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Function & Topology in Molecular Networks

How does function relate to network topology?



Prior Work on Topology and Function

• Conservation [ISMB 04/Bioinf. 04]

• Alignment [RECOMB 05/JCB 06]

• Modularity [RECOMB 06/JCB 07]

• Inference [Bioinf. 06]

• Pathway Annotation [ISMB 07/Bioinf. 07, PSB 08]

• Network Abstractions/ Annotations [ECCB 08/ Bioinf. 08]

• Modularity and Domain Interactions [APBC 10/ BMC Bioinf. 10]

• Pathway Interaction Maps [PSB 12]

• Pathway Inference [ISMB 12]



Evolution of Molecular Interactions

• “Evolution thinks modular”[Vespignani, Nature Gen., 2003]

• Cooperative tasks require all participating units

– Selective pressure on preserving interactions & interacting proteins

• Proteins organized in cohesive patterns are highly conserved
[Wuchty et al., Nature Gen., 2003]

– Functional modules are likely to be consistently conserved

• Orthologs of interacting proteins are likely to interact [Wagner,

Mol. Bio. Evol., 2001]

– Conservation of interactions may provide clues on conservation of

function

• Interacting proteins follow similar evolutionary trajectories
[Pellegrini et al., PNAS, 1999]



Computational Analysis of Biological Networks

• Clustering

– Interaction network: Proteins in functional modules densely interact with

each other

– Gene expression: Genes coding cooperating proteins are likely to be co-

regulated

– Phylogenetic profiles: Interacting proteins are likely to have co-evolved

• Graph Mining

– Common topological motifs and frequent interaction patterns reveal

conserved modularity

• Graph Alignment

– Conservation/divergence of pathways, complexes, and functional

modules



Frequent Interaction Patterns: Computational Problem

• Given a set of proteins V a set of interactions E, and a many-
to-many mapping from V to a set of ortholog groups L =
{l1, l2, ..., ln}, the corresponding interaction network is a labeled
graph G = (V, E,L).

– v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L.

– uv ∈ E(G) represents an interaction between u and v.

• S is a sub-network of G, i.e., S ⊑ G if there is an injective
mapping φ : V (S) → V (G) such that for all v ∈ V (S), L(v) ⊆
L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈ E(G).

• Maximal frequent sub-network discovery

– Instance: A set of interaction networks G = {G1 = (V1, E1,L), G2 =

(V2, E2,L), ..., Gm = (Vm, Em,L)}, each belonging to a different

organism, and a frequency threshold σ∗.

– Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph

S. Find all connected subgraphs S such that |H(S)| ≥ σ∗, i.e., S is a

frequent subgraph in G and for all S′
= S, H(S) 6= H(S′), i.e., S is

maximal.



Ortholog Contraction

• Contract orthologous nodes into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Frequent sub-networks are preserved ⇒ No information loss

– Sub-networks that are frequent in general graphs are also frequent in

their ortholog-contracted representation

• Discovered frequent sub-networks are still biologically interpretable!

– Interaction between proteins becomes interaction between ortholog

groups

– Ortholog-contraction may be thought of as going back in evolutionary

history (to what point?)



Ortholog Contraction in PPI Networks

• Interaction between proteins → Interaction between ortholog
groups or protein families
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Preservation of Sub-networks

Theorem: Let G̃ be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
contracted graphs.

G G̃



Results: Mining PPI Networks

• PPI networks for 9 eukaryotic organisms derived from BIND and
DIP

– A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.

sapiens, B. taurus, M. musculus, R. norvegicus

– # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

– # of interactions ranges from 340 (rice) to 28829 (fruit fly)

• Ortholog contraction

– Group proteins according to existing COG ortholog clusters

– Merge Homologene groups into COG clusters

– Cluster remaining proteins via BLASTCLUST

– Ortholog-contracted fruit fly network contains 11088 interactions

between 2849 ortholog groups

• MULE is available at
http://www.cs.purdue.edu/homes/koyuturk/mule/

http://www.cs.purdue.edu/homes/koyuturk/mule/


Frequent Protein Interaction Patterns
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Small nuclear ribonucleoprotein complex (p < 2e − 43)



Frequent Protein Interaction Patterns
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Frequent Protein Interaction Patterns
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Modular Phylogenetics

• Top eight groups of three organisms that contain most frequent
connected sub-networks and interactions

# frequent # frequent

Organism set sub-networks interactions

C. elegans, D. melanogaster, H. sapiens 8 134

S. cerevisiae, D. melanogaster, H. sapiens 20 126

D. melanogaster, H. sapiens, M. musculus 17 86

S. cerevisiae, C. elegans, D. melanogaster 15 77

S. cerevisiae, C. elegans, H. sapiens 6 50

S. cerevisiae, H. sapiens, M. musculus 10 26

C. elegans, H. sapiens, M. musculus 5 23

H. sapiens, M. musculus, R. norvegicus 10 23



Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG [Kuramochi & Karypis, ICDM, 2001], gSpan [Yan & Han, KDD, 2003]

FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patterns
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.



Pairwise Alignment of PPI Networks

• Given two PPI networks that belong to two different organisms,
identify sub-networks that are similar to each other

– Biological meaning

– Mathematical modeling

• Existing algorithms

– PathBLAST aligns pathways (linear chains) to simplify the problem while

maintaining biological meaning [Kelley et al., PNAS, 2004]

– NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets [Sharan et al., J. Comp. Biol.,

2005]

• Our approach [Koyutürk, Kim, Topkara, Subramaniam, Szpankowski, &

Grama, J. Comp. Biol., 2006]

– Guided by models of evolution

– Scores evolutionary events

– Identifies sets of proteins that induce high-scoring sub-network pairs



Evolution of PPI Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• Allows defining and scoring evolutionary events as graph-
theoretical concepts

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Elimination Emergence



Match, Mismatch, and Duplication

• Evolutionary events as graph-theoretic concepts

– A match ∈ M corresponds to two pairs of homolog proteins from each

organism such that both pairs interact in both PPIs. A match is associated

with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each organism such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same organism. A duplication is associated with score δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:



Pairwise Alignment of PPIs as an Optimization Problem

• Alignment score:
σ(A(P )) =

∑

M∈M µ(M) −
∑

N∈N ν(N) +
∑

D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are rewarded/penalized for functional conservation/differentiation

after split

– Mismatches are penalized for functional divergence (what about

experimental error?)

• Scores are functions of similarity between associated proteins

• Problem: Find all protein subset pairs with significant alignment
score

– High scoring protein subsets are likely to correspond to conserved

modules

• A graph equivalent to BLAST



Weighted Alignment Graph

• G(V,E) : V consists of all pairs of homolog proteins v = {u ∈
U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

δ(u, u′) or w(vv
′) = δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ



Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ w(vu) ≥ ǫ.

– NP-complete

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ, Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

• Solution: Local graph partitioning

– Greedy graph growing + iterative refinement

– Linear-time heuristic

• Source code available at
http://www.cs.purdue.edu/homes/koyuturk/mawish/

http://www.cs.purdue.edu/homes/koyuturk/mawish/


Alignment of Yeast and Fruit Fly PPI Networks

Rank Score z-score # Proteins # Matches # Mismatches # Dups.

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%)

JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Saccharomyces) (100%)

oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%)

mitosis (67%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)



Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet
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Statistical Significance of Modularity

• Existing techniques

– Mostly computational (e.g., Monte-Carlo simulations)

– Compute probability that the pattern exists rather than a pattern with

the property (e.g., size, density) exists

– Overestimation of significance

• Random graph models

– PPI networks generally exhibit power-law property (or exponential,

geometric, etc.)

– Analysis simplified through independence assumption

– Independence assumption may cause problems for networks with

arbitrary degree distribution

– P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

• Analytical techniques based on simplified models [Koyutürk,

Grama, & Szpankowski, RECOMB, 2006]



Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

• What is the expected size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

– If we let p = dmax/n, largest ρ-dense subgraph in G(n, p) stochastically

dominates that in a graph with arbitrary degree distribution



Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
. (2)

More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (3)

where

r0 =
log n − log log n + log κ(p, ρ)

κ(p, ρ)
(4)

for large n.



Generalizing Results to Complex Models

• Piecewise G(n, p) model

– Few proteins with many interacting partners, many proteins with few

interacting partners

– Captures the basic characteristics of PPI networks

– The size of largest dense subgraph is still proportional to log n

• More general models

– Increasing the number of pieces, we approach models with

characteristic degree distributions

– Analysis of power-law graphs in progress

• Multiple networks: Conservation

– Superpose graphs based on sequence homology



Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• Use statistical significance to determine whether a subgraph is
sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet



Largest Dense Subgraph for Varying Density
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Pathway Organization: Genetic Interactome

Double mutants exhibit unexpected phenotypes, as compared
to joint single mutations.

Definition 1. • Negative Interactions: more severe phenotype
than expected

– Also known as aggravating or synergistic

• Positive Interactions: Less severe phenotype than expected

– Also known as alleviating or epistatic

Most commonly used:

Phenotype : Growth rate

Model : Multiplicative null model



Organization of Genetic Interactions

Definition 2. • Between-Pathway Model

– Among genes participating in redundant functions

• Within-Pathway Model

– Among genes with additive effect

• Indirect Effect

– Among genes with distant functions that are not directly
related



Between-Pathway Model (BPM)

• Bi-cliquish structure

• Have been used to:

1. Predict co-pathway
membership of gene
pairs

2. Extract redundant
pathways



The Genetic Landscape of a Cell

Adopted from Costanzo et al., 2010

• Baker’s yeast,
Saccharomyces cerevisiae

• Synthetic Genetic Array (SGA)

• 1712 query genes

1. 1378 null alleles of non-
essential genes

2. 334 hypomorphic or
conditional alleles of
essential genes

• 3885 array strains



Functional Annotations

• KEGG Pathway Database

• Annotations for 1026 genes in
the experiment

• 96 Pathways

– 80 pathways after filtering
pathways with less than 10
genes.



Local Neighborhood Similarity:

A Predictor of Co-Pathway Membership

Similarity prediction methods

• Number of Shared Neighbors

• Congruence Score

• Pearson Correlation of Interaction Profiles

Both vi and vj have three shared neighbors. However, in the first case their congruence score is almost 0.6,

while in the second case it is approximately 2 (assuming a graph of size 10).



Evaluating Ranking Methods

Given a pathway PA and a cut size (target set) l.

Definition 3.

P − value(X = k) = Prob(k ≤ X)

= HGT (k|N,NA, l)

=

min(NA,l)
∑

x=k

C(l, x)C(N − l, NA − x)

C(N, NA)

X: Random variable denoting the number of true positives in a
random sample, N : Total number of gene pairs, NA: Number of

gene pairs in pathway A, l: Size of target set



Minimum HyperGeometric (mHG) Score

Target size unknown:

Definition 4. The Minimum HyperGeometric (mHG) score

mHG(λ) = min1≤l≤NHGT (bl(λ);N, NA, l),

where bl(λ) =
∑l

i=1 λi

λi is 1 if both of the genes in the ith ranked gene pair are
members of PA, and 0 otherwise.

• mHG Adjusted for Multiple Comparison
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Highlights

Basic Idea

Heterogeneous
performance of co-
pathway membership
predictions

⇐⇒ Existence of specific
structure around enriched
pathways

• Decomposing neighborhood of each pathway

• Inferring lethal crosstalk among pathways



Modified Congruence Score (MCS)

Evaluating Neighborhood Overlap of Gene Pairs With Respect to
a Given Pathway

Definition 5.

P − value(X = kB
ij) = Prob(kB

ij ≤ X)

= HGT (kB
ij|nB, dB

i , dB
j )

=

min(dB
i ,dB

j )
∑

x=kB
ij

C(dB
j , x)C(nB − dB

j , dB
i − x)

C(nB, dB
i )

MCS is defined as −log10 of the P-value.



Modified Congruence Score (MCS): continued

Example 1

A sample neighborhood
configuration for vi and vj.
Here n = 15, Di = 6, Dj =
5, nB = 6, di = 3, dj = 4 and
k = 2.



Constructing Neighborhood Overlap Graph

For a Given Pathway Pair

Definition 6. The neighborhood overlap graph (NOG) of a given
pathway PA with respect to pathway PB, denoted by HA→B =
(VH, EH), is an unweighted, undirected graph defined over same
vertices as PA. In this graph, there is a link between vertices vi

and vj if the network structure around them with respect to PB is
statistically significant .



Pruning neighborhood overlap graph, finding

cohesive subgraphs, and identifying interaction ports

Adopted from Batagelj and Zaversnik, 2002

1. Iterative peeling of K-shells
Pruning hairy components

2. Connected components
in each core

3. Evaluating the significance
of components

• Evaluating significance
using ER random graph
model



KEGG Crosstalk Map
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Interaction Port Case Study

Crosstalk Between Protein Processing in ER and Proteasome



Ongoing Work: The Interaction Map of Aging



Ongoing Work

• The surprisingness of choice in networks.

• Tissue-specific alignments.
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