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Motivating Parallelism

• The Computational Speed Argument: For
some applications, this is the only means
of achieving needed performance.

• The Memory/Disk Speed Argument: For
some other applications, the needed I/O
throughput can be provided only by a col-
lection of nodes.

• The Data Communication Argument: In
yet other applications, the distributed
nature of data implies that it is unreason-
able to collect data to process it at a single
location.
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Implicit Parallelism: Trends in Micropro-
cessor
Architectures

All microprocessors currently available rely
on parallelism to varying degrees. These
are generally hidden from the programmer.

• Pipelining and Superscalar Execution
• Very Long Instruction Word Processors
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Superscalar Execution

(i)

(a) Three different code fragments for adding a list of four numbers.

(iii)(ii)
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(b) Execution schedule for code fragment (i) above.

(c) Hardware utilization trace for schedule in (b).
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Limitations of Memory System Performance

Often, the primary bottleneck to performance is not the
CPU, rather, it is the memory system. Typical computations
only run at 10-50% of peak CPU utilization because of
memory bottlenecks. The key question here is how to con-
nect a 50 ns latency memory to a processor that runs a 0.5
ns clock!

• Improving Effective Memory Latency Using Caches: A
hierarchy of small, fast stores bridge the gap between
processor and memory. These stores rely on repeated
accesses to data to deliver higher aggregate perfor-
mance.

• Improving Memory System Performance by Threading:
Find something else to do while you are waiting for data
to arrive from memory.
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Impact of Strided Access on Program Performance

// Fragment 1: Summing columns of a matrix.
for (i = 0; i < 1000; i++)
        column_sum[i] = 0.0;
        for (j = 0; j < 1000; j++)
                column_sum[i] += b[j][i];

// Fragment 2: Fragment 1, rewritten.
for (i = 0; i < 1000; i++)
        column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)
        for (i = 0; i < 1000; i++)
                column_sum[i] += b[j][i];

(a) Column major data access

A b A

=

b A b A b
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(b) Row major data access.

A b A b A b A b
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Dichotomy of Parallel Computing Platforms

Control Structure of Parallel Platforms: What is the nature
of concurrent tasks?

Communication Model of Parallel Platforms: How do multi-
ple tasks cooperate with each other?

• Message Passing Platforms
• Shared-Address-Space Platforms
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Control Structure of Parallel Machines:

In a Single Instruction Multiple Data (SIMD) paradigm (a),
all processing elements execute the same instruction. In a
Multiple Instruction Multiple Data paradigm (b), all process-
ing elements execute possibly different instructions, inde-
pendently. An intermediate paradigm, called Single
Program Multiple Data (SPMD) is the most popular pro-
gramming paradigm.
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Communication Model of Parallel Platforms

In a uniform memory access (UMA) shared memory model
(a), all processors access memory through an intercon-
nect. In (b), we show a UMA shared memory machine with
caches, and in (c), we show a non-uniform memory access
(NUMA) shared memory machine with private memories
only. The logical name for all of these platforms is a shared
address space machine.
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Physical Organization of Parallel Platforms

The characterizing feature of parallel platforms is the
underlying interconnection network. These networks can
be static (a) or dynamic (b).
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Direct Interconnection Networks:

Bus-based interconnects (without (a) and with caches (b))
were the first networks in early commercially available plat-
forms (Sequent Symmetry/Balance).
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Direct Interconnection Networks:

The other extreme in terms of performance and cost com-
pared to buses, is the crossbar network.
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Direct Interconnection Networks

Multistage networks such as the Omega network fall
between buses and crossbars in terms of cost and perfor-
mance.
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Static Interconnection Networks:

A completely connected network (a) is the strongest model
for a static network. A star connected network (b) is the
other extreme.

Meshes (2 and 3-D) are popular interconnects because of
their desirable layout properties and performance for physi-
cal simulations.

(a) (b)

(c)(b)(a)
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Static Interconnection Networks:

Hypercubes provide another popular interconnect.
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Metrics for Interconnection Networks

Performance Metrics

- Link Bandwidth: how fat is each link?
- Arc Connectivity: how many links do I have to remove
  to separate a network.
- Bisection Bandwidth: how many pairs of people can
  have conversations at any given time, independently.

Cost Metrics

- Number of Links
- Layout Costs.
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Cache Coherence in Multiprocessor Systems:

How do you deal with multiple copies of the same data
item, being manipulated by different processors?

We can invalidate copies (a), or update them (b) when a
processor changes a copy.

(b)

(a)

Invalidate
MemoryMemory

P1P0P1P0

Update
MemoryMemory

P1P0P1P0

load x

write #3, xload xload x

x = 1

x = 1x = 1
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x = 3

x = 3

x = 3x = 3
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write #3, xload x
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Coherence Protocols:

A simple three-state protocol for implementing cache-
coherence.

flush

read/write

read write

C_read

read
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C_write

Dirty
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Invalid
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Coherence Protocols:

An example of the coherence protocol.
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Implementing Coherence Protocols:

Using a snoopy bus to implement the coherence protocol.
Snoopy buses do not scale to large configurations.
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Implementing Coherence Protocols:

Directories provide a more scalable solution than snoopy
buses.
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Routing Messages in Parallel Platforms:

- Store-and-forward routing
- Packet Routing
- Cut-Through routing
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(a) A single message sent over a
store-and-forward network

(b) The same message broken into two parts

       and sent over the network.

(c) The same message broken into four parts

       and sent over the network.
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Routing in Parallel Platforms:

- Dimension ordered / E-cube routing

- Hot-potato routing

- Randomized Routing
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Embeddings and Overhead:

It is often possible to map a weaker architecture on to a
stronger one with no performance overhead. Conversely,
mapping a stronger architecture on to a weaker one results
in performance penalties, depending on the program.

Algorithms for mapping between structured networks are
well studied (see handout).
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Case Studies:

The IBM Blue Gene.

...

...
.

..

(b) Chip (32 GF)

.

(a) CPU (1GF) (c) Board (2 TF)

(d) Tower (16 TF) (e) Blue Gene (1 PF)
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The Cray T3E.
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SGI Origin 3000

1 R-Brick, 4 C-Bricks, and
16 processors at each vertex.
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Sun Enterprise Servers

Starfire Ultra 1000 (up to 64 processors)
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Commonly used networks:

Myrinet:

Other networks include Gigabit Ethernet, FiberChannel,
HiPPI, etc.
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