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Function & Topology in Molecular Networks

How does function relate to network topology”?

Pathways



Prior Work on Topology and Function

Conservation (ISMB 04/Bioinf. 04)

Alignment (RECOMB 05/JCB 06)

Modularity (RECOMB 06/JCB 07)

Inference (Bioinf. 06)

Pathway Annotation (ISMB 07/Bioinf. 07, PSB 08)

Network Abstractions/ Annotations (ECCB 08/ Bioinf. 08)
Modularity and Domain Interactions (APBC 10/ BMC Bioinf. 10)
Pathway Interaction Maps (PSB 12)

Pathway Inference (ISMB 12)



Evolution of Molecular Interactions

"Evolution thinks modular” (Vespignani, Nature Gen., 2003)

Cooperative tasks require all participating units

- Selective pressure on preserving interactions & interacting proteins
Proteins organized in cohesive patterns are highly conserved
(Wuchty et al., Nafure Gen., 2003)

- Functional modules are likely to be consistently conserved

Orthologs of inferacting proteins are likely to interact (Wagner,
Mol. Bio. Evol., 2001)

- Conservation of interactions may provide clues on conservation of
function

Interacting proteins follow similar evolutionary frajectories
(Pellegrini et al., PNAS, 1999)



Computational Analysis of Biological Networks

e Clustering

- Interaction network: Proteins in functional modules densely interact with
each other

- Gene expression: Genes coding cooperating proteins are likely to be co-
regulated

- Phylogenetic profiles: Interacting proteins are likely to have co-evolved

e Graph Mining
- Common topological motifs and frequent interaction patterns reveal
conserved modularity
e Graph Alignment

- Conservation/divergence of pathways, complexes, and functional
modules



Frequent Interaction Patterns: Computational Problem

e Given a set of proteins V' a set of interactions £, and a many-
to-many mapping from V to a set of ortholog groups £ =
{l1,1s,...,1,}, the corresponding interaction network is a labeled
graph G = (V, E, L).

- v € V(G) is associated with a set of ortholog groups L(v) C L.
- uwv € E(G) represents an interaction between v and wv.

e S is a sub-network of G, ie., S C G if there is an injecfive
mapping ¢ : V(S) — V(G) such that for all v € V(S), L(v) C
L(¢(v)) and for all uwv € E(S), ¢(u)o(v) € E(G).

e Maximal frequent sub-network discovery

- Instance: A set of inferaction networks G = {Gy = (Vi, E1, L), Gy =
(Va, Eo, L), ....,Gry = (Vi, Eny, £)}, each belonging tfo a different
organism, and a frequency threshold o*.

- Problem: Let H(S) = {G; : S C G;} be the occurrence set of graph
S. Find all connected subgraphs S such that |H(S)| > o, ie.. Sisa
frequent subgraph in G and for all S 3 S, H(S) # H(S'), ie., Sis
maximal.



Ortholog Contraction

Confract orthologous nodes info a single node

No subgraph isomorphism

- Graphs are uniquely identified by their edge sets

Frequent sub-networks are preserved = No information loss

- Sub-networks that are frequent in general graphs are also frequent in
their ortholog-contracted representation

Discovered frequent sub-networks are still biologically intferpretable!

- Inferaction between proteins becomes intferaction between ortholog
groups

- Ortholog-contraction may be thought of as going back in evolutionary
history (to what point?)



Ortholog Contraction in PPl Networks

e Interaction between proteins — Interaction between ortholog
groups or protein families

KOG3013 KOG 1068 KOG3013 KOG 1068

/
KOG3409

KOG 1068 KOG3409

Rrpd3



Preservation of Sub-networks

Theorem: Let G be the ortholog-contracted graph obtained
by contfracting the orthologous nodes of network G. Then, if 5'is @
subgraph of G, S is a subgraph of G.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
confracted graphs.




Results: Mining PPl Networks

e PPl networks for @ eukaryotic organisms derived from BIND and
DIP

- A. thaliania, O. safiva, S. cerevisiae, C. elegans, D. melanogaster, H.
sapiens, B. faurus, M. musculus, R. norvegicus

- # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

- # of interactions ranges from 340 (rice) to 28829 (fruit fly)

e Ortholog contraction

- Group proteins according to existing COG ortholog clusters
- Merge Homologene groups into COG clusters
— Cluster remaining proteins via BLASTCLUST

- Ortholog-contracted fruit fly network contains 11088 inferactions
between 2849 ortholog groups

e MULE is available at
http://ww. cs. purdue. edu/ hones/ koyut ur k/ mul e/


http://www.cs.purdue.edu/homes/koyuturk/mule/

Frequent Protein Interaction Patterns

YDR116C YDR115W

Small nuclear ribonucleoprotein complex (p < 2¢ — 43)



Frequent Protein Interaction Patterns

KOGO0677 Arp2 Arp2 Arp2
/
/
KOG3380,' Arp23-p16 Arp23-p16 Arcl5
I
\
KOG1876\ Arp23-p20 Arp23-p20 Arcl19
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KOG1523 Arp23-p41 Arp23-p41 Arc40
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KOG2826 Arp23-p34 i Arp23-p34 Arc35
1
\
KOGO0678 Arp3 \ Arp3 Arp3
Pattern B. taurus H. sapiens S, cerevisiae

Actin-related protein Arp2/3 complex (p < 9¢ — 11)



Frequent Protein Interaction Patterns

KOG3229 Vps24 CG9779
KOG1656 Vps32 CG8055
) KOG2910 Vps20 CG4071
|
) KOG2760 Vps36 " CG10711 ) Eap45
| \ |
) KOG3341 Vps22 CG6637 ) Eap30
KOG4068 Vps25 CG14750 Eap20
Pattern S. cerevisiae D. melanogaster  H. sapiens

Endosomal sorting ( )



Modular Phylogenetics

e Top eight groups of three organisms that contain most frequent
connected sub-networks and inferactions

# frequent # frequent

Organism set sub-networks  inferactions
C. elegans, D. melanogaster, H. sapiens 8 134
S. cerevisiae, D. melanogaster, H. sapiens 20 126
D. melanogaster, H. sapiens, M. musculus 17 86
S. cerevisiae, C. elegans, D. melanogaster 15 77
S. cerevisiae, C. elegans, H. sapiens 6 90
S. cerevisiae, H. sapiens, M. musculus 10 26
C. elegans, H. sapiens, M. musculus 5 23

H. sapiens, M. musculus, R. norvegicus 10 23




Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG (Kuramochi & Karypis, ICDM, 2001), gSpan (Yan & Han, KDD, 2003)

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 % 12 0.01 9 12

16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted paftterns

Glutamate metabolism, o = 8% Alanine metabolism, o = 10%
Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted
pattern FSG gSpan pattern pattern FSG gSpan pattern
15 10.8 1.12 16 16 54.1 10.13 17
14 12.8 2.42 16 16 24.1 3.92 16
13 1.7 0.31 13 12 0.9 0.27 12
12 0.9 0.30 12 11 0.4 0.13 11
11 0.5 0.08 11 8 0.1 0.01 8
Total number of patterns: 56 Total number of patterns: 34
Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MuLE+gSpan: 1.72+31.0 secs.




Pairwise Alignment of PPl Networks

e Given two PPl networks that belong to two different organisms,
identify sub-networks that are similar fo each other

— Biological meaning
- Mathematical modeling

e EXisting algorithms

- PathBLAST aligns pathways (linear chains) to simplify the problem while
maintaining biological meaning (Kelley et al., PNAS, 2004)
- NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets (Sharan et al., J. Comp. Biol.,
2005)

e Our approach (Koyuttrk, Kim, Topkara, Subramaniam, Szpankowski, &
Grama, J. Comp. Biol., 2006)

- Guided by models of evolution
- Scores evolutionary events
- ldentifies sefts of proteins that induce high-scoring sub-network pairs



Evolution of PPl Networks

e Duplication/divergence models for the evolution of protfein
inferaction networks

- Inferactions of duplicated proteins are also duplicated
- Duplicated proteins rapidly lose interactions through mutations

e Allows defining and scoring evolutionary events as graph-
theoretical concepts

Duplication Elimination Emergence



Match, Mismatch, and Duplication

e Evolutionary events as graph-theoretic concepfts

- A match € M corresponds to two pairs of homolog proteins from each
organism such that both pairs interact in both PPIs. A match is associated
with score p.

- A mismatch € N corresponds to two pairs of homolog proteins from
each organism such that only one pair is interacting. A mismatch is
associated with penalty v.

- A duplication € D corresponds to a pair of homolog proteins that are in
the same organism. A duplication is associated with score 9.




Pairwise Alignment of PPls as an Optimization Problem

e Alignment score:
o(AP)) = 2 e WM) = 2 o nen VIN) + 2 pep 9(D)

- Matches are rewarded for conservation of inferactions
- Duplications are rewarded/penalized for functional conservation/differentiation

affter split
- Mismatches are pendlized for functional divergence (what about
experimental error?)

e Scores are functions of similarity between associated proteins

e Problem: Find all protein subset pairs with significant alignment
score

- High scoring protein subsets are likely to correspond to conserved
modules

e A graph equivalent to BLAST



Weighted Alignment Graph

e G(V,E) : V consists of all pairs of homolog proteins v = {u €
UveV}

e Anedge vv' = {uvH{u'v'} InEis A

- matfch edge ifuu’ € E and vy’ € V, with weight w(vv') = p(uv, u'v’

- mismatch edge if uu’ € E and vv’ ¢ V or vice versa, with weight
w(vv') = —v(uv, u'v'’

- duplication edge if S(u,u’) > 0 or S(v,v") > 0, with weight w(vv’) =
S(u,u) orw(vv') = §(v,v")

{u1,v1} @ {wa, v2}
- v
{us,vs} @ {u2, v1}




Maximum Weight Induced Subgraph Problem

e Definition: ((MAWISH)

- Given graph G(V,€&) and a constant ¢, find V € V such that

Zv,ueﬁw(vu) 2 €.
- NP-complete

e Theorem: (MAWISH = Pairwise alignment)
- If V is a solution for the MAWISH problem on G(V, &), then P = {U,V'}
induces an alignment A(P) with o(A) > € ,where YV = U x V.,
e Solution: Local graph partitioning

- Greedy graph growing + iterative refinement
- Linear-time heuristic

e Source code available at
http://ww. cs. purdue. edu/ hones/ koyut ur k/ maw sh/


http://www.cs.purdue.edu/homes/koyuturk/mawish/

Alignment of Yeast and Fruit Fly PPl Networks

Rank Score  z-score  #Proteins # Mafches # Mismatches  # Dups.

] 15.97 6.6 18 (16, 5) 28 6 4,0)
protein amino acid phosphorylation (69%)
JAK-STAT cascade (40%)

2 13.93 3.7 13 (8,7) 25 / @G, D
endocytosis (50%) / calcium-mediated signaling (60%)
5 8.22 13.5 @ (5, 3) 19 11 (1,0)

invasive growth (sensu Saccharomyces) (100%)
oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 O, 1
ubiquitin-dependent protein catabolism (100%)
mitosis (67%)

21 4.36 6.2 @ (5. 4) 18 13 @, 5)
cytokinesis (100%, 50%)

30 3.76 39.6 6 (3,5 5 ] O, 6)

DNA replication initiation (100%, 80%)




Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet

S.Cerevisiae D.Melanogaster

-~

Calcium-dependent stress-activated signaling pathway

S.Cerevisiae D.Melanogaster

O Myo2 m Myo5 bDidum




Statistical Significance of Modularity

e EXisting techniques

Mostly computational (e.g., Monte-Carlo simulations)

Compute probability that the pattern exists rather than o pattern with
the property (e.g., size, density) exists

Overestimation of significance

e Random graph models

PPl networks generally exhibit power-law property (or exponential,
geometric, etc.)

Analysis simplified through independence assumption

Independence assumption may cause problems for networks with
arbitrary degree distribution

P(uv € FE) = d,d,/|E|, where d, is expected degree of u, but generally
d?> > |E| for PPl networks

max

e Analytical techniques based on simplified models (Koyutlrk,
Grama, & Szpankowski, RECOMB, 2006)



Significance of Dense Subgraphs

e A subnet of r proteins is said to be p-dense if F(r) > pr?, where
F(r) is the number of inferactions between these r proteins

e What is the expected size of the largest p-dense subbgraph in a
random graph?

- Any p-dense subgraph with larger size is statistically significant!

e G(n,p) model

- n proteins, each interaction occurs with probability p

- Simple enough to facilitate rigorous analysis

- If we let p = dnax/n. largest p-dense subgraph in G(n, p) stochastically
dominates that in a graph with arbitrary degree distribution



Largest Dense Subgraph

e Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

R 1
lim —2 = r.), (1
n—oo logn /-g(p7 p) (p )
where |
p —p
k(p,p) = plog——+ (1 —p)lo . 2)
(p,p) =p 2 (1-p) 51,
More precisely,
logn
P(RP =10) <0 (nl/ﬁ(p,p)> ’ (3)

where
_ logn — loglogn + log k(p, p)

— A4
"o <, p) @

for large n.



Generalizing Results to Complex Models

e Piecewise G(n,p) model

- Few proteins with many interacting partners, many proteins with few
inferacting partners

— Captures the basic characteristics of PPl networks
- The size of largest dense subgraph is sfill proportional to log n

e More general models

- Increasing the number of pieces, we approach models with
characteristic degree distributions

- Analysis of power-law graphs in progress

e Multiple networks: Conservation

- Superpose graphs based on sequence homology



Algorithms Based on Statistical Significance

|dentification of fopological modules

Use statistical significance as a stopping criterion for graph
clustering heuristics

HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)

- Find a minimum-cuft bipartitioning of the network

- If any of the parts is dense enough, record it as a dense cluster of proteins
- Else, further partition them recursively

Use statistical significance to determine whether a subgraph is
sufficiently dense

- For given number of profeins and interactions between them, we can
determine whether those proteins induce a significantly dense subnet



Largest Dense Subgraph for Varying Density

80 T T 14 T T
—©— Observed 4 —©- Observed
+- Gnp model +- Gnp model
70" {  Stepwise model {  Stepwise model

Size of largest dense subgraph
Size of largest conserved dense subgraph

2r + 3

+ N

N + T

%.2 O‘.3 014 015 0.6 0.7 018 019 1 %.2 013 014 015 0.6 0.7 018 019 1
Density threshold Density threshold

Yeast PPl network Yeast & Fruit Fly PPl networks



Pathway Organization: Genetic Interactome

Double mutants exhibit unexpected phenotypes, as compared
to joint single mutations.
Definition 1. ¢ Negafive Interactfions: more severe phenofype
than expected

- Also known as aggravating or synergistic

e Posifive Inferacfions: Less severe phenotype than expected

- Also known as alleviafing or epistafic

Most commonly used:

Phenotype : Growth rate

Model : Multiplicative null model



Organization of Genetic Interactions
Definition 2. ¢ Between-Pathway Model

- Among genes participafing in redundant functions

o Within-Pathway Model

- Among genes with addifive effect

e Indirect Effect

- Among genes with distant functions that are not directly
related



Between-Pathway Model (BPM)

e Bi-cliquish structure

e Have been used to:

1. Predict co-pathway
membership of gene
pairs

2. Extract redundant
pathways




The Genetic Landscape of a Cell

e Baker’s yeast,
Saccharomyces cerevisiae

e Synthetic Genetic Array (SGA)

e 1712 query genes

1 Saurein 1. 1378 null alleles of non-

: s essential genes
2. 334 hypomorphic or
condifional dlleles of

essential genes

e 3885 array strains

1"‘ Cell polarity &
! morphogenesis

DNA replication
& repair

Adopted from Costanzo et al., 2010



Functional Annotations

KEGG PATHWAY Database

Wiring diagrams of molecular interactions, reactions, and relations

KEGG2 PATHWAY BRITE MODULE DISEASE DRUG GENES GENOME LIGAND DBGET

Select prefix Enter keywords

|map || Crganism | E Help

Pathway Maps

KEGG PATHWAY is a collection of manually drawn pathway maps (see new maps, change history, and
last updates) representing our knowledge on the molecular interaction and reaction networks for:
0. Global Map
1. Metabolism
Carbohydrate Energy Lipid Nucieotide Amino acid Other amino acid Glycan
Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenocbiotics Overview
Genetic Information Processing
Environmental Information Processing
Cellular Processes
Organismal Systems
Human Diseases
and also on the structure relationships (KEGG drug structure maps) in:

7. Drug Development

anEuUN

Pathway Mapping

o KEGG Pathway Database

e Annotations for 1026 genes in

the experiment

o 96 Pathways

- 80 pathways affer filtering
pathways with less than 10
genes.



Local Neighborhood Similarity:
A Predictor of Co-Pathway Membership

Similarity prediction methods

e Number of Shared Neighbors
e Congruence Score

e Pearson Correlation of Interaction Profiles

-

Both v; and v; have three shared neighbors. However, in the first case their congruence score is aimost 0.6,

while in the second case it is approximately 2 (assuming a graph of size 10).



Evaluating Ranking Methods

Given a pathway P4 and a cut size (farget set) |.

Definition 3.
P —wvalue(X =k) = Probk <X)
— HGT(K|N,Na,l)
B mi”gf‘"” C(l,2)C(N — 1, Na — )

X: Random variable denotfing the numiber of true positives in a
random sample, N: Total number of gene pairs, N4: Number of
gene pairs in pathway A, I: Size of target set



Minimum HyperGeometric (ImHG) Score

Target size unknown:

Definition 4. The Minimum HyperGeometric (mHG) score

mHG()\) — minlSlSNHGT(bl(A); N, NA, l),

where bi(\) = St A

\; is 1if both of the genes in the it ranked gene pair are
members of P4, and 0 otherwise.

e MHG Adjusted for Multiple Comparison



Enrichment of KEGG pathways in top—ranked scores (# of enriched pathways = 42)
rrrrrrrrrrrrrrrr1rrrrrr1rr1r1r1r1rrrir1r1r1r1 1171717117111 11 11T T7TTT T T T T TTTTT T T T T T T I L LI T T T T T TTTI
I Shared neighbors

Congruence score
700 I Pcarson correlation H

600 —
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200 —

1%
100 I




Highlights

Basic |dea
Heterogeneous — Existence of  specific
performance  of  CoO- sfructure around enriched
pathway membership pathways

predictions

e Decomposing neighborhood of each pathway

e Inferring lethal crosstalk among pathways



Modified Congruence Score (MCS)

Evaluating Neighborhood Overlap of Gene Pairs With Respect to

Definition 5.

P —value(X = kfi)

a Given Pathway

Prab(kg < X)

HGT(kg ing,d?, df)

min -B, B
szdj ) C(d?,z)C(ng —d?,dy — x)

MCS is defined as —logyo of the P-value.



Modified Congruence Score (MCS): continued

Example 1

[=]

oo

Yeast genetic network (KEGG core)

[=] Pathway 1

1S
5

/

[=] Pathway 2

LY /)]

00000

A sample neighborhood
configurafion for v; and v;.
Here n = 15,D; = 6,D; =
S5,ng = 6,d; = S,dj = 4 and
k= 2.



Constructing Neighborhood Overlap Graph
For a Given Pathway Pair

Definition 6. The neighborhood overlap graph (NOG) of a given
pathway P4 with respect fo pathway Pg, denoted by Ha_,p =
(Vi, Fg). is an unweighted, undirected graph defined over same
vertices as P,. In this graph, there is a link between verfices v;
and v; if the network structure around them with respect to Py is

statistically significant .



Pruning neighborhood overlap graph, finding
cohesive subgraphs, and identifying interaction ports

1. lterative peeling of K-shells
Pruning hairy components

2. Connected components
INn each core

Adopted from Batagelj and Zaversnik, 2002 3. Evaluating the significance
of components

e Evaluating significance
using ER random graph
model
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Interaction Port Case Study

Crosstalk Between Protein Processing in ER and Proteasome

PROTEIN PROCESSING IN ENDOPLASMIC RETICULUM | Golgibody
o
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Ongoing Work: The Interaction Map of Aging

Histone Acetylation

DNA-dependent  T2NSgipt
ansaigkional 3

Cell Wall Organization

Cell Cycle_.!Autopli'agy

; Chromatin
= Modification

Ribosome Biogenesis



Ongoing Work

e The surprisingness of choice in networks.

e Tissue-specific alignments.



Thanks

e To the US National Science Foundation for their funding.
e To our hosts aft lISc for all of their support and funding.
e [O all of my collaborators.

e [0 you for your attention!



