Parallel banded preconditioners for non-symmetric linear system solvers

Murat Manguoglu, Ahmed Sameh, and Ananth Grama Department of Computer Science, Purdue University

{mmanguog, sameh, ayg}@cs.purdue.edu

June 12, 2008

Acknowledgment: Funding for this work was provided by the US National Science Foundation

Theses of Talk

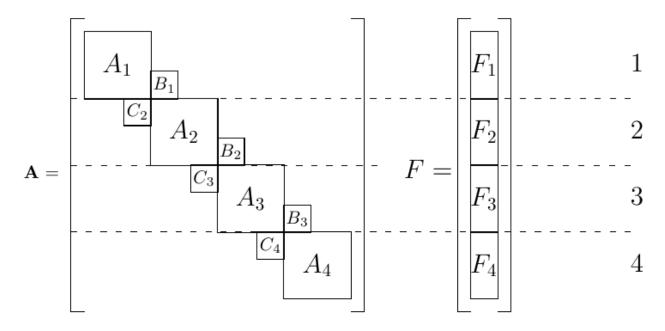
- Building on our prior work demonstrating the effectiveness of Spike as a solver and preconditioner, we derive highly scalable parallel formulations and demonstrate performance on large parallel platforms.
- Using a pseudo-analytical performance model, we derive estimates of parallel time, show these estimates to be highly accurate, and use these estimates to argue scaling of Spike to much larger machine configurations.

Layout of Presentation

- Summary of Spike Performance (Serial)
- Spike Parallelization Strategy
- Parallel Performance Results
- Pseudoanalytical Performance Model for Spike
- Validation of Performance Model
- Limitations of Approach

- Targeted to banded, or low-rank perturbations of banded systems (dense or sparse within the band).
- Banded approximations used as preconditioners.
- Spike is designed to optimize memory system as well as parallel performance.

Solving Ax = F with four partitions:

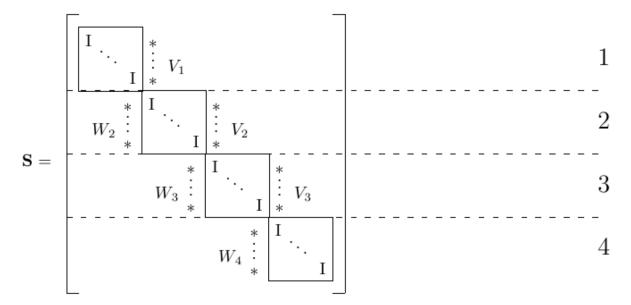


Partitioning of the matrix A and the RHS F, with p=4.

ullet Spike factorization is: $A=D\ S$, where D is a block-diagonal matrix consisting only of the diagonal blocks A_j ,

$$D = \operatorname{diag}(A_1, ..., A_p),$$

• Matrix S has the following structure:



• The spikes V_j and W_j are given by

$$V_j=(A_j)^{-1}\left[egin{array}{c} 0 \ I_m \end{array}
ight]B_j, \quad {
m and} \quad W_j=(A_j)^{-1}\left[egin{array}{c} I_m \ 0 \end{array}
ight]C_j. \qquad \eqno(1)$$

• Spikes V_j and W_j , j=2,...,p-1, are generated by solving,

$$A_{j} \begin{bmatrix} V_{j}, W_{j} \end{bmatrix} = \begin{bmatrix} 0 & C_{j} \\ \vdots & 0 \\ 0 & \vdots \\ B_{j} & 0 \end{bmatrix}.$$
 (2)

• Solving the system AX = F now reduces to two steps: DG = F and SX = G.

Spike Performance (Serial)

- Spike used as a preconditioner with BiCGStab as the iterative solver.
- Comparison with:
 - ILUPACK: Multilevel ILU (Bollhofer)
 http://www.math.tu-berlin.de/ilupack/
 - ILUT: Incomplete LU Factorization from Sparsekit (Saad) http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparsekit
 - ILUT-I: Improved ILUT (Benzi) (reorder using HSL-MC64 to maximize the product of the diagonals and scale the matrix, apply symmetric RCM reordering, incomplete factorization via ILUT)

Spike-Based Preconditioning: Preprocessing

Extracting a banded preconditioner:

- reorder using HSL-MC64 to make the diagonal zero free
- ullet reorder $\|A\|+\|A^T\|$ using HSL-MC73 to place larger elements closest to the main diagonal
- extract a banded preconditioner, such that 99.9% of the weight is inside the band
- factorize the banded preconditioner

Test Problems:

Matrix Name	Application	n	nnz
1. ASIC 680K	Circuit Simulation	680,000	2, 638, 997
7. ASIC_000K	Oncuit Simulation	000,000	2, 030, 997
2.DC1	Circuit Simulation	116, 835	766, 396
3. FINAN512	Econometrics	74, 752	596, 992
4. H2O	Quantum Chemistry	67, 024	2, 216, 736
5. 2D_54019_HIGHK	Device Simulation	54, 019	996, 414
6. APPU	NASA Benchmark	14, 000	1, 853, 104

Comparison to ILUPACK AMF/PQ preconditioners on an uniprocessor

Method\Matrix Number	1	2	3	4	5	6
ILUPACK-AMF	>600 s	Conv.	Best	Conv.	Conv.	Conv.
ILUPACK-PQ	>600 s	Conv.	Conv.	Best	Conv.	Conv.
WSO	Best	Best	Conv.	Conv.	Best	Best

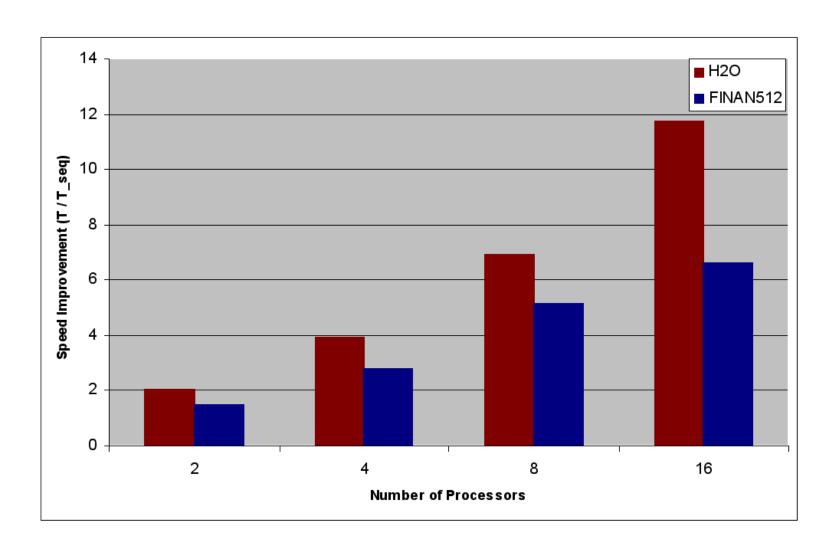
Outer Iterative Solver: unrestarted GMRES, ILUPACK Parameters: droptol: 1e-1, bound for inv(L), inv(U): 10, elbow space: 100

Comparison to ILUT and Improved-ILUT Preconditioners on an uniprocessor

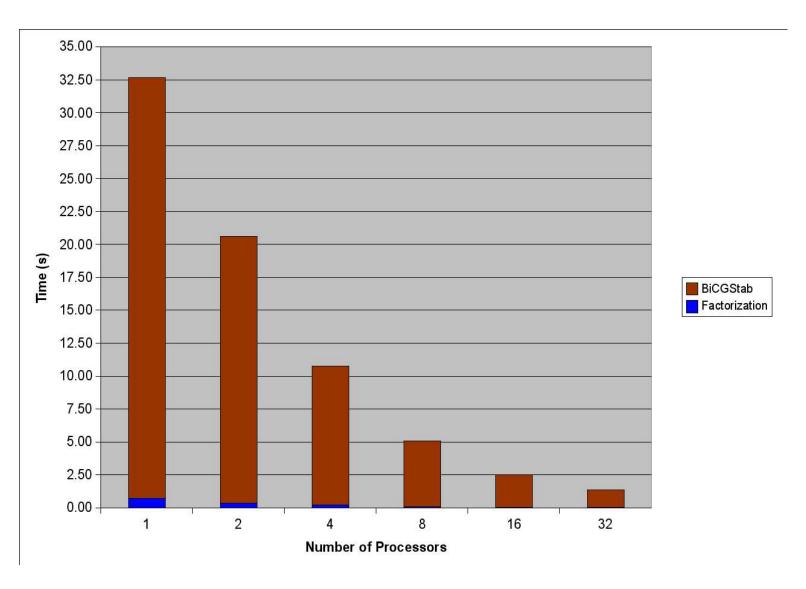
_					-	_
Method\Matrix Number	1	2	3	4	5	6
ILUT(1e-1, n)	Fail	Conv.	Best	Best	Fail	Conv.
ILUTI(1e-1,n)	Conv.	Conv.	Conv.	Conv.	Conv.	Conv.
ILUT(1e-3,n)	Fail	Conv.	Conv.	Conv.	Fail	>600s
ILUTI(1e-3,n)	Conv.	Conv.	Conv.	Conv.	Conv.	>600s
ILUT(0,k)	Fail	>600s	Conv.	>600s	Conv.	>600s
ILUTI(0,k)	Conv.	>600s	Conv.	>600s	Conv.	>600s
wso	Best	Best	Conv.	Conv.	Best	Best

Outer Iterative Solver: BiCGStab

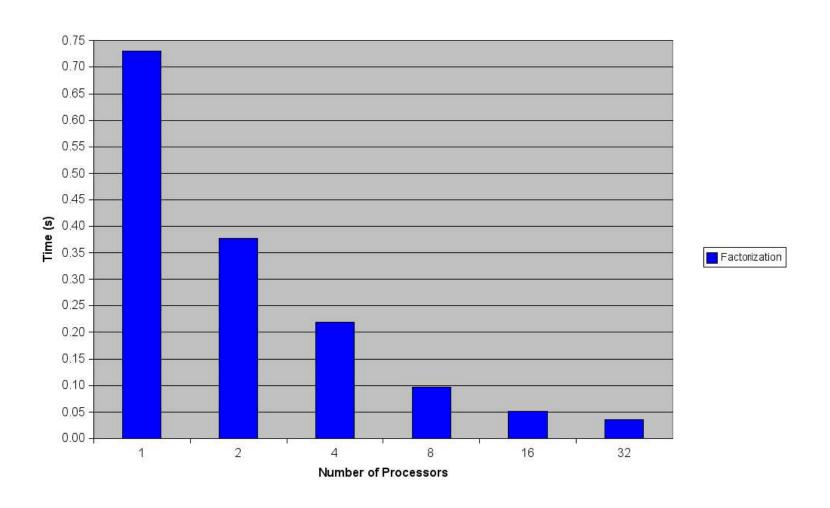
WSO solver speedup, SGI Altix:



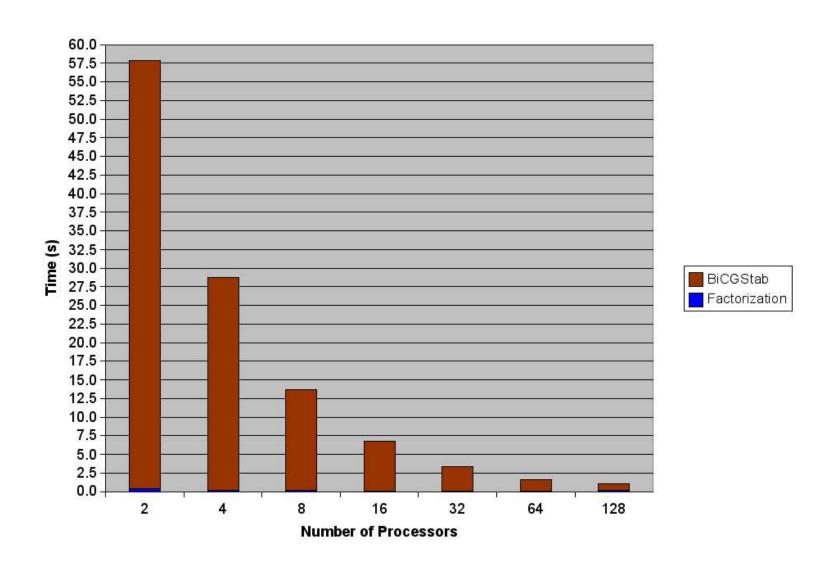
Reservoir Simulation (SPE10 benchmarks): Problem 1: N=2,244,000 Problem 2: N=2,462,265.



Spike Factorization Performance:



Reservoir Simulation Benchmark 2:



Spike: Parallel Steps

- 1. Compute the LU (via DDBTRF)
 - $L_j U_j \leftarrow A_j$ for j = 1, 2, 3, 4
- 2. Compute spikes (via DTBTRS)
 - Solve for V_j : $L_j U_j V_j = \begin{bmatrix} 0 & \cdots & 0 & B_j^T \end{bmatrix}^T$ for j = 1, 2, 3
 - Solve for W_j : $L_j U_j W_j = \left[C_j^T \ 0 \ \cdots \ 0 \right]^T$ for j=2,3,4.
- 3. Communicate spike tips $W_j^{(t)}$ (processor j sends to processor j-1, for j=2,3,4). $W_j^{(t)}$ is the top $k\times k$ part of W_j .
- 4. Factorize the reduced system (via DGETRF)

$$\begin{pmatrix} I & V_j^{(b)} \\ W_j^{(t)} & I \end{pmatrix} \tag{3}$$

- 5. Modify the right hand side by solving (via DTBTRS) : $L_j U_j g_j = f_j$ (j=1,2,3,4)
- 6. Communicate the modified right hand side tips $g_j^{(t)}$ (processor j sends to processor j-1 for j=2,3,4).
- 7. Solve the reduced system

$$\begin{pmatrix} I & V_j^{(b)} \\ W_{j+1}^{(t)} & I \end{pmatrix} \begin{pmatrix} x_j^{(b)} \\ x_{j+1}^{(t)} \end{pmatrix} = \begin{pmatrix} g_j^{(b)} \\ g_{j+1}^{(t)} \end{pmatrix}$$
(4)

- 8. Communicate the reduced system solution $g_{j+1}^{(t)}$ (processor j sends to processor j+1 for j=1,2,3).
- 9. Retrieve x_j (j = 1, 2, 3, 4) (via DGEMV) $x_j = f_j V_j x_{j+1}^{(t)} W_j x_{j-1}^{(b)}$ ($V_4 = 0$ and $W_1 = 0$)

Analytical Characterization of Spike Steps

Notation:

- k = kl = ku (upper and lower bandwidths identical)
- ullet the dimension of the matrix is N
- the dimension of the partitioned blocks are n=N/p.

Stage	Description	Cost
1	Factorize the Diagonal Blocks	$\alpha_1 n k^2 + \beta_1 n k$
2	Compute Spikes	$\alpha_2 n k^2 + \beta_2 n k$
3	Communicate Tips of Spikes	$\alpha_3 k^2 (p-1) + \beta_3 k^2 + \gamma_3$
4	Factorize The Reduced System	$\alpha_4 k^3 + \beta_4 k^2$
5	Modify the Right Hand Side	$lpha_5 n k$
6	Communicate Tips of MRHS	$\alpha_6 k(p-1) + \beta_6 k + \gamma_6$
7	Solve the Reduced System	$lpha_7 k^2$
8	Comm. Soln. of Reduced System	$\alpha_8 k(p-1) + \beta_8 k + \gamma_8$
9	Retrieve the Solution	$\alpha_9 nk + \beta_9 n$

Analytical Characterization of Spike Steps: Observations

- Stage 1 and Stage 2 cost $O(nk^2)$ computation and O(nk) memory references.
- Stage 4 has $O(k^3)$ computation an $O(k^2)$ memory references.
- Stage 5 has O(nk) computation and O(nk) memory references.
- Stage 7 has $O(k^2)$ computation and $O(k^2)$ memory references.
- Stage 9 has O(nk) computation for matrix vector product and O(n) computation for vector addition.
- \bullet In Stages 3,6,8 we model the cost by O(data) for the communication of data, $O(data\times(p-1))$ for network saturation

Training the Analytical Model

- Digonally dominant toeplitz system of dimension 5,000,000.
- Training platform: Ranger Sun Constellation Linux Cluster at TACC (3,936 nodes, each node has 16 cores of AMD Barcelona Processor. Interconnect is Infiniband.
- Train using 16,32,64 processors (1,2,4 nodes respectively) for bandwidths k=15,25,35.
- Using a least squares approximation we find the following parameters $\alpha_i, \beta_i, \gamma_i$ for i = 1, ..., 9.

Cost Model Parameters

Training yields the following parameters:

i	α_i	eta_i	γ_i
1	8.62×10^{-10}	2.61×10^{-8}	-
2	3.96×10^{-8}	3.66×10^{-7}	-
3	9.07×10^{-14}	1.21×10^{-6}	9.48×10^{-4}
4	1.65×10^{-29}	7.43×10^{-6}	-
5	2.85×10^{-8}	-	-
6	4.31×10^{-9}	4.10×10^{-7}	3.59×10^{-5}
7	1.19×10^{-7}	-	-
8	2.57×10^{-7}	3.39×10^{-31}	6.42×10^{-4}
9	8.86×10^{-8}	9.51×10^{-9}	-

Note: Parameters also tell us what regime our algorithm operates in: is the computation memory or processor bound? is communication latency or bandwidth bound, etc.

Cost Model Verification

Validation on two systems – one using the same toeplitz system used in training, the other, a toeplitz system of dimension 10,000,000. We verify the model for $128,\ 246,\ 512,\$ and 1,024 processors.

N	k	р	Observed	Model	Error
5,000,000	35	128	2.78	2.64	0.13
5,000,000	25	128	1.55	1.49	0.06
5,000,000	15	128	0.70	0.66	0.04
5,000,000	35	256	1.49	1.33	0.16
5,000,000	25	256	0.79	0.75	0.04
5,000,000	15	256	0.35	0.33	0.02
5,000,000	35	512	0.67	0.67	0.00
5,000,000	25	512	0.38	0.38	0.00
5,000,000	15	512	0.20	0.17	0.03
5,000,000	35	1,024	0.37	0.35	0.02
5,000,000	25	1,024	0.21	0.20	0.01
5,000,000	15	1,024	0.10	0.09	0.01

Cost Model Verification (contd)

N	k	р	Observed	Model	Error
10,000,000	35	128	5.36	5.27	0.09
10,000,000	25	128	3.03	2.98	0.06
10,000,000	15	128	1.36	1.31	0.05
10,000,000	35	256	2.78	2.64	0.13
10,000,000	25	256	1.55	1.49	0.06
10,000,000	15	256	0.68	0.66	0.02
10,000,000	35	512	1.51	1.33	0.18
10,000,000	25	512	0.79	0.75	0.04
10,000,000	15	512	0.35	0.33	0.02
10,000,000	35	1,024	0.69	0.68	0.01
10,000,000	25	1,024	0.45	0.38	0.07
10,000,000	15	1,024	0.19	0.17	0.02

Cost Model Verification

- Model yields outstanding accuracy in predicting performance well beyond training machine size.
- Model predicts linear scaling (linearly increasing speedup when keeping problem size per processor constant)!

Spike is an excellent candidate for emerging ultrascale platforms.

Limitations of Approach

- Serial performance is harder to characterize than parallel performance!
 - Operate in stable region of serial performance
- Analytical models may vary across platforms
 - Separate models for message passing and shared address space machines
- Granularity of aggregates
 - It may not always be possible to clearly identify and analytically characterize various steps in a parallel algorithm.

Thank You!