Algorithmic Techniques for Atomistic Modeling

Hasan Metin Aktulga Dept of Computer Science Purdue University haktulga@cs.purdue.edu

May 14, 2009

ayg: chage green to a darker color

Outline

1. Introduction: MD Methods & Reactive Force Fields

2. Our Implementation of Reactive Force Fields (ReaxFF)

- General structure of a ReaxFF implementation
- Implementation details of major components
- Additional features

3. Applications using the Serial Version

- Hexane simulations: Validation and performance analysis
- Water-Silica Surface Interaction
- Si/Ge Nanobar Strain Rates

4. Ongoing & Future Work

5. Parallelization of ReaxFF

- Challenges
- Our solution approaches

6. Current Userbase

Introduction: Atomistic Modeling Methods

Ab-initio methods: Atomistics with electronic degrees of freedom	*
- Harfree-Fock(HF) methods \rightarrow misses E_{corr}	 accuracy
 Post-HF methods * E_{corr} incorporated at areat computational expense 	complexity detail
 semi-empirical methods to the rescue 	comp. demand
 DFT-based methods 	Gornana
 completely different approach but similar derivations to HF theory 	
 bigger systems, longer simulation times made possible 	
 * CPMD is the most popular example 	approx's
Classical MD methods:	sys size
 many approximations: no electronic d.o.f. 	frame
 electronic effects are mimiced through parametrizations 	\downarrow
 static bonds, no reactions! 	
 systems at nanoscale, simulation times upto hundreds of ns 	
 Continuum Mechanics: Macroscale systems 	

- additional approximations, no atomistic detail!
- modeled using PDE's.

Reactive Force Fields (ReaxFF): Bridging the Gap

	ReaxFF	Classical MD		
reactive		non-reactive		
advantages	dynamic bonds	static bonds		
	polarization with QEq	fixed charges in general (except for polarizable FF)		
dynamic interaction lists		static lists		
challenges	complex&costlymuch simpler energy & fenegies,forcesformulas			
	frequent update of charges (expensive!)	static charges		
	shorter timesteps ($pprox 0.25$ fs)	longer timesteps ($1 - 10$ fs)		

Interesting applications: large system with reactions and charge-transfer

Simulation of fuel cells, silica crack propogation, corrosion of silica in water, etc.

General Flowchart of Conventional MD Programs

ReaxFF Flowchart

ayg: What about valence corrections?

Implementation: Neighbor Generation

- 3 different neighbor lists:
 - near_nbrs for bonded forces \rightarrow bond_cut \approx 4-5 Å, full matrix stored
 - hbond_list for hydrogen bonds \rightarrow hbond_cut \approx 6-7.5 Å, only for H
 - far_nbrs for non-bonded forces \rightarrow nonb_cut \approx 10 Å, upper-half only
- Bin atoms into 3D grid cells
 - grid cell dims $\approx \frac{1}{2}$ nonb_cut
- Verlet lists with delayed re-neighboring not implemented \rightarrow little benefit
- Compressed adjacency list representation

Implementation: Computing Forces and Potentials

- Bonded Interactions: Similar to classical MD but accounts for dynamic bonds
 - precursor: bond orders
 - Ione-pair energy, over/undercoordination energies
 - bond energy
 - valence energy (with penalty & 3-body conjugation corrections)
 - dihedral energy (with 4-body conjugation correction)
- Hydrogen Bonds
 - precursor: bond orders
 - H covalently bonded to X and interacting with Z
 - can be considered a bonded interaction
- Non-bonded Interactions
 - precursor: charge equilibration (QEq)
 - electrostatic (Coulomb) energy, van der Waals energy

$$E_{system} = E_{bond} + E_{lp} + E_{over} + E_{under} + E_{val} + E_{pen} + E_{3conj}$$
$$+ E_{tors} + E_{4conj} + E_{H-bond} + E_{vdW} + E_{Coulomb}$$

Bonded Interaction: Bond Orders

- Prior to bonded forces, compute bond orders based on the new near_nbrs
 - bond_list: subset of near_nbrs, stored in the same way
 - uncorrected bond orders and derivatives
 - store both bo(i, j) and $bo(j, i) \rightarrow officient$ construction of angles, dihedrals
 - compute bo(i, j) only if i < j, otherwise bo(i, j)=bo(j, i)

$$\begin{split} \mathsf{BO}'_{ij} &= \mathsf{BO}_{ij}^{\sigma'} + \mathsf{BO}_{ij}^{\pi'} + \mathsf{BO}_{ij}^{\pi\pi'} \\ \mathsf{BO}_{ij}^{\alpha'}(r_{ij}) &= exp \left[a_{\alpha} \left(\frac{r_{ij}}{r_{0\alpha}} \right)^{b_{\alpha}} \right] \\ \mathsf{BO}_{ij} &= \mathsf{BO}'_{ij} \cdot f_1(\Delta'_i, \Delta'_j) \cdot f_4(\Delta'_i, \mathsf{BO}'_{ij}) \cdot f_5(\Delta'_j, \mathsf{BO}'_{ij}) \text{ where } \Delta'_i \text{ is the valency of atom } i. \end{split}$$

Bonded Interaction: Bond Energy

- the stronger the bond, the lower the associated energy
- sweep over the bond_list
- compute bond_energy between i, j only if i < j

Bonded Interaction: Lone-Pair & Over/UnderCoordination

- Lone-pair energy
 - $\Delta_i^{lp} = n_{opt}^{lp} n_i^{lp}$
 - energy associated with unpaired electrons of an atom \rightarrow zero for a fully coordinated atom
 - single-body interaction \rightarrow just sweep over atom_list
- Over/undercoordination energy
 - ideal # of bonds = # of valence electrons

-
$$\Delta_i = \sum_{j \in nbrs(i)} bo(i, j) - Val_i$$

- actual # of bonds > ideal # of bonds ($\Delta_i > 0$) \rightarrow over-coordination
- actual # of bonds < ideal # of bonds ($\Delta_i < 0$) \rightarrow under-coordination
- actual # of bonds = ideal # of bonds ($\Delta_i = 0$) \rightarrow no over/undercoordination energy
- functionals of Δ_i and Δ_j 's \rightarrow just sweep over atom_list

Bonded Interaction: Valence Angle Energy

$$\begin{split} \mathsf{E}_{\mathrm{VOI}} &= & f_7(\mathsf{BO}_{ij}, p_{val3}, p_{val4}) \cdot f_7(\mathsf{BO}_{jk}, p_{val3}, p_{val4}) \cdot f_8(\Delta_j, p_{val5}, p_{val6}, p_{val7}) \\ & \left(p_{val1} - p_{val1} \cdot exp \left\{ -p_{val2} \cdot \left(\Theta_0 - \Theta_{ijk} \right)^2 \right\} \right) \end{split}$$

- Θ_0 is the ideal angle, Θ_{ijk} is the actual angle
 - the closer the Θ_{ijk} to Θ_0 , the lower the energy
- $f_7(BO_{ij},...)$ and $f_7(BO_{jk},...)$ ensure $E_{Val} \rightarrow 0$ as $BO_{ij} \rightarrow 0$ or $BO_{jk} \rightarrow 0$
- $\{\forall x, y \in \text{bo_list}_i | x < y\}$ that meet certain criteria, compute the energy of < x, i, y
- $\{\forall x, y \in bo_list_i | x > y\} copy < y, i, x into < x, i, y (for dihedrals!)$
- E_{pen} and E_{3conj} account for corrections in special cases

Bonded Interaction: Dihedral Energy

$$E_{tors} = \frac{1}{2} \cdot f_{10}(BO_{ij}, BO_{jk}, BO_{kl}, p_{tor2}, 1) \cdot sin\Theta_{ijk} \cdot sin\Theta_{jkl} \cdot V_{123}(\omega_{ijkl})$$

- Dihedral angle ω_{ijkl} is the angle between planes defined by positions of i,j,k and j,k,l
- $f_{10}(BO_{ij}, BO_{jk}, BO_{kl}, ...)$ ensure E_{tors} vanishes smoothly as any of these bonds dissociate
- $sin\Theta_{ijk}$ and $sin\Theta_{jkl}$ ensure that $E_{tors} \rightarrow 0$ as $\Theta_{ijk} \rightarrow 0$ or $\Theta_{jkl} \rightarrow 0$
- $\{\forall i, j, k, l \in atoms | j < k, < i, j, k \in 3body_list_{jk}, < j, k, l \in 3body_list_{kj}\}$ compute the energy associated with ω_{ijkl}
- weak but very important in determining the 3D structures
- no higher order interactions \rightarrow no storage necessary

Hydrogen Bonds

$$\mathsf{E}_{XHZ} = p_{hb1} \cdot f_7(\mathsf{BO}_{XH}, p_{hb2}, 1) \cdot \sin^4\left(\frac{\Theta_{XHZ}}{2}\right) \cdot exp\left\{-p_{hb3} \cdot \left(\frac{r_{hb}^0}{r_{HZ}} + \frac{r_{HZ}}{r_{hb}^0} - 2\right)\right\}$$

- Constraints of a hydrogen bond:
 - Middle atom must be H
 - X, Z must be one of N, O, P, F
 - X H covalently bonded, $Z \in \text{hbond_list}_H$
- $f_7(BO_{XH},...)$ ensure $E_{val} \rightarrow 0$ as the covalent bond breaks
- $sin^4(\frac{\Theta_{XHZ}}{2})$ maximized when $\Theta_{XHZ} = \pi$ ensures alignment on a line
- crucial for accurately describing water, DNA structure, secondary structures in proteins, etc.

Nonbonded Interaction: Charge Equilibriation (QEq)

Minimizing electrostatic energy by redistributing (partial) charges.

Minimize
$$E(Q_1 \dots Q_N) = \sum_A (E_{A0} + \chi^0_A Q_A + \frac{1}{2}J^0_{AA}Q^2_A) + \sum_{A < B} (J_{AB}Q_A Q_B)$$

subject to $Q_{net} = \sum_{i=1}^{N} Q_i$

- Solve the optimization problem using the method of Lagrange multipliers
 - gives a sparse linear system of equations for finding charges
- GMRES with restarts, GMRES(50)
 - heavy diagonal \rightarrow diagonal preconditioner
 - little configurational change between steps \rightarrow initial guess $q_t =$ linear_extrapolation (q_{t-1}, q_{t-2})
- Implemented GMRES both with MGS and Householder orthogonalizations
 - virtually no difference
- Implemented CG for comparison
 - GMRES takes fewer number of matvecs and is faster than CG
- Choose tolerance for the norm of the relative residual carefully:
 - too high \rightarrow wrong results!
 - too low \rightarrow QEq dominates the total computation time!
 - more on this later ...

Nonbonded Interactions: Coulomb & van der Waals Energy

$$\begin{split} E_{Coulomb} &= C \cdot Tap(r_{ij}) \cdot \frac{q_i \cdot q_j}{\left[r_{ij}^3 + \gamma_{ij}^{-3}\right]^{\frac{1}{3}}} \\ E_{vdWaals} &= Tap(r_{ij}) \cdot D_{ij} \cdot \\ &\left[exp\left\{\alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{vdW}}\right)\right\} - 2 \cdot exp\left\{\frac{1}{2} \cdot \alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{vdW}}\right)\right\}\right] \end{split}$$

- Shielding prevents energies from increasing drastically at close distances
- Long range interactions with cutoffs
 - Taper term ensures smooth vanishing of energies after the cutoff
- no 1-2, 1-3 or 1-4 exclusions \rightarrow smooth bond forming/breaking
- Takes up a large portion of the total computation time
 - tabulate long range energy & forces
 - linear interpolation
 - large table \rightarrow good approximations, reasonable memory usage
 - more on our gains later ...

Summing Alltogether: Net Force

- Let E_i be the sum of energies from all interactions involving atom i
- Let r_i denote the position of atom i

•
$$F_i = \frac{\partial E_i}{\partial r_i}$$

- Problem:
 - bonded energy expressions include $\mathrm{BO}_{ij}(\mathrm{BO}_{ij}',\Delta_i',\Delta_j')$ terms

-
$$\frac{\partial \mathrm{BO}_{ij}}{\partial r_k}$$
 arise in every bonded interaction

$$- \frac{\partial \mathsf{BO}_{ij}}{\partial r_k} = c_1 \cdot \frac{\partial \mathsf{BO}'_{ij}}{\partial r_k} + c_2 \cdot \frac{\partial \Delta'_i}{\partial r_k} + c_3 \cdot \frac{\partial \Delta'_j}{\partial r_k}$$

- $\frac{\partial BO_{ij}}{\partial r_k} \neq 0, \forall k \in bonds_i \cup bonds_j$, huge memory overhead!
- even if we choose to store them, very time consuming to compute each single bonded interaction!

Summing Alltogether: Net Force - Solution

- idea: distribution law of multiplication over summation
- let C_0, \ldots, C_n be the coefficients of $\frac{\partial BO_{ij}}{\partial r_k}$ arising in different interactions

• re-write
$$\sum_{t} C_t \times \frac{\partial BO_{ij}}{\partial r_k}$$
 as $\frac{\partial BO_{ij}}{\partial r_k} \times \sum_{t} C_t$

- while computing interactions, accumulate C_t 's in C_{ijk}
- delay computation of $\frac{\partial BO_{ij}}{\partial r_k} \times \sum_t C_t$ and forces due to them until C_{ijk} 's are determined
- no additional storage, important savings in CPU time

Implementation: Additional Features

- Modular implementation
 - a different force field can be adopted by plugging-in new interaction routines
- NVE, NVT and NPT ensembles ayg: explain these terms first and what it takes to implement them
- Compressible custom trajectory format
- Tools for performing common analysis
 - detection of reactions (on-the-fly)
 - property calculations such as drift coefficient, dipole moment (on-the-fly)
 - distributions of bond lengths, strengths, valence angles, charges, etc. (over the trajectory file)

Applications

- Hexane Simulations: Validation and Performance Analysis
 - Preparation of systems
 - Effects of QEq tolerance on accuracy and performance
 - Effects of tabulating long range interactions on accuracy and performance
 - Hexane structure verification
 - Scalabilty of ReaxFF compared to *ab-initio* and classical MD
- Corrosion of silica surface in water (in collaboration with Dr Pandit's group)
- Measuring the strain tensor of Si/Ge nanobar (in collaboration with Dr Strachan's group)

Hexane Simulations: Preparation od the Systems

- Hexane: C_6H_{14} , hydrocarbon, constituent of gasoline
- Initial configuration setup:
 - Very large box compared to the ideal volume \rightarrow reduces overlaps!
 - Randomly spread copies of a model hexane molecule
 - Rotations of the model molecule around x, y and z axis to increase randomness
 - Various system sizes for scalability analysis (343,512,1000,1728, 3375 molecules)
- Energy minimization and NPT simulations using Gromacs
 - brings the systems to the ideal volume quickly
 - output to be used for ReaxFF studies and scalability analysis
- Energy minimization and NVT equilibration using ReaxFF
 - added H to Gromacs output confusing the Avogadro program
 - energy minimization for 2.5 ps
 - NVT equilibration at 200 K for 2.5 ps
 - QEq tolerance set to 1e 8 to be safe

Hexane Simulations: Effect of QEq Tolerance on Accuracy

- Chosen: hexane system with 343 molecules = 6860 atoms
- Restart from the system equilibrated at 200 K
- How to determine the "right" tolerance:
 - observe how the same system evolves over time at different QEq tolerances
 - pick the highest one with reasonable accuracy
 - $\mathsf{tol}_1 = 1e 3$, $\mathsf{tol}_2 = 1e 4$, $\mathsf{tol}_3 = 1e 8 \rightarrow \mathsf{control} \mathsf{run}$

Hexane Simulations: Effect of Tabulation on Accuracy

 $tol_2 = 1e - 4$ looks good enough, now turn on tabulation of long range interactions, too!

More in depth comparison shows they are almost identical:

property	$tol_3 = 1e - 8$	$\mathbf{tol}_2 = 1e - 4$	$tol_2 = 1e - 4$ with opt.
C-H bond	1.09 ± 0.01	1.09 ± 0.01	1.09 ± 0.01
C-C bond	1.57 ± 0.01	1.57 ± 0.01	1.57 ± 0.01
<c-c-c< td=""><td>108.0 ± 2.9</td><td>107.9 ± 2.9</td><td>108.0 ± 2.9</td></c-c-c<>	108.0 ± 2.9	107.9 ± 2.9	108.0 ± 2.9
<c-c-h< td=""><td>111.0 ± 0.0</td><td>111.0 ± 0.0</td><td>111.0 ± 0.0</td></c-c-h<>	111.0 ± 0.0	111.0 ± 0.0	111.0 ± 0.0
<h-c-h< td=""><td>106.6 ± 0.0</td><td>106.6 ± 0.0</td><td>106.6 ± 0.0</td></h-c-h<>	106.6 ± 0.0	106.6 ± 0.0	106.6 ± 0.0
qC-tip	-0.171	-0.171	-0.171
qC-mid	-0.080	-0.080	-0.080
$q_{\text{H-tip}}$	0.040	0.040	0.040
$^{'}$ H-mid	0.040	0.040	0.040

Hexane Simulations: Profiling Analysis & Scalability

- Different qeq tolerances, with/without tabulation
- Used the *head.cs* cluster except for the first case

ayg: What are the numbers here.. are they times in seconds?

	total	neighbors	bonded	nonb	QEq	matvecs	QEq%
tol=1e-4 w/opt§	0.93	0.22	0.14	0.22	0.34	9.9	37%
tol=1e-4 w/opt	3.26	0.47	0.32	0.65	1.78	9.9	55%
tol=1e-4	4.41	0.45	0.31	1.92	1.67	9.9	38%
tol=1e-6 w/opt	3.35	0.45	0.31	0.59	1.97	13.6	59%
tol=1e-6	4.65	0.45	0.31	1.92	1.95	13.5	42%
tol=1e-8	7.56	0.44	0.30	1.91	4.89	46.8	65%

ayg: Dont say Dell Studio.. instead, say what the processor is, etc. §Architecture can make a huge difference. Same system with same parameters on a Dell Studio XPS with 2.67GHz quad-core i7 processor and 1066MHz memory.

• Lessons learnt:

- QEq tolerance is crucial for accuracy
- arbitrarily large QEq tolerance might cause QEq domination **ayg: What does the above bullet mean?**
- QEq is just a precursor to electrostatics yet takes up at least one third of total time!
- QEq must be improved to make ReaxFF scalable.

Hexane Simulations: Validation

Compare the structure of our hexane molecules to those of experimental results in the literature and *ab-initio* simulation:

property	ReaxFF	experimental †	ab-initio‡
C-H bond	1.09 ± 0.01	1.118 ± 0.006	1.100
C-C bond	1.57 ± 0.01	1.533 ± 0.003	1.533
<c-c-c< td=""><td>108.0 ± 2.9</td><td>111.9 ± 0.4</td><td>114.2</td></c-c-c<>	108.0 ± 2.9	111.9 ± 0.4	114.2
<c-c-h< td=""><td>111.0 ± 0.0</td><td>109.5 ± 0.5</td><td>109.5</td></c-c-h<>	111.0 ± 0.0	109.5 ± 0.5	109.5
<h-c-h< td=""><td>106.6 ± 0.0</td><td>NA</td><td>106.5</td></h-c-h<>	106.6 ± 0.0	NA	106.5
q_{C} -tip	-0.171	NA	-0.205
$q_{\text{C-mid}}$	-0.080	NA	0.033
q_{H-tip}	0.040	NA	0.047
q_{H} -mid	0.040	NA	$-0.10 \sim 0.10$

†R. A. Bonham, L. S. Bartell, and D. A. Kohl. "The Molecular Structures of n-Pentane, n-Hexane and n-Heptane" J. Am. Chem. Soc., 1959, 81 (18), 4765 – 4769

 \ddagger geometry optimization of an isolated hexane using CPMD v3.13.2 with *PBE* Troullier-Martins pseudopotentials

Hexane Simulations: Scalability Analysis

Silica Surface Corrosion in Water

Si/Ge Nanobar

Ongoing & Future Work

• ParallelReax

- complete & verify the implementation
- a large scale application (maybe with the PRISM device)
- Integration into LAMMPS (a well-known, widely used MD package from SNL)
 - QEq integrated independently
 - * opens the door for polarizable-ff inside LAMMPS
 - * compatibility issues to be sorted out!

Better solvers for QEq

- block Jacobi type pre-conditioner
- inner-outer schemes (use a lower cutoff inner solve to precondition outer solve)
- use a fast multipole-type preconditioner.
- Tight relations among items on the agenda
 - better QEq solvers necessary for scalable ParallelReax
 - better QEq solvers necessary for QEq in LAMMPS
 - completion of ParallelReax necessary for Reax in LAMMPS

Parallelization of ReaxFF

- A draft version of ParallelReax
 - domain decomposition technique
 - * **repeat:** get my share of atoms \rightarrow communicate boundaries \rightarrow compute forces \rightarrow move my atoms
 - not fully verified
 - inefficient handling of processor boundaries

Two big challenges:

- Parallelization of QEq
 - even CG needs at least 4 communications per iteration!
 - parallel GMRES (with Householder orth.) is even worse
 - QEq will dominate even more
 - definitely need: better solvers for QEq
- Processor boundaries
 - avoid double computation at boundaries!
 - avoid thick boundaries, retain accuracy for any system!

Parallelization: Our Solution Approaches

- Parallelization of QEq: better solvers for QEq
 - block Jacobi type pre-conditioner
 - inner-outer schemes
- Avoid double computation
 - coordination through the mid-point rule
 - * bond(i, j): owner $(\frac{1}{2}(r_i + r_j))$
 - * < (i, j, k): $\operatorname{owner}(r_j)$
 - * dihedral(i, j, k, l): owner $(\frac{1}{2}(r_j + r_k))$
 - * hbond(X, H, Z): $owner(r_H)$
 - * nonbonded(i, j): owner $(\frac{1}{2}(r_i + r_j))$

Parallelization: Our Solution Approaches

- Why avoid thick boundaries?
 - a 20 Å cubic box ≈ 1000 atoms
 - assume $nonb_cut$ long boundaries \rightarrow a few thousand atoms/processor \rightarrow upto a couple of seconds per iteration!
 - definitely need: thin boundaries
- How to avoid thick boundaries?
 - Mid-point rule to the rescue!
 - boundary thickness: $max(\frac{3}{2}bond_cut, hbond_cut, \frac{1}{2}nonb_cut)$
 - gets better if no hydrogen bonds present: $max(\frac{3}{2}bond_cut, \frac{1}{2}nonb_cut)$

worst case scenarios

Conclusions

Current Userbase

- Dr Pandit's group at USF
 - silica-water systems
- Dr Strachan's group at Purdue
 - Si/Ge nanobar
- Dr Buehler's group at MIT
 - Silica cracking with strain
- Dr van Duin at PennState
- Dr Goddard's group at Caltech
- Dr Aluru's group at UIUC