
Impact of Far-Field Interactions on 
Performance of Multipole-Based 

Preconditioners for Sparse Linear Systems.

Ananth Grama

Purdue University.

Vivek Sarin

Texas A&M University

Supported by the National Science Foundation.



Overview

• Summary of Contributions

• Generalized Stokes Problem

• Solenoidal Basis Methods and Preconditioning

• Multipole Methods as Preconditioners

• Performance of Multipole-Based Preconditioners

• Parallelization of Solver/Preconditioner

• Parallel Performance

• Concluding Remarks



Summary of Contributions

• Problem Formulation

• Excellent Convergence Properties of Multipole-

Based Preconditioners

• Parallelism in Multipole-based Sparse Solvers

• Highly Scalable and Efficient Parallel 

Formulations



Generalized Stokes Problem 

• Navier-Stokes equation

• Incompressibility Condition 0 u
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Generalized Stokes Problem

• Linear system

• BT is the discrete divergence operator and A collects all the velocity 
terms.

• Navier-Stokes: 

• Generalized Stokes Problem:
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Solenoidal Basis Methods [Sarin 2001]

• Class of projection based methods

• Basis for divergence-free velocity

• Solenoidal basis matrix P:   

• Divergence free velocity: 

• Modified system

0PBT

xu P

0xu  PBB TT
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Solenoidal Basis Method

• Reduced system:

• Reduced system solved by suitable iterative methods such as 
CG or GMRES.

• Velocity obtained by :

• Pressure obtained by: 

0 BPPB TT

fPAPP TT xfBAP  px =>

xu P

APxfBp 



Preconditioning

• Observations

• Vorticity-Velocity function formulation:
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Preconditioning

• Reduced system approximation:

• Preconditioner:

• Low accuracy preconditioning is sufficient
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Preconditioning

• Preconditioning can be affected by an 
approximate Laplace solve followed by a 
Helmholtz solve. 

• The Laplace solve can be performed effectively 
using a Multipole method.



Preconditioning Laplace/Poisson Problems

• Given a domain with known internal charges and 
boundary potential (Dirichlet conditions), estimate 
potential across the domain.

– Compute boundary potential due to internal charges 
(single multipole application)

– Compute residual boundary potential due to 
charges on the boundary (vector operation).

– Compute boundary charges corresponding to 
residual boundary potential (multipole-based 
GMRES solve).

– Compute potential through entire domain due to 
boundary and internal charges (single multipole).



Overview of Multipole Methods

• Consider the problem of computing the trajectory 
of particles in space.

• Multipole methods use hierarchical 
approximations to reduce computational cost.



Overview of Multipole Methods

• Accurate formulation requires O(n2) force 
computations (mat-vec with a coefficient matrix 
of Green’s functions)

• Hierarchical methods reduce this complexity to 
O(n) or O(n log n)

• Since particle distributions can be very irregular, 
the tree can be highly unbalanced

• Commonly used hierarchical methods include 
FMM and the Barnes-Hut methods.



Overview of Multipole Methods

• Interactions (direct force computations) are 
replaced by Gaussian quadratures.

• Far-field interactions are replaced by multipole 
series representing remote Gauss points.

• Each matrix-vector product now becomes a 
single tree traversal taking O(n) or O(n log n) 
time.

• This mat-vec can be encapsulated in iterative 
solvers for dense systems.



Overview of Multipole Methods

• A number of results relating to the 
complexity of hierarchical methods 
[Rokhlin, Greengard], error analysis and 
control [Grama, Sarin, Sameh], and their 
use in dense solvers [Grama, Kumar, 
Sameh] have been shown. Their 
applications in applications such as 
inductance extraction [White, Sarin] have 
also been demonstrated.



Numerical Experiments

• 3D driven cavity problem in a cubic domain.

• Marker-and-cell scheme in which domain is 
discretized uniformly.

• Pressure unknowns are defined at node points 
and velocities at mid points of edges.

• x, y, and z components of velocities are defined 
on edges along respective directions.



Sample Problem Sizes

92,25695,23232,76832x32x32

10,80011,5204,09616x16x16

1,1761,3445128x8x8

Solenoidal

Functions
VelocityPressureMesh



Preconditioning Performance



Preconditioning Performance



Preconditioning Performance – 
Poisson Problem



Preconditioning Performance– 
Poisson Problem



Preconditioning Performance– 
Poisson Problem



Preconditioning Performance
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Preconditioning Performance
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Parallel Formulation - Outer Solve

• Partition domain across processors
• Computation and storage of solenoidal basis matrix P
• Matrix-vector products:

– Local operations on the grid
• Vector operations
• Preconditioning
• Scalable parallel implementations have been 

developed for all these operations
• Matrix free approach

APxPy T



Parallel Formulation (Multipole Solve)

• Each node evaluation can potentially be 
executed as a thread.

• Since there may be a large number of nodes, 
this may lead to too many threads. In general, 
we build some granularity into the thread by 
gathering k nodes into a single thread. 

• The Barnes-Hut tree is a read-only data 
structure. Therefore, good performance can be 
achieved if we can build spatial and temporal 
locality (and the working set size does not 
exceed local memory).



Parallel Formulation(Multipole Solve)

• Spatially proximate particles are likely to interact with 
nearly identical parts of the tree. Therefore particles must 
be traversed in a spatial-proximity preserving order.



Parallel Performance



Parallel Performance



Parallel Performance
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Concluding Remarks

• Multipole methods provide highly effective 
preconditioning techniques that yield excellent 
parallel speedups.

• The accuracy parameters of the multipole solve 
(degree, multipole acceptance criteria) 
significantly impact time and convergence rate.

• Rely on closed form Green’s function, but can be 
adapted to other scenarios.


