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Modularity and Function: Background

eraction Networks

@ Provides a high level description
of cellular organization

@ Directed and undirected graph
representation
@ Nodes represent cellular
components
o Protein, gene, enzyme,
metabolite
@ Edges represent reactions or
interactions
o Binding, regulation,
modification, complex S.cerevisiae
membership, substrate-product  Protein-Protein Interaction (PPI) Network
relationship
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Modularity and Function: Background

@ Molecular annotation provides a
unified understanding of the

Under|y|ng prlnCIpIeS Gene Ontology
@ Gene Ontology: A controlled
vocabulary of molecular ey

functions, biological processes,
and cellular components

@ Terms (concepts) related by is-a,
part-of relationships G0:0030154

a T
Cellular Process Development
GO:0009987 GO0:0007275

Cell Differentiation

o If a molecule is annotated by a
term, then it is also annotated by
terms on the paths towards root.
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Modularity and Function: Background

opology in Molecular Networks

How does function relate to network topology?

o+—> 9

Pathways
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Modularity and Function: Background

Topology and Function

Understanding functional composition of biochemical networks

Qo

Conservation [ISMB 04/Bioinf. 04]

@ Alignment [RECOMB 05/JCB 06]

Qo

¢ © 0 ©
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Modularity [RECOMB 06/JCB 07]

Inference [Bioinf. 06]

Pathway Annotation [ISMB 07/Bioinf. 07, PSB 08]
Network Abstractions/ Annotations [ECCB 08/ Bioinf. 08]

Modularity and Domain Interactions [APBC 10/ BMC
Bioinf. 10]

Pathway Interaction Maps [PSB 12, Submitted]




Modularity and Function: Background

oherence in Networks

@ Modularity manifests itself in terms of high connectivity in
the network

@ Functional association (similarity) is correlated with
network proximity

@ A measure for annotation proximity of nodes (semantic
similarity)

@ A measure for network distance
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Network distance
Sharan et al., MSB, 2007
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Modularity in PPIs and DDIs

nctional Similarity

@ Gene Ontology (GO)
provides a hierarchical
taxonomy of biological
process, molecular
function and cellular
component

@ Assessment of semantic
similarity between
concepts in a hierarchical
taxonomy is well studied
(Resnik, IJCAI, 1995)
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biological process
is_a is_a

physiological process cellular process

is_a
cellular physiological process

is_a is_a
cell cycle cell division
part,o'f/ \‘s,a
M phase meiotic cell cycle <

part_of cytokinesis

isk
M phase of meiotic cell cycle /
Pb\ is_a

cytokinesis after meiosis |



Modularity in PPIs and DDIs

ilarity of GO Terms

@ Resnik’'s measure based on information content
I(c) = —109,(|Gc|/|Gr|)

di(ci ¢) = max I(c)
i0A

o G.: Set of molecules that are associated with term c, r:
Root term

o A;: Ancestors of term ¢; in the hierarchy

o A(ci, ¢j) = argmaxccp qa, 1(C): Lowest common ancestor of

c; and ¢;
()
Qt@ Resnik(cs, c4) = Max(IC(c1), 1C(C,))
<]
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Modularity in PPIs and DDIs

llarity of Molecules with Sets of Terms

@ Average (Lord et al., Bioinformatics, 2003)
1
PA(SHS) = gt D D de @)
ISilISi CES; CES;
k i vl j

@ Generalize the concept of lowest common ancestor to sets
of terms (Pandey et al., ECCB, 2008)

ANSLS) = || Meo)

CkESj,C GSj

Grs o
A(Si.§)) = (A(S, §))) = —log, (W>

o Gpss) = ﬂ G, is the set of molecules that are
ckEN(SI,S))
associated with all terms in the MCA set
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Modularity in PPIs and DDIs

)herence of Module

@ A set of molecules that participates in the same biological
processes or functions

o sub-network with dense intra-connections and sparse
interconnections

@ Each module is associated with set of molecular entities,
and each molecule associated with set of terms.

¥ Set
ets:
@ @ @
(%) o Rl = {81782783784}
S CS {C} ® Rp = {S1,52,Ss}
Ca e} Su— {on o Rs={Ss,S
83:{C47C6}sS4I{C1,C6}, 3 { 3 4}

Ss = {c1}, S¢ = {Cs}




Modularity in PPIs and DDIs

sure

@ Average (Pu et al., Proteomics, 2007)

AR = ——— (s,

n(n—-1)/2 1T

o Example: 0a(S1,S5,S3,S4) =

1
6(3 * 0a(S1,S2,S3) + p(S3,S4) + p(S1,Sa) + p(S2, Sa))
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Modularity in PPIs and DDIs

nformation Content

Extend the notion of the minimum common ancestor of pairs of

terms to tuples of terms A(ci ,...,Cj,) = agmaXeerp A I(c)

IGagsi,....s))
o1(R) =1(A(Sy,...,Sn)) = —log, <(|G|J) :
r
where

AS1,.S2,...Sn) = || ACiCip---1Giy)
¢, €Sj,1<j<n

Example: ¢,(S1, S, S3,S4) = I(r) = 0, no common ancestor!

Grama et al.



Modularity in PPIs and DDIs

yrmation Content

Weigh the information content of shared functionality by the
number of molecules that contribute to the shared functionality

> i

Uw(R) —1_ 1<i<nceA);
> > )
1<i<nceA;
ow(S1,S2, S3,S4) = 0.86 ow(S1,Ss,S3) = 0.75
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Modularity in PPIs and DDIs

r Multiple Paths

@ Is "shortest path" a good measure of network proximity?
@ Multiple alternate paths might indicate stronger functional
association
o In well-studied pathways, redundancy is shown to play an
important role in robustness & adaptation (e.g., genetic
buffering)

I <
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Modularity in PPIs and DDIs

s with restarts

@ Consider a random walker that starts on a source node s.
At every tick, the walker chooses randomly among
available edges or goes back to node s with probability c.

Grama et al.



Modularity in PPIs and DDIs

ed On Random Walks

@ Simulate an infinite random walk with random restarts at
protein i

@ Proximity between proteins i and j is given by the relative
amount of time spent at protein |

(0) =1, &(t+1) = (1 - C)AD(t) +cl, &= lim o(t)

@ ®(i,j): Network proximity between protein i and protein j
o A: Stochastic matrix derived from the adjacency matrix of
the network
o |: Identity matrix
o c: Restart probability
o Define proximity between proteins i and j as

{0(1,]) +9(.1)}/2




Modularity in PPIs and DDIs

Proximity & Functional Similarity

M Shortest Path M Proximity
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Correlation between functional similarity
and network proximity
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Modularity in PPIs and DDIs

roximity and Functional Similarity

STDDI —— ST DDl ——
Comp-2 DDI Comp-2 DDI
S pombe PPI S.pombe PPI %
4k S.cere PPI - sl S.cere PPI e |

ol £ou B Se—)

normalized average semantic similarity

normalized average semantic similarity

4 . . . . . . .
x>112* 112% x >112° 1128 x>1/2"2 1122 x >0 1 15 2 25 3 35 4
random walk proximity network distance

(a) b

Comparison of the DDI and PPI networks with respect to the
relation between semantic similarity vs proximity and network
distance
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Modularity in PPIs and DDIs

of Coherence Meaures

T T T

Avg. pairwise term sim. —+—

Avg. pairwise molecule sim.

51 generalized IC %
weighted IC &

pvalue < 0.05 --m-

4+ o 1

index of detectability

complex set size
Index of Dectectability vs. complex sizes

d(o) = mean 1 (o(t)) —meanec(o(t))

V/(ser (0(1))?+(Stdhec (o(1)))?) /2
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Modularity in PPIs and DDIs

ned

@ Random walk based measures of topological proximity are
better suited to existing interaction data

@ Measures that quantify coherence among entire sets are
superior to aggregares of known pair-wise measures

Grama et al.



Modularity in PPIs and DDIs

Building Pathway Maps Using Synthetic Lethality Networks

Grama et al.



Pathway Maps: Background

Double mutants exhibit unexpected phenotypes, as compared
to joint single mutations.

@ Negative Interactions: more severe phenotype than

expected
o Also known as aggravating or synergistic
o) : Less severe phenotype than
expected

o Also known as alleviating or epistatic

Most commonly used:
: Growth rate
. Multiplicative null model

Grama et al.




Pathway Maps: Background

jon of Genetic Interactions

@ Between-Pathway Model

@ Among genes participating in redundant functions
9@ Within-Pathway Model

@ Among genes with additive effect
@ Indirect Effect

o Among genes with distant functions that are not directly
related

Grama et al.



Pathway Maps: Background

(=] Between Pathway Model (BPM)

Regulator

|-lPathway/1} —Rathway 2

@ Bi-cliquish structure
© Have been used to:
Q Predict co-pathway
membership of gene pairs
@ Extract redundant pathways

Essential Function

Grama et al.



Pathway Maps: Background

dscape of a Cell

Secretion &
vesicle
s fransport

Chromatin & +

morphogenesis

DNA replication
& repair

Adopted from Costanzo et al., 2010

Grama et al.

@ Baker's yeast,
Saccharomyces cerevisiae

@ Synthetic Genetic Array
(SGA)
@ 1712 query genes
O 1378 null alleles of
non-essential genes
Q 334 hypomorphic or
conditional alleles of
essential genes

@ 3885 array strains



Pathway Maps: Background

nnotations

KEGG PATHWAY Database
Wiring diagrams of molecular Interactions, reactions, and relations

KEGG2 PATHWAY BRITE MODULE DISEASE DRUG GENES GENOME LIGAND DBGET
Select prefix Enter keywerds

mep_| [rganism &) rew

Pathway Maps

a collection of manually drawn pathway maps (see new maps, change history, and
ting our knowledge on the teract networks for:

Pathway Mapping

Grama et al.

o KEGG Pathway Database

@ Annotations for 1026
genes in the experiment
o 96 Pathways

o 80 pathways after
filtering pathways with
less than 10 genes.



Pathway Maps: Background

ghborhood Similarity

0-Pathway Membership

Similarity prediction methods
Q Number of Shared Neighbors
O Congruence Score
@ Pearson Correlation of Interaction Profiles

Q)
@@é@ . @?@

Both v; and v; have three shared neighbors. However, in the first case their congruence score is almost 0.6, while in
the second case it is approximately 2 (assuming a graph of size 10).

Grama et al.



Pathway Maps: Background

Given a pathway P, and a cut size (target set) I.

P —value(X =k) = Prob(k <X)

— HGT(k|N,Na, )
- min(zN:A’l)C(l,x)C(N —1,Na —X)

X: Random variable denoting the number of true positives in a
random sample, N: Total number of gene pairs, Na: Number of
gene pairs in pathway A, |: Size of target set

Grama et al.



Pathway Maps: Background

HyperGeometric (MHG) Score

Target size unknown:

Definition
The Minimum HyperGeometric (mHG) score

mHG()\) = min1§|SN HGT(b|()\), N, NA, |),

where bj(\) = Z!Zl Ai

)i is 1 if both of the genes in the i!" ranked gene pair are
members of P, and 0 otherwise.

© mHG Adjusted for Multiple Comparison

Grama et al.



Pathway Maps: Backg

Are Not Equally Accurate in Different
ways

Enrichment of KEGG pathways in top-ranked scores (# of enriched pathways = 42)
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Constructing KEGG Crosstalk Map

Basic ldea

Heterogeneous
performance of
co-pathway membership
predictions

Existence of specific
— structure around
enriched pathways

@ Decomposing neighborhood of each pathway
o Inferring lethal crosstalk among pathways

Grama et al.



Constructing KEGG Crosstalk Map

ongruence Score (MCS)
yhborhood Overlap of Gene Pairs With Respect to a Given Pathway

P — value(X =k?) Prob(k? < X)

= HGT (k{|ng,d?,df)

H B 4B
- m'”%di ) C(d8,%)C(ng — dB,df —x)
X:kijB C(nB)diB)

MCS is defined as —log;q of the P-value.

Grama et al.



Constructing KEGG Crosstalk Map

gruence Score (MCS)

..\ A sample neighborhood
® configuration for v; and v;.

O
@
® ><% Here n = 15,D; = 6, D) =
\ J
®

./ 5,ng =6,di =3,d; =4 and
®

k =2.

Grama et al.



Constructing KEGG Crosstalk Map

eighborhood Overlap Graph
thway Pair

The neighborhood overlap graph (NOG) of a given pathway Pa
with respect to pathway Pg, denoted by Ha g = (Vy, En), is an
unweighted, undirected graph defined over same vertices as
Pa. In this graph, there is a link between vertices v; and v; if the
network structure around them with respect to Pg is statistically
significant .

Grama et al.




Constructing KEGG Crosstalk Map

borhood overlap graph, finding cohesive
d identifying interaction ports

Q lterative peeling of K-shells
Pruning hairy components

@ Connected components in
each core

@ Evaluating the significance
of components

o Evaluating significance
Adopted from Batagelj and Zaversnik, 2002 USing ER random graph
model

Grama et al.



Constructing KEGG Crosstalk Map

Vbetadisn

VGt Inforotion Prcesng
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Raw pattway dependencies
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Constructing KEGG Crosstalk Map

ort Case Study

Protein Processing in ER and Proteasome

[ PROTEIN PROCESSING IN ENDOPLASMIC RETICULUM | Golgibody
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Constructing KEGG Crosstalk Map

@ The local neghborhood similarity gives heterogeneous
performance in predicting co-pathways membership of
gene pairs.

o This phenomena is due to the specific structure around
enriched pathways

@ Decomposing the neighborhood around each pathway
sheds light on the cellular machinery.

9@ Future works:
o Analysing the hierarchy of ports instead of the most
significant interaction port.
@ Using our methodology to uncover dependencies among
functional pathways.

Grama et al.



Appendix

eading |

E

The Genetic Landscape of a Cell

E

Systematic Mapping of Genetic Interaction Networks

E

Modular Epistasis in Yeast Metabolism

[

Lethal Combinations

Grama et al.
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