Comparative Analysis of Molecular Interaction Networks

Mehmet Koyutürk Purdue University

March 22, 2006

Outline

- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

Outline

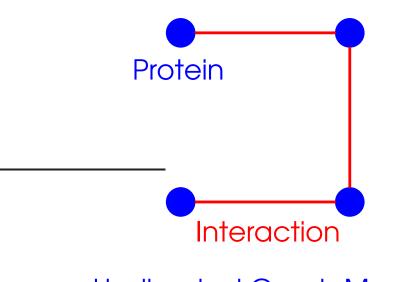
- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

Molecular Interaction Networks

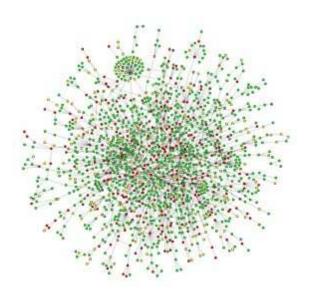
- Interactions between biomolecules that drive cellular processes
 - Genes, proteins, enzymes, chemical compounds
 - Mass & energy generation, information transfer
 - Coarser level than sequences in life's complexity pyramid (Oltvai and Barabási, Science, 2002)
- Experimental/induced data abstracted in various forms
 - Protein-protein interaction (PPI) networks
 - Gene regulatory networks
 - Metabolic & signaling pathways
- What do we gain from analysis of cellular networks?
 - Modular analysis of cellular processes: Compact, hierarchical modeling & abstraction
 - Understanding evolutionary relationships at a higher level
 - Inferring function from interaction information

Protein-Protein Interaction (PPI) Networks

- Interacting proteins can be identified via high-throughput screening
 - Two-hybrid
 - Mass spectrometry
 - Tandem affinity purification (TAP)



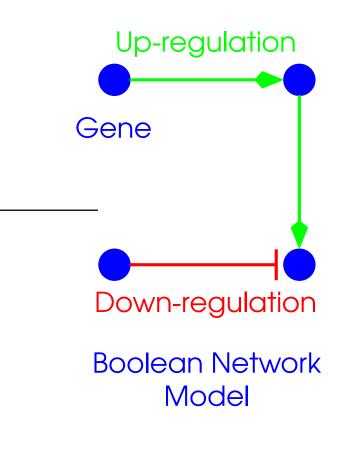
Undirected Graph Model

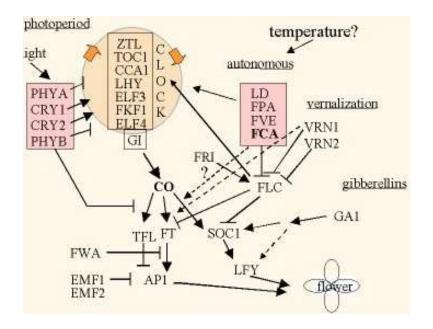


S. Cerevisiae PPI network (Jeong et al., *Nature*, 2001)

Gene Regulatory Networks

- Expression of genes is dynamically orchestrated through genes controlling each other's transcription
 - Computationally induced from gene expression data and/or sequence level analysis

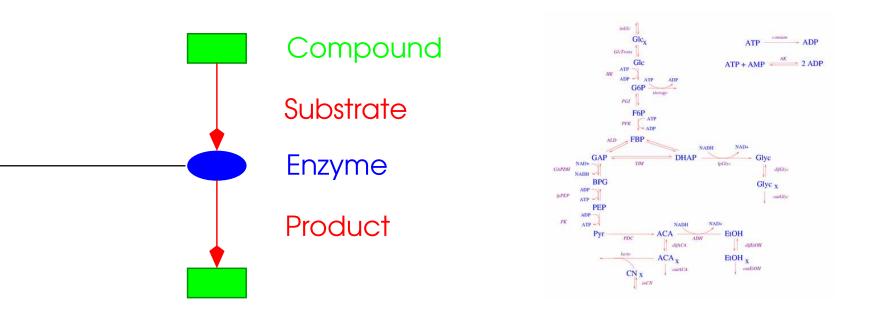




Genetic network that controls flowering time in *A. Thaliania* (Blazquez et al, *EMBO Reports*, 2001)

Metabolic Pathways

- Chains of reactions that perform a particular metabolic function
 - Reactions are linked to each other through substrate-product relationships
 - Experimentally derived & computationally extended



Directed Hypergraph Model

Glycolysis pathway in *S. Cerevisiae* (Hynne et al., *Biophys. Chem.*, 2001)

Evolution of Molecular Interactions

- "Evolution thinks modular" (Vespignani, Nature Gen., 2003)
- Cooperative tasks require all participating units
 - Selective pressure on preserving interactions & interacting proteins
- Proteins organized in cohesive patterns are highly conserved (Wuchty et al., *Nature Gen.*, 2003)
 - Functional modules are likely to be consistently conserved
- Orthologs of interacting proteins are likely to interact (Wagner, *Mol. Bio. Evol.*, 2001)
 - Conservation of interactions may provide clues on conservation of function
- Interacting proteins follow similar evolutionary trajectories (Pellegrini et al., *PNAS*, 1999)

Computational Analysis of Biological Networks

- Clustering
 - Interaction network: Proteins in functional modules densely interact with each other
 - Gene expression: Genes coding cooperating proteins are likely to be coregulated
 - Phylogenetic profiles: Interacting proteins are likely to have co-evolved

• Graph Mining

- Common topological motifs and frequent interaction patterns reveal conserved modularity

• Graph Alignment

- Conservation/divergence of pathways, complexes, and functional modules

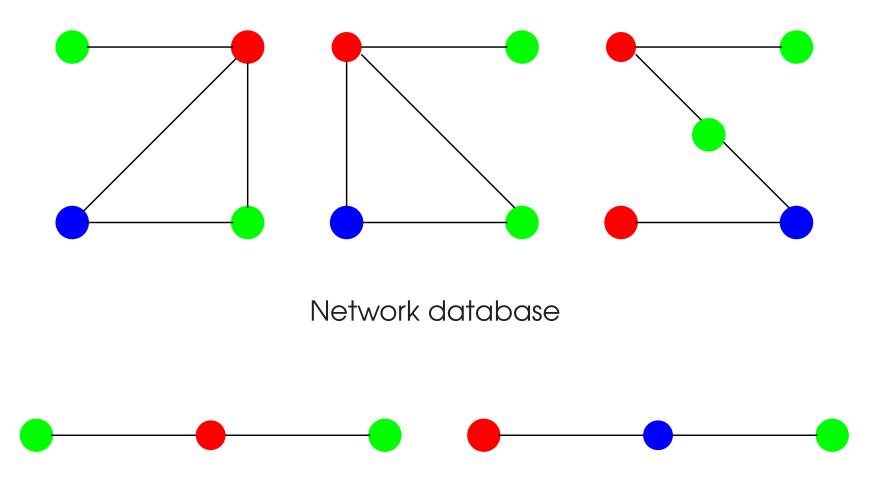
Outline

- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

Frequent Interaction Patterns

- Given a collection of molecular interaction networks (belonging to different species), find sub-networks that are common to an interesting subset of these networks (Koyutürk, Grama, & Szpankowski, ISMB, 2004)
 - A sub-network is a group of interactions that are tied to each other (connected)
 - Frequency, the number of networks that contain a sub-network, is a crude measure of statistical significance
 - Computational problem is known as graph mining
- Computational challenges
 - How to relate molecules (proteins) in different organisms?
 - Requires solution of the intractable subgraph isomorphism problem
 - Must be scalable to potentially large number of networks
 - Networks are large ($\Omega(10K)$ edges)

Graph Mining



Interaction patterns that are common to all networks

Relating Proteins in Different Species

- Ortholog Databases
 - PPI networks: COG, Homologene, Pfam, ADDA
 - Metabolic pathways: Enzyme nomenclature
 - Reliable, but conservative
 - Domain families rely on domain information, but the underlying domains for most interactions are unknown ⇒ Multiple node labels
- Sequence Clustering
 - Cluster protein sequences and label proteins according to this clustering
 - Flexible, but expensive and noisy
- Hence, labels may span a large range of functional relationships, from protein families to ortholog groups
 - Without loss of generality, we call identically labeled proteins as orthologs

Computational Problem

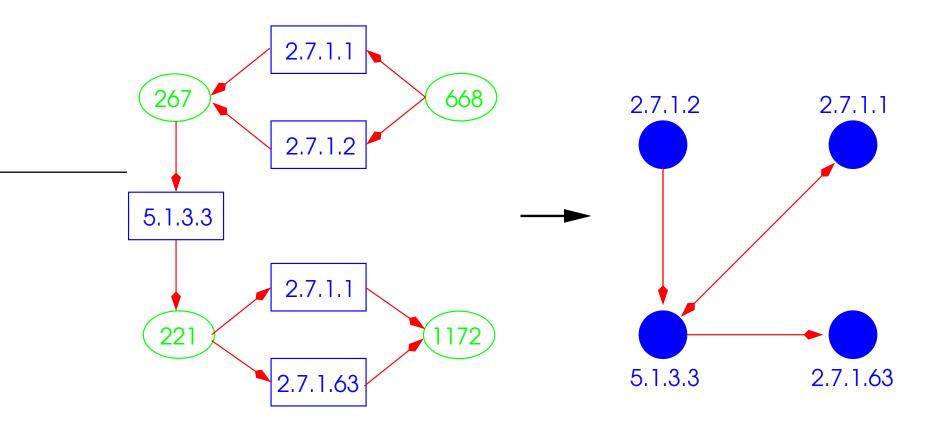
- Given a set of proteins V a set of interactions E, and a manyto-many mapping from V to a set of ortholog groups $\mathcal{L} = \{l_1, l_2, ..., l_n\}$, the corresponding interaction network is a labeled graph $G = (V, E, \mathcal{L})$.
 - $v \in V(G)$ is associated with a set of ortholog groups $L(v) \subseteq \mathcal{L}$.
 - $uv \in E(G)$ represents an interaction between u and v.
- S is a sub-network of G, i.e., $S \sqsubseteq G$ if there is an injective mapping $\phi : V(S) \rightarrow V(G)$ such that for all $v \in V(S)$, $L(v) \subseteq L(\phi(v))$ and for all $uv \in E(S)$, $\phi(u)\phi(v) \in E(G)$.
- Maximal frequent sub-network discovery
 - Instance: A set of interaction networks $\mathcal{G} = \{G_1 = (V_1, E_1, \mathcal{L}), G_2 = (V_2, E_2, \mathcal{L}), ..., G_m = (V_m, E_m, \mathcal{L})\}$, each belonging to a different organism, and a frequency threshold σ^* .
 - Problem: Let $H(S) = \{G_i : S \sqsubseteq G_i\}$ be the occurrence set of graph S. Find all connected subgraphs S such that $|H(S)| \ge \sigma^*$, *i.e.*, S is a frequent subgraph in \mathcal{G} and for all $S' \sqsupset S$, $H(S) \ne H(S')$, *i.e.*, S is maximal.

Ortholog Contraction

- Contract orthologous nodes into a single node
- No subgraph isomorphism
 - Graphs are uniquely identified by their edge sets
- Frequent sub-networks are preserved \Rightarrow No information loss
 - Sub-networks that are frequent in general graphs are also frequent in their ortholog-contracted representation
- Discovered frequent sub-networks are still biologically interpretable!
 - Interaction between proteins becomes interaction between ortholog groups
 - Ortholog-contraction may be thought of as going back in evolutionary history (to what point?)

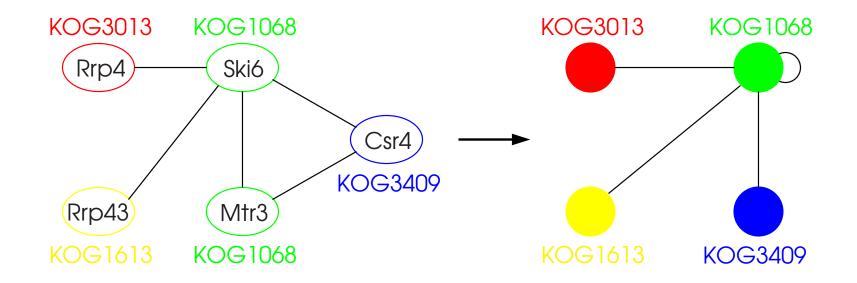
Ortholog Contraction in Metabolic Pathways

- Directed hypergraph \rightarrow uniquely-labeled directed graph
 - Nodes represent enzymes
 - Global labeling by enzyme nomenclature (EC numbers)
 - A directed edge from one enzyme to the other implies that the second consumes a product of the first



Ortholog Contraction in PPI Networks

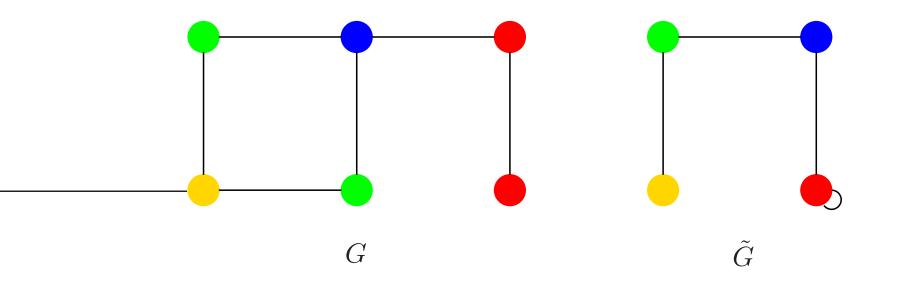
• Interaction between proteins \rightarrow Interaction between ortholog groups or protein families



Preservation of Sub-networks

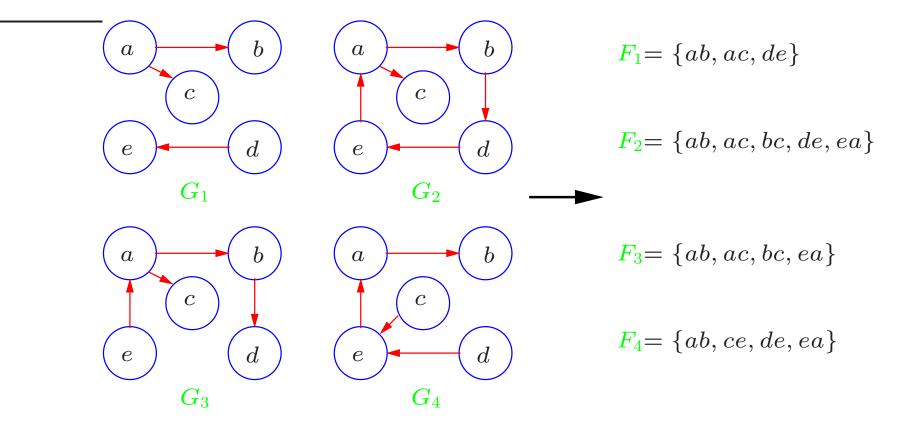
Theorem: Let \tilde{G} be the ortholog-contracted graph obtained by contracting the orthologous nodes of network G. Then, if S is a subgraph of G, \tilde{S} is a subgraph of \tilde{G} .

Corollary: The ortholog-contracted representation of any frequent sub-network is also frequent in the set of ortholog-contracted graphs.



Simplifying the Graph Mining Problem

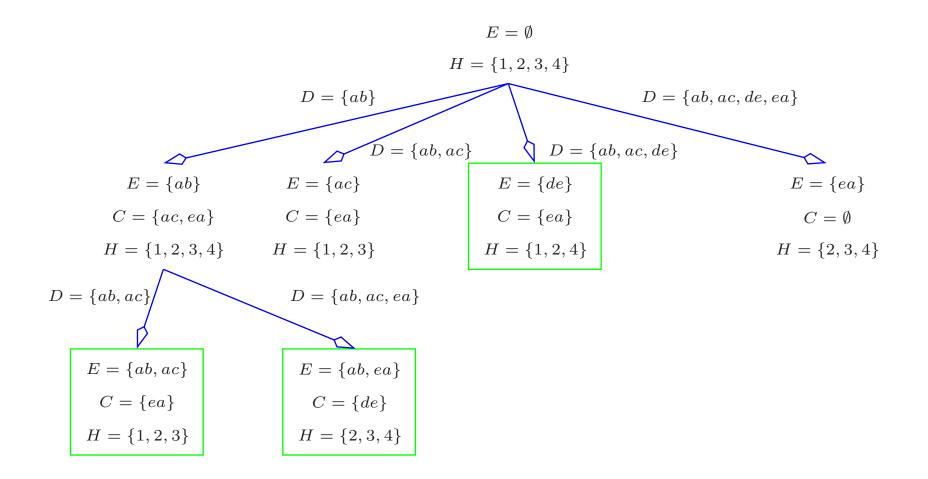
- Observation: An ortholog-contracted graph is uniquely determined by the set of its edges.
 - Frequent Sub-network Discovery Problem \rightarrow Frequent Edge set Discovery Problem



Extending Frequent Itemset Mining to Graph Mining

- Given a set of transactions, find sets of items that are frequent in these transactions
 - Extensively studied in data mining literature
- Algorithms exploit downward closure property
 - An edge set is frequent only if all of its subsets are frequent
 - Generate edge sets (sub-networks) from small to large, pruning supersets of infrequent sets
- No redundancy
- No subgraph enumeration

MULE: Mining Ortholog-Contracted Networks



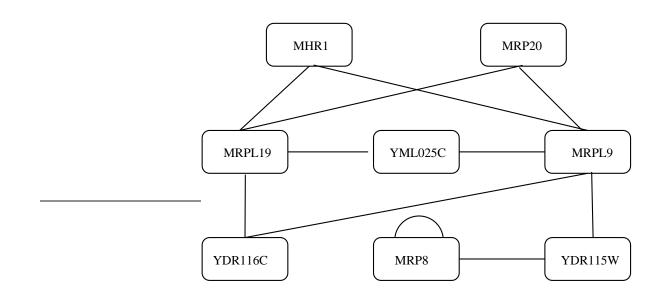
Sample run of MULE for identifying maximal sub-networks that are common to at least 3 organisms

Results: Mining PPI Networks

- PPI networks for 9 eukaryotic organisms derived from BIND and DIP
 - A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H. sapiens, B. taurus, M. musculus, R. norvegicus
 - # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)
 - # of interactions ranges from 340 (*rice*) to 28829 (*fruit fly*)
- Ortholog contraction
 - Group proteins according to existing COG ortholog clusters
 - Merge Homologene groups into COG clusters
 - Cluster remaining proteins via **BLASTCLUST**
 - Ortholog-contracted *fruit fly* network contains 11088 interactions between 2849 ortholog groups
- MULE is available at

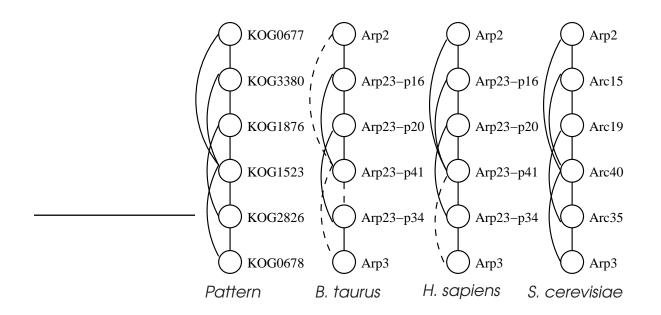
http://www.cs.purdue.edu/homes/koyuturk/mule/

Frequent Protein Interaction Patterns



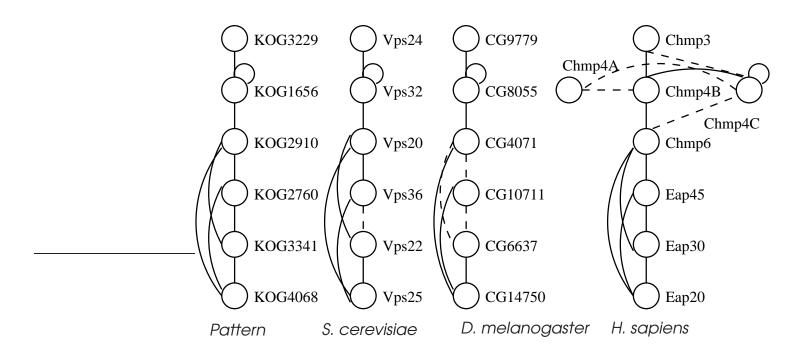
Small nuclear ribonucleoprotein complex (p < 2e - 43)

Frequent Protein Interaction Patterns



Actin-related protein Arp2/3 complex (p < 9e - 11)

Frequent Protein Interaction Patterns



Endosomal sorting (p < 1e - 78)

Modular Phylogenetics

• Top eight groups of three organisms that contain most frequent connected sub-networks and interactions

	# frequent	# frequent
Organism set	sub-networks	interactions
C. elegans, D. melanogaster, H. sapiens	8	134
S. cerevisiae, D. melanogaster, H. sapiens	20	126
D. melanogaster, H. sapiens, M. musculus	17	86
S. cerevisiae, C. elegans, D. melanogaster	15	77
S. cerevisiae, C. elegans, H. sapiens	6	50
S. cerevisiae, H. sapiens, M. musculus	10	26
C. elegans, H. sapiens, M. musculus	5	23
H. sapiens, M. musculus, R. norvegicus	10	23

Runtime Characteristics

FSG (Kuramochi & Karypis, ICDM, 2001), gSpan (Yan & Han, KDD, 2003)								
		FSG				Mule		
	Minimum	Runtime	Largest	Number of	Runtime	Largest	Number of	
Dataset	Support (%)	(secs.)	pattern	patterns	(secs.)	pattern	patterns	
	20	0.2	9	12	0.01	9	12	
	16	0.7	10	14	0.01	10	14	
Glutamate	12	5.1	13	39	0.10	13	39	
	10	22.7	16	34	0.29	15	34	
	8	138.9	16	56	0.99	15	56	
	24	0.1	8	11	0.01	8	11	
Alanine	20	1.5	11	15	0.02	11	15	
	16	4.0	12	21	0.06	12	21	
	12	112.7	17	25	1.06	16	25	
	10	215.1	17	34	1.72	16	34	

Comparison with isomorphism-based algorithms

Extraction of contracted patterns

Glutamate metabolism, $\sigma=8\%$				Alanir	Alanine metabolism, $\sigma=10\%$				
Size of	Extraction time		Size of	Size of	Extraction time		Size of		
contracted	(secs.)		extracted	contracted	(secs.)		extracted		
pattern	FSG	gSpan	pattern	pattern	FSG	gSpan	pattern		
15	10.8	1.12	16	16	54.1	10.13	17		
14	12.8	2.42	16	16	24.1	3.92	16		
13	1.7	0.31	13	12	0.9	0.27	12		
12	0.9	0.30	12	11	0.4	0.13	11		
11	0.5	0.08	11	8	0.1	0.01	8		
Total number	Total number of patterns: 56			Total number	Total number of patterns: 34				
Total runtime of FSG alone: 138.9 secs.			Total runtime	Total runtime of FSG alone :215.1 secs.					
Total runtime of MULE+FSG: 0.99+100.5 secs.			Total runtime	Total runtime of MULE+FSG: 1.72+160.6 secs.					
Total runtime of MULE+gSpan: 0.99+16.8 secs.			Total runtime	Total runtime of MULE+gSpan: 1.72+31.0 secs.					

Discussion

- Ortholog contraction is fast & scalable
 - Graph cartesian product based methods (Sharan et al., PNAS, 2004), (Koyutürk, Grama, & Szpankowski, RECOMB, 2005) create m^n for an ortholog group that has m proteins in each of n organisms
 - Ortholog contraction represents the same group with only n nodes
 - Isomorphism-based grap mining algorithms do not scale to large networks
- Ortholog contraction implicitly accounts for noise by eliminating false positives through thresholding frequency and false negatives through contraction
- Frequency-based approach is **not** easily extendible to weighted graphs (Zhou et al., *ISMB*, 2005)

Outline

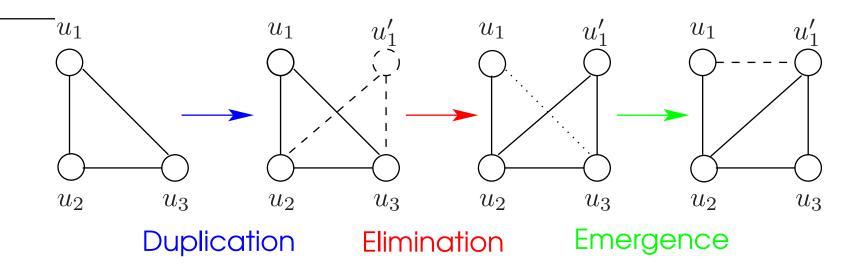
- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

Pairwise Alignment of PPI Networks

- Given two PPI networks that belong to two different organisms, identify sub-networks that are similar to each other
 - Biological meaning
 - Mathematical modeling
- Existing algorithms
 - PathBLAST aligns pathways (linear chains) to simplify the problem while maintaining biological meaning (Kelley et al., *PNAS*, 2004)
 - NetworkBLAST compares conserved complex model with null model to identify significantly conserved subnets (Sharan et al., J. Comp. Biol., 2005)
- Our approach (Koyutürk, Kim, Topkara, Subramaniam, Szpankowski, & Grama, J. Comp. Biol., 2006)
 - Guided by models of evolution
 - Scores evolutionary events
 - Identifies sets of proteins that induce high-scoring sub-network pairs

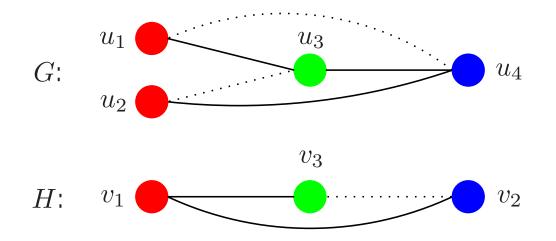
Evolution of PPI Networks

- Duplication/divergence models for the evolution of protein interaction networks
 - Interactions of duplicated proteins are also duplicated
 - Duplicated proteins rapidly lose interactions through mutations
- Allows defining and scoring evolutionary events as graphtheoretical concepts



Match, Mismatch, and Duplication

- Evolutionary events as graph-theoretic concepts
 - A match $\in \mathcal{M}$ corresponds to two pairs of homolog proteins from each organism such that both pairs interact in both PPIs. A match is associated with score μ .
 - A mismatch $\in \mathcal{N}$ corresponds to two pairs of homolog proteins from each organism such that only one pair is interacting. A mismatch is associated with penalty ν .
 - A duplication $\in D$ corresponds to a pair of homolog proteins that are in the same organism. A duplication is associated with score δ .



Scoring Matches, Mismatches and Duplications

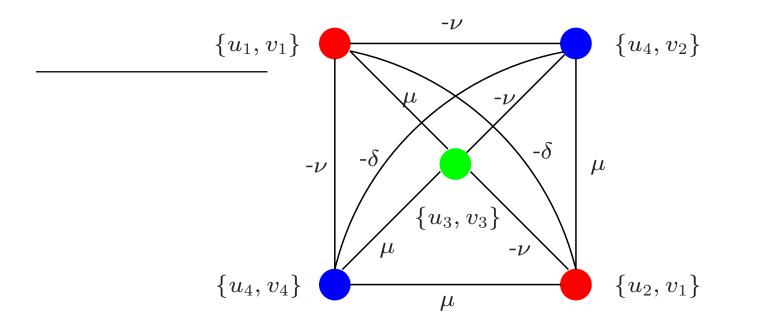
- Quantizing similarity between two proteins
 - Confidence in two proteins being orthologous
 - BLAST E-value: $S(u, v) = log_{10} \frac{p(u, v)}{p_{random}}$
 - Ortholog clustering: S(u, v) = c(u)c(v)
- Match score
 - $\mu(uu', vv') = \bar{\mu} \min\{S(u, v), S(u', v')\}$
- Mismatch penalty
 - $\nu(uu', vv') = \bar{\nu} \min\{S(u, v), S(u', v')\}$
- Duplication score
 - $\delta(u, u') = \overline{\delta}(\hat{\delta} S(u, u'))$
 - $\hat{\delta}$ specifies threshold for sequence similarity to be considered functionally conserved

Pairwise Alignment of PPIs as an Optimization Problem

- Alignment score: $\sigma(\mathcal{A}(P)) = \sum_{M \in \mathcal{M}} \mu(M) - \sum_{N \in \mathcal{N}} \nu(N) + \sum_{D \in \mathcal{D}} \delta(D)$
 - Matches are rewarded for conservation of interactions
 - Duplications are rewarded/penalized for functional conservation/differentiation after split
 - Mismatches are penalized for functional divergence (what about experimental error?)
- Scores are functions of similarity between associated proteins
- Problem: Find all protein subset pairs with significant alignment score
 - High scoring protein subsets are likely to correspond to conserved modules
- A graph equivalent to BLAST

Weighted Alignment Graph

- G(V, E) : V consists of all pairs of homolog proteins $v = \{u \in U, v \in V\}$
- An edge $\mathbf{vv'} = \{uv\}\{u'v'\}$ in \mathbf{E} is a
 - match edge if $uu' \in E$ and $vv' \in V$, with weight $w(\mathbf{vv}') = \mu(uv, u'v')$
 - mismatch edge if $uu' \in E$ and $vv' \notin V$ or vice versa, with weight $w(\mathbf{vv}') = -\nu(uv, u'v')$
 - duplication edge if S(u, u') > 0 or S(v, v') > 0, with weight $w(\mathbf{vv}') = \delta(u, u')$ or $w(\mathbf{vv}') = \delta(v, v')$



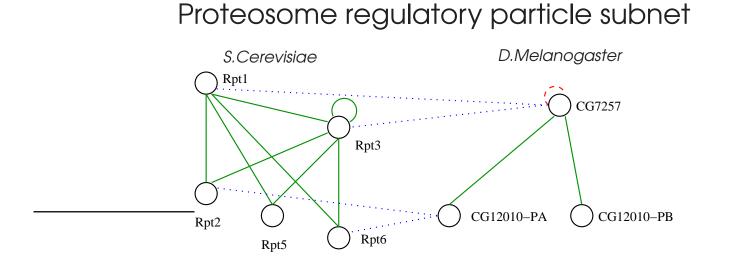
Maximum Weight Induced Subgraph Problem

- Definition: (MAWISH)
 - Given graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and a constant ϵ , find $\tilde{\mathcal{V}} \in \mathcal{V}$ such that $\sum_{\mathbf{v}, \mathbf{u} \in \tilde{\mathcal{V}}} w(\mathbf{vu}) \geq \epsilon$.
 - NP-complete
- Theorem: (MAWISH \equiv Pairwise alignment)
 - If $\tilde{\mathcal{V}}$ is a solution for the MAWISH problem on $\mathcal{G}(\mathcal{V}, \mathcal{E})$, then $P = \{\tilde{U}, \tilde{V}\}$ induces an alignment $\mathcal{A}(P)$ with $\sigma(\mathcal{A}) \geq \epsilon$, where $\tilde{\mathcal{V}} = \tilde{U} \times \tilde{V}$.
- Solution: Local graph partitioning
 - Greedy graph growing + iterative refinement
 - Linear-time heuristic
- Source code available at http://www.cs.purdue.edu/homes/koyuturk/mawish/

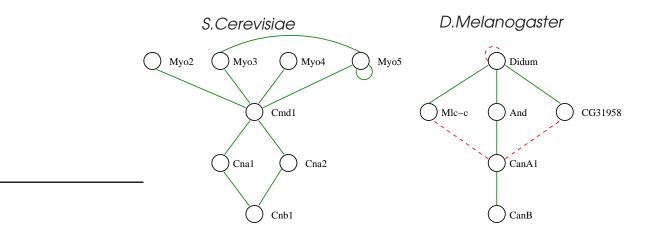
Alignment of Yeast and Fruit Fly PPI Networks

Rank	Score	z-score	# Proteins	# Matches	# Mismatches	# Dups.	
]	15.97	6.6	18 (16, 5)	28	6	(4,0)	
	protein amino acid phosphorylation (69%)						
	JAK-STAT cascade (40%)						
2	13.93	3.7	13 (8, 7)	25	7	(3, 1)	
	endocytosis (50%) / calcium-mediated signaling (50%)						
5	8.22	13.5	9 (5, 3)	19	11	(1,0)	
	invasive growth (sensu Saccharomyces) (100%)						
	oxygen and reactive oxygen species metabolism (33%)						
6	8.05	7.6	8 (5, 3)	12	2	(0, 1)	
	ubiquitin-dependent protein catabolism (100%)						
	mitosis (67%)						
21	4.36	6.2	9 (5, 4)	18	13	(0, 5)	
	cytokinesis (100%, 50%)						
30	3.76	39.6	6 (3, 5)	5]	(0, 6)	
	DNA replication initiation (100%, 80%)						

Subnets Conserved in Yeast and Fruit Fly



Calcium-dependent stress-activated signaling pathway



Discussion

- Comparison to other approaches: NetworkBlast (Sharan et al., *PNAS*, 2005), NUKE (Novak et al., *Genome Informatics*, 2005)
 - Much faster than NetworkBLAST, but provides less coverage
 - Head-to-head with NUKE
- Scores evolutionary events
 - Flexible, allows incorporation of different evolutionary models, experimental bases, target structures
 - Somewhat ad-hoc, what is a good weighting of scores?

Outline

- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

Analytical Assessment of Statistical Significance

• Existing techniques

- Mostly computational (*e.g.*, Monte-Carlo simulations)
- Compute probability that the pattern exists rather than a pattern with the property (*e.g.*, size, density) exists
- Overestimation of significance
- Random graph models
 - PPI networks generally exhibit power-law property (or exponential, geometric, etc.)
 - Analysis simplified through independence assumption
 - Independence assumption may cause problems for networks with arbitrary degree distribution
 - $P(uv \in E) = d_u d_v / |E|$, where d_u is expected degree of u, but generally $d_{\max}^2 > |E|$ for PPI networks
- Analytical techniques based on simplified models (Koyutürk, Grama, & Szpankowski, *RECOMB*, 2006)

Significance of Dense Subgraphs

- A subnet of r proteins is said to be ρ -dense if $F(r) \ge \rho r^2$, where F(r) is the number of interactions between these r proteins
- What is the expected size of the largest ρ-dense subgraph in a random graph?
 - Any ρ -dense subgraph with larger size is statistically significant!
- G(n,p) model
 - n proteins, each interaction occurs with probability p
 - Simple enough to facilitate rigorous analysis
 - If we let $p = d_{\max}/n$, largest ρ -dense subgraph in G(n, p) stochastically dominates that in a graph with arbitrary degree distribution

Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every edge exists with probability p, then

$$\lim_{n \to \infty} \frac{R_{\rho}}{\log n} = \frac{1}{\kappa(p,\rho)} \qquad (pr.), \qquad (1)$$

where

$$\kappa(p,\rho) = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}.$$
(2)

More precisely,

$$P(R_{\rho} \ge r_0) \le O\left(\frac{\log n}{n^{1/\kappa(p,\rho)}}\right),\tag{3}$$

where

$$r_0 = \frac{\log n - \log \log n + \log \kappa(p, \rho)}{\kappa(p, \rho)}$$
(4)

for large n.

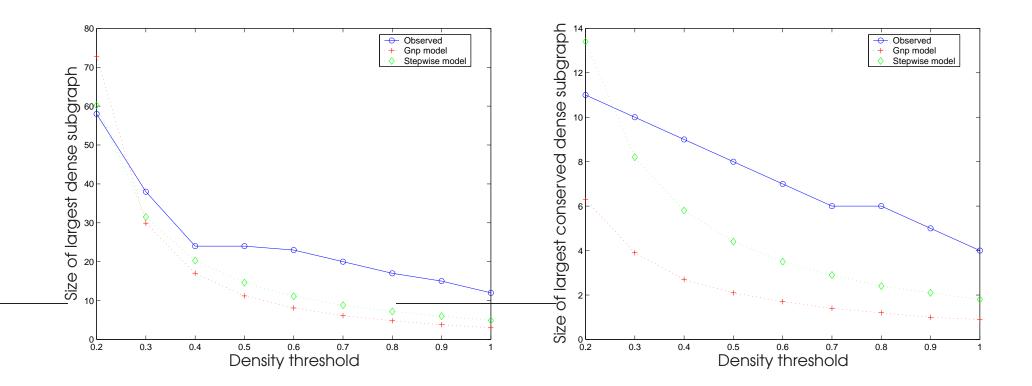
Generalizing Results to Complex Models

- Piecewise G(n, p) model
 - Few proteins with many interacting partners, many proteins with few interacting partners
 - Captures the basic characteristics of PPI networks
 - The size of largest dense subgraph is still proportional to $\log n$
- More general models
 - Increasing the number of pieces, we approach models with characteristic degree distributions
 - Analysis of power-law graphs in progress
- Multiple networks: Conservation
 - Superpose graphs based on sequence homology

Algorithms Based on Statistical Significance

- Identification of topological modules
- Use statistical significance as a stopping criterion for graph clustering heuristics
- HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)
 - Find a minimum-cut bipartitioning of the network
 - If any of the parts is dense enough, record it as a dense cluster of proteins
 - Else, further partition them recursively
- Use statistical significance to determine whether a subgraph is sufficiently dense
 - For given number of proteins and interactions between them, we can determine whether those proteins induce a significantly dense subnet

Largest Dense Subgraph for Varying Density



Yeast PPI network

Yeast & Fruit Fly PPI networks

Outline

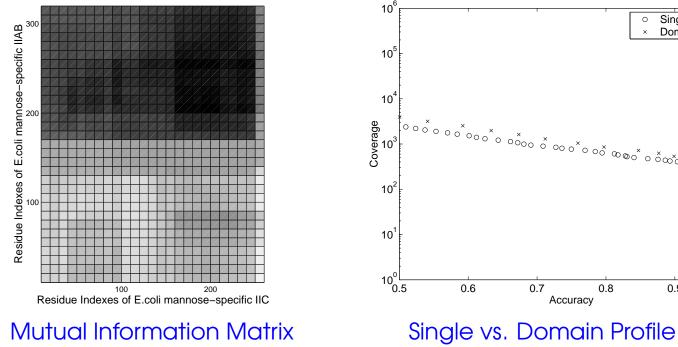
- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

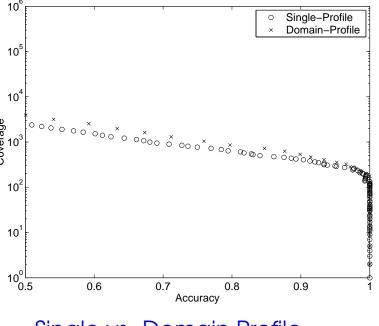
Phylogenetic Analysis for Predicting Interactions

- Functionally related proteins are likely to have co-evolved
 - Construct phylogenetic profile for each genome: Vector of E-values signifying existence of an orthologous protein in each organism
 - Identify pairwise functional associations based on mutual information between phylogenetic profiles (Pellegrini et al., PNAS, 1999)
 - Mutual information:
 - $I(X, Y) = H(X) H(X|Y) = \sum_{x} \sum_{y} p(x, y) \log(p(x, y) / p(x)p(y))$
 - Shown to identify functionally associated protein pairs at a coarser level than high-throughput methods
- However, domains, not proteins, co-evolve
 - How can we incorporate domain information to enhance performance of phylogeny-based interaction prediction?

Inferring Function from Domain Co-evolution

- Residue-level phylogenetic analysis (Kim, Koyutürk, Topkara, Grama, & Subramaniam, Bioinformatics, 2006)
 - No a-priori knowledge about domains
 - Construct residue phylogenetic profiles from local alignment results
 - Construct mutual information matrix
 - High-information contiguous submatrices that are sufficiently large correspond to putative co-evolved domains



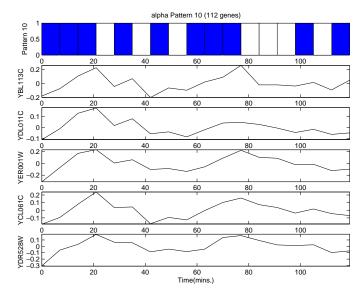


Other Work on Pattern Identification

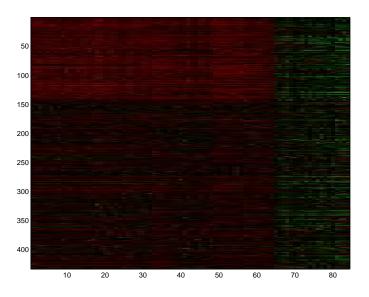
- PROXIMUS: Non-orthogonal decomposition of binary matrices (Koyutürk, Grama, & Ramakrishnan, IEEE TKDE, 2005)
 - Find a compact set of vectors that represent the entire matrix
 - Recursive decomposition through rank-one approximations
 - Fast (linear-time) iterative heuristics for computing approximations
 - Source code available at

http://www.cs.purdue.edu/homes/koyuturk/proximus/

Patterns of regulation



"Algorithms for bounded-error correlation of high dimensional data in microarray experiments" Koyutürk, Grama, Szpankowski: *CSB'03.*



"Biclustering gene-feature matrices for statistically significant dense patterns" Koyutürk, Grama, Szpankowski: *CSB'04*.

Biclustering

Outline

- Molecular Interaction Networks
 - Modeling, evolution, observations, problems, practical implications
- Algorithms for Analyzing Molecular Interaction Networks
 - Mining biological networks for frequent molecular interaction patterns
 - Pairwise Alignment of protein-protein interaction networks
- Significance of Identified Patterns
 - Probabilistic models/analyses for assessing statistical significance
- Other Related Work
- Ongoing Work & Conclusion

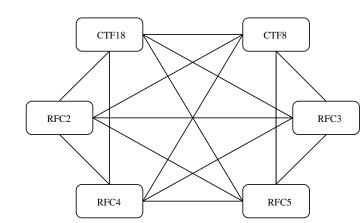
Identifying "Canonical" Regulatory Pathways

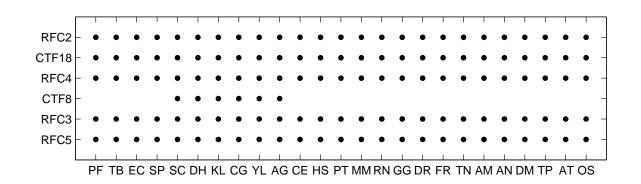
- Can we derive rules in terms of GO terms, e.g., $P_i \rightarrow P_j \dashv P_k$?
 - Statistical challenge: Such patterns have to be significantly abundant
 - Computational challenge: When statistical significance kicks in, monotonicity properties (*e.g.*, downward closure) are out of door
 - Our approach: conditional significance, *i.e.*, evaluate significance of a pattern based on the background constructed by its substructures
- Final goal: Database of (computationally derived) canonical modules and pathways

Modeling the Cell as a State Diagram

- Signaling pathways can be modeled as a series of transitions between states of protein or peptide molecules, non-protein molecules, (non-)protein complexes, and modules
 - Biology WorkBench provides a database of network states for proteins, a mirror is available to our group
- Constructing signaling pathways from state information for individual molecules
 - Smallest common supergraph problem
 - Related to sequence assembly, but much harder

Modular Phylogenetics

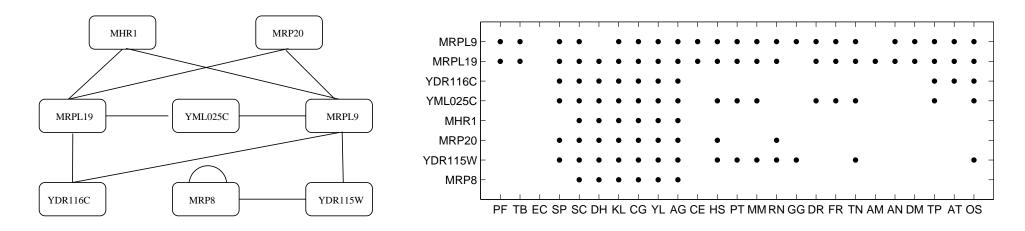




Replication Factor C complex identified on yeast PPI network by MCODE algorithm and the phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in all eukaryotic species!

Modular Phylogenetics



A component of mitochondrial ribosome identified on yeast PPI network by MCODE algorithm and the phylogenetic profiles of its proteins on 25 eukaryotic genomes

Conserved in only yeast species!

 Models and algorithms for quantifying, analyzing, and evaluating modular conservation and divergence across species

Conclusion

- A lot to learn from comparative network analysis
- We have fast algorithms
- We need
 - Enhanced & more detailed network models
 - High quality & comprehensive data
 - Detailed statistical models

Thanks...

- For their guidance, support & friendship
 - Ananth Grama
 - Wojciech Szpankowski
- For their valuable collaboration
 - Yohan Kim and Shankar Subramaniam of UCSD
- For money
 - NIH & NSF