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Summary of Contributions

Problem Formulation

Excellent Convergence Properties of Multipole-
Based Preconditioners

Parallelism in Multipole-based Sparse Solvers

Highly Scalable and Efficient Parallel
Formulations



Generalized Stokes Problem

* Navier-Stokes equation
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* Incompressibility Condition Vey=0



Generalized Stokes Problem

Linear system
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BT is the discrete divergence operator and A collects all the velocity
terms.

Navier-Stokes: 1 1
A=— M+C+—L
At R

Generalized Stokes Problem:



Solenoidal Basis Methods [Sarin 2001]

Class of projection based methods
Basis for divergence-free velocity
Solenoidal basis matrix P: BT p =0
Divergence free velocity: u = PX

B'u=B"Px=0
Modified system

L - e



Solenoidal Basis Method

Reduced system:
B'P=P'B=0
APx+Bp=f = P'APx=P"f

Reduced system solved by suitable iterative methods such as
CG or GMRES.

Velocity obtained by : 1 = Px

Pressure obtained by: - g/, — £ _ 4py



Preconditioning

 Observations
y=P'u = &=Vxu

u=Pw = u=Vxy

y=P'Pw = &=VxVxy
* Vorticity-Velocity function formulation:

%_ 1o v, __
ot RV Vxg o=y



Preconditioning

* Reduced system approximation:

PTAP~| | M+ PP |PP
At R

 Preconditioner:

R
» Low accuracy preconditioning is sufficient
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Preconditioning

* Preconditioning can be affected by an
approximate Laplace solve followed by a

Helmholtz solve.
* The Laplace solve can be performed effectively
using a Multipole method.



Preconditioning Laplace/Poisson Problems

* Given a domain with known internal charges and
boundary potential (Dirichlet conditions), estimate
potential across the domain.

— Compute boundary potential due to internal charges
(single multipole application)

— Compute residual boundary potential due to
charges on the boundary (vector operation).

— Compute boundary charges corresponding to
residual boundary potential (multipole-based
GMRES solve).

— Compute potential through entire domain due to
boundary and internal charges (single multipole).



Overview of Multipole Methods

* Consider the problem of computing the trajectory
of particles in space.

* Multipole methods use hierarchical
approximations to reduce computational cost.
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Overview of Multipole Methods

Accurate formulation requires O(n?) force
computations (mat-vec with a coefficient matrix
of Green’s functions)

Hierarchical methods reduce this complexity to
O(n) or O(n log n)

Since particle distributions can be very irregular,
the tree can be highly unbalanced

Commonly used hierarchical methods include
FMM and the Barnes-Hut methods.



Overview of Multipole Methods

Interactions (direct force computations) are
replaced by Gaussian quadratures.

Far-field interactions are replaced by multipole
series representing remote Gauss points.

Each matrix-vector product now becomes a
single tree traversal taking O(n) or O(n log n)
time.

This mat-vec can be encapsulated in iterative
solvers for dense systems.



Overview of Multipole Methods

* A number of results relating to the
complexity of hierarchical methods
[Rokhlin, Greengard], error analysis and
control [Grama, Sarin, Sameh], and their
use in dense solvers [Grama, Kumar,
Sameh] have been shown. Their
applications in applications such as
inductance extraction [White, Sarin] have
also been demonstrated.



Numerical Experiments

3D driven cavity problem in a cubic domain.

Marker-and-cell scheme in which domain is
discretized uniformly.

Pressure unknowns are defined at node points
and velocities at mid points of edges.

X, Y, and z components of velocities are defined
on edges along respective directions.



Sample Problem Sizes

Mesh Pressure Velocity Solenoidal
Functions

8x8x8 912 1,344 1,176

16x16x16 4,096 11,520 10,800

32x32x32 | 32,768 95,232 92,256




Preconditioning Performance

Table 1: Effectiveness of the preconditioner for the generalized Stokes problem (T =
1079).

Iterations
Mesh Size  Unknowns Unpreconditioned Preconditioned
8 x8x8 1856 66 8
16 x16x 16 15616 208 12

32x32x32 128000 [y 17




Preconditioning Performance

Table 2: Effectiveness of the preconditioner for various instances of the generalized
Stokes problem.

Mesh Size  Unknowns t=10"" =10~ =10 z=10' =10

8x8x8 1856 8 8 6 5 5
16 x16 x 16 15616 12 10 8 6 6
32 x32x32 128000 17 13 10 7 7




Preconditioning Performance —
Poisson Problem

Table 3: Impact of multipole expansion parameters on convergence (iterations) and ac-
celeration (time, in seconds). A dashed entry in the table indicates that no convergence
was observed in 20 iterations. All times were observed on a Pentium 4 workstation

operating at 2.4GHz with 1 GB RAM running Solaris.

Mesh Size  Multipole deg.  alpha Iterations  time
Unpreconditioned
20 x 20 x 20 799 0.82
Preconditioned
20 %20 x 20 0 0.91 - -
20 x 20 x 20 0 0.67 - -
20 x 20 x 20 0 dense 3 12.54
20 x 20 x 20 1 0.91 - -
20 x 20 x 20 1 0.77 - -
20 x 20 x 20 1 0.67 - -
20 %20 x 20 2 0.91 3 3.23
20 %20 x 20 2 0.77 3 4.03
20 %20 x 20 2 0.67 3 5.19




Preconditioning Performance—
Poisson Problem

Unpreconditioned

30 x 30 x 30 1895 13.35
Preconditioned

30 x 30 x 30 0 0.91 - -
30 x 30 x 30 0 0.67 - -
30 x 30 x 30 0 dense 2 93.36
30 x 30 x 30 1 0.91 3 8.42
30 x 30 x 30 1 0.77 3 11.28
30 x 30 x 30 1 0.67 3 15.30
30 x 30 x 30 2 0.91 3 17.63
30 x 30 x 30 2 0.77 3 22.71
30 x 30 x 30 2 0.67 3 30.03




Preconditioning Performance—
Poisson Problem

Unpreconditioned

40 x 40 x 40 3451 59.87
Preconditioned

40 x 40 x 40 0 0.91 - -
40 x 40 x 40 0 0.67 - -
40 x 40 x 40 0 dense 2 454.28
40 x 40 x 40 1 0.91 3 20.82
40 x 40 x 40 1 0.77 3 28.83
40 x 40 x 40 1 0.67 3 40.00
40 x 40 x 40 2 0.91 3 34.50
40 x 40 x 40 2 0.77 2 23.61
40 x 40 x 40 2 0.67 2 32.51




Preconditioning Performance
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Preconditioning Performance
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Parallel Formulation - Outer Solve

Partition domain across processors
Computation and storage of solenoidal basis matrix P
Matrix-vector products: y =P"APx
— Local operations on the grid
Vector operations
Preconditioning

Scalable parallel implementations have been
developed for all these operations

Matrix free approach



Parallel Formulation (Multipole Solve)

« Each node evaluation can potentially be
executed as a thread.

* Since there may be a large number of nodes,
this may lead to too many threads. In general,
we build some granularity into the thread by
gathering k nodes into a single thread.

* The Barnes-Hut tree is a read-only data
structure. Therefore, good performance can be
achieved if we can build spatial and temporal
locality (and the working set size does not
exceed local memory).



Parallel Formulation(Multipole Solve)

« Spatially proximate particles are likely to interact with

nearly identical parts of the tree. Therefore particles must

be traversed in a spatial

-proximity preserving order.
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Parallel Performance

Table 4: Parallel performance on the IBM p690 and SGI Origin shared-memory multi-
processors.

IBM p690 Time (s) SGI Origin Time (s)
Mesh Size p=1 p=8 FEfhciency p=1 p=32 Efficiency
25x25%x25 T2 1.21 0.80 12.06 1.17 0.32

30x30x30 1996  3.25 0.77 30.78 2.44 0.39
40 x40 x40 31.18  4.80 0.81 48.29 3.40 0.44
30x50 x50 68.88  9.69 0.81 96.28 5.73 0.52
60 x60 x 60 108.17 1547 0.87 163.63 741 0.69




Parallel Performance

Table 5: Runtime (in seconds) and efficiency of parallel algorithm on x86 Solaris
shared-memory multiprocessors.

d-proc SMP (550 MHz P3)  8-proc SMP (750 MHz Xeon)
Mesh Size p=1 p=4 Efhciency p=1 p=8 Efficiency

25 x25 %25 1651 5.73 0.72 11.44 2793 0.52
30x30x30 4139 13.19 0.78 28778 597 0.60
40 x40 x40 67.37 20.76 0.81 4723 7.19 0.82

50 x50 x50 12987 3949 0.82 11529 16.70 0.86




Parallel Performance
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Concluding Remarks

* Multipole methods provide highly effective
preconditioning techniques that yield excellent
parallel speedups.

* The accuracy parameters of the multipole solve
(degree, multipole acceptance criteria)
significantly impact time and convergence rate.

* Rely on closed form Green’s function, but can be
adapted to other scenarios.



