38 0.00
5, 000, 000 15 512 0.20 0.17 0.03

5, 000, 000 35 1, 024 0.37 0.35 0.02
5, 000, 000 25 1, 024 0.21 0.20 0.01
5, 000, 000 15 1, 024 0.10 0.09 0.01

10, 000, 000 35 128 5.36 5.27 0.09
10, 000, 000 25 128 3.03 2.98 0.06
10, 000, 000 15 128 1.36 1.31 0.05

10, 000, 000 35 256 2.78 2.64 0.13
10, 000, 000 25 256 1.55 1.49 0.06
10, 000, 000 15 256 0.68 0.66 0.02

10, 000, 000 35 512 1.51 1.33 0.18
10, 000, 000 25 512 0.79 0.75 0.04
10, 000, 000 15 512 0.35 0.33 0.02

10, 000, 000 35 1, 024 0.69 0.68 0.01
10, 000, 000 25 1, 024 0.45 0.38 0.07
10, 000, 000 15 1, 024 0.19 0.17 0.02

7

5 Conclusions

8

6 Acknowledgements

We would like to thank you Professor Zhiyuan Li for running tests on TACC
Ranger platform.

9

