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Overview and Motivation

• Dynamic networks are one of the most important forms of “Big
Data”.

• Virtually all network data is dynamic.

– Networks of social and economic transactions.
– Interactions in biological, physical, and engineered systems.
– Traffic, connectivity, and dependencies in computer/
communications systems.

• Analysing dynamic networks poses significant and diverse
challenges.



Characteristics of Dynamic Networks

Instances of dynamic networks of interest are typically:

• Large – scaling to billions of nodes and interactions.

• Noisy – with high rates of false positives and negatives.

• Multiscale – incorporating interactions at vastly different levels
of abstractions.

• Heterogeneous – demonstrating high variability in characteristics
over space and time. Significant skews in degree distribution.

• Distributed – data is typically collected and stored at
distributed locations.

• Elastic – data is typically elastic.



Analysis of Dynamic Networks

Analysis techniques for dynamic networks must:

• Rely on suitable formulations – results are typically probabilistic.
Formulations must quantify (and optimize) significance (statistical).

– Deterministic formulations on noisy data are not meaningful.
– Distribution agnostic formulations (say, based on simple
counts and frequencies) are unlikely to work.

• Provide rigorously validated solutions – garbage-in, garbage-
out at scale.

• Must have efficient elastic distributed implementations (MapReduce
type frameworks have considerable issues with semantics,
scope, and overhead).

These issues form the focus of our current research efforts in the
area.



Dynamic Network Analysis – Problems (1)

• Characterization and Modeling of Dynamic State. Study data-
driven dynamic networks and characterize the evolution at
micro- as well as macro-scale. This includes node-, link-,
aggregate-, and network models.

• Mutual Information, Conservation. Models and methods for
determining conserved information in a set of networks states
and its relation to overall network dynamics.

• Discriminant Analysis. Track evolution as a sequence of
discriminants across network snapshots.

• Spatio-Temporal Motifs. Define recurring patterns in both
space and time.



Dynamic Network Analysis – Problems (2)

• Prediction of Network State. Predicting network state at micro-
and macro-scales. This is an essential aspect of resource
allocation and provisioning.

• Noise, Robustness, and Approximations. Study the impact of
noise and approximation on our models and methods.

• Compression and Representation. Develop provably optimal
compression and representation schemes for dynamic networks.



Models for Dynamic Networks

Models for dynamic networks provide a means for generating
networks of arbitrary size and well-parametrized characteristics.
Models have limited predictive capability, however:

• Models play a critical role in analyses, by providing a prior.
Traditional analytics methods do a poor job here.

• Models allow analytic methods for estimating significance of
results.

• Models can be used for validation.

• Models allow coarse-grain understanding of fluxes in networks.



Models for Dynamic Networks

Models for dynamic networks are in relative infancy.
Generation models for static networks are often viewed as
pseudo-dynamic models.

• Erdos-Renyi, Preferential Attachment, and Copying models.

• Community guided attachment and forest fire.

• Kronecker graphs.

• Microscopic models.

There have also been some true dynamic generation models,
most notably the node time-series correlation model. Developing
a class of true dynamic models that lend themselves to analytic
methods remains an open question.



Analytics on Dynamic Networks: Conservation

Given a sequence of networks, identify sub-networks that are
(statistically) significantly conserved over evolution trajectories.
This poses several problems from points of view of modeling and
method development:

• Model selection. Models must be true to priors, while being
amenable to analytical quantification of significance.

• Ideally, significance cutoff should be an analytics parameter.
Valid methods must identify all sub-networks that exceed this
significance threshold. There are no known methods capable
of solving this problem even at small scale (let alone large
trajectories over large graphs).

• Conservation over longitudinal/ horizontally partitioned trajectories
each pose challenges for distributed computations.



Analytics on Dynamic Networks: Discriminant Analysis

When does a network significantly diverge from the model?
What are components responsible for this divergence? This is
sometimes also called break analysis or change analysis.

• This poses a computational problem known to be NP-Hard.

• Approximations for different models must be developed and
their performance quantified.

• Must deal with overfitting and noise.



Data Management and Graph Compression

Develop compression schemes that lend themselves to
indexing and analytics in compressed form.

• Generalize our notion of graph entropy to temporal domain.

• Integrate graph rewriting/ grammars with compression/
indexing.

• Develop distortion measures for lossy compression to deal with
inherent noise in data.

• Develop compression algorithms to operate at scale.



Part 2: Prior Results in the Area



Function & Topology in Networks

How does function relate to network topology?



Prior Work on Topology and Function

• Conservation [ISMB 04/Bioinf. 04]

• Alignment [RECOMB 05/JCB 06]

• Modularity [RECOMB 06/JCB 07]

• Inference [Bioinf. 06]

• Pathway Annotation [ISMB 07/Bioinf. 07, PSB 08]

• Network Abstractions/ Annotations [ECCB 08/ Bioinf. 08]

• Modularity and Domain Interactions [APBC 10/ BMC Bioinf. 10]

• Pathway Interaction Maps [PSB 12]

• Pathway Inference [ISMB 12]



Evolution of Interactions

• “Evolution thinks modular”[Vespignani, Nature Gen., 2003]

• Cooperative tasks require all participating units

– Selective pressure on preserving interactions & interacting proteins

• Nodes organized in cohesive patterns are highly conserved
[Wuchty et al., Nature Gen., 2003]

– Functional modules are likely to be consistently conserved

• Orthologs of interacting nodes are likely to interact [Wagner, Mol.

Bio. Evol., 2001]

– Conservation of interactions may provide clues on conservation of

function

• Interacting nodes follow similar evolutionary trajectories
[Pellegrini et al., PNAS, 1999]



Computational Analysis of Biological Networks

• Clustering

– Interaction network: Proteins in functional modules densely interact with

each other

– Gene expression: Genes coding cooperating proteins are likely to be co-

regulated

– Phylogenetic profiles: Interacting proteins are likely to have co-evolved

• Graph Mining

– Common topological motifs and frequent interaction patterns reveal

conserved modularity

• Graph Alignment

– Conservation/divergence of pathways, complexes, and functional

modules



Frequent Interaction Patterns: Computational Problem

• Given a set of proteins V a set of interactions E, and a many-
to-many mapping from V to a set of ortholog groups L =
{l1, l2, ..., ln}, the corresponding interaction network is a labeled
graph G = (V,E,L).

– v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L.
– uv ∈ E(G) represents an interaction between u and v.

• S is a sub-network of G, i.e., S ⊑ G if there is an injective
mapping φ : V (S) → V (G) such that for all v ∈ V (S), L(v) ⊆
L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈ E(G).

• Maximal frequent sub-network discovery

– Instance: A set of interaction networks G = {G1 = (V1, E1,L), G2 =

(V2, E2,L), ..., Gm = (Vm, Em,L)}, each belonging to a different

organism, and a frequency threshold σ∗.

– Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph

S. Find all connected subgraphs S such that |H(S)| ≥ σ∗, i.e., S is a

frequent subgraph in G and for all S′ ❂ S, H(S) 6= H(S′), i.e., S is

maximal.



Ortholog Contraction

• Contract orthologous nodes into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Frequent sub-networks are preserved ⇒ No information loss

– Sub-networks that are frequent in general graphs are also frequent in

their ortholog-contracted representation

• Discovered frequent sub-networks are still biologically interpretable!

– Interaction between proteins becomes interaction between ortholog

groups

– Ortholog-contraction may be thought of as going back in evolutionary

history (to what point?)



Ortholog Contraction in PPI Networks

• Interaction between proteins → Interaction between ortholog
groups or protein families

Rrp4

Rrp43 Mtr3
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KOG1068

KOG3409
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Preservation of Sub-networks

Theorem: Let G̃ be the ortholog-contracted graph obtained
by contracting the orthologous nodes of network G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The ortholog-contracted representation of any
frequent sub-network is also frequent in the set of ortholog-
contracted graphs.

G G̃



Results: Mining PPI Networks

• PPI networks for 9 eukaryotic organisms derived from BIND and
DIP

– A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.

sapiens, B. taurus, M. musculus, R. norvegicus

– # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

– # of interactions ranges from 340 (rice) to 28829 (fruit fly)

• Ortholog contraction

– Group proteins according to existing COG ortholog clusters

– Merge Homologene groups into COG clusters

– Cluster remaining proteins via BLASTCLUST

– Ortholog-contracted fruit fly network contains 11088 interactions

between 2849 ortholog groups

• MULE is available at
http://www.cs.purdue.edu/homes/koyuturk/mule/

http://www.cs.purdue.edu/homes/koyuturk/mule/


Frequent Protein Interaction Patterns
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Small nuclear ribonucleoprotein complex (p < 2e− 43)



Frequent Protein Interaction Patterns
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Frequent Protein Interaction Patterns
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Modular Phylogenetics

• Top eight groups of three organisms that contain most frequent
connected sub-networks and interactions

# frequent # frequent

Organism set sub-networks interactions

C. elegans, D. melanogaster, H. sapiens 8 134

S. cerevisiae, D. melanogaster, H. sapiens 20 126

D. melanogaster, H. sapiens, M. musculus 17 86

S. cerevisiae, C. elegans, D. melanogaster 15 77

S. cerevisiae, C. elegans, H. sapiens 6 50

S. cerevisiae, H. sapiens, M. musculus 10 26

C. elegans, H. sapiens, M. musculus 5 23

H. sapiens, M. musculus, R. norvegicus 10 23



Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG [Kuramochi & Karypis, ICDM, 2001], gSpan [Yan & Han, KDD, 2003]

FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patterns
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.



Pairwise Alignment of PPI Networks

• Given two PPI networks that belong to two different organisms,
identify sub-networks that are similar to each other

– Biological meaning

– Mathematical modeling

• Existing algorithms

– PathBLAST aligns pathways (linear chains) to simplify the problem while

maintaining biological meaning [Kelley et al., PNAS, 2004]

– NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets [Sharan et al., J. Comp. Biol.,

2005]

• Our approach [Koyutürk, Kim, Topkara, Subramaniam, Szpankowski, &

Grama, J. Comp. Biol., 2006]

– Guided by models of evolution

– Scores evolutionary events

– Identifies sets of proteins that induce high-scoring sub-network pairs



Evolution of PPI Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• Allows defining and scoring evolutionary events as graph-
theoretical concepts

u1u1u1u1 u′1u′1u′1

u2u2u2u2 u3u3u3u3

Duplication Elimination Emergence



Match, Mismatch, and Duplication

• Evolutionary events as graph-theoretic concepts

– A match ∈ M corresponds to two pairs of homolog proteins from each

organism such that both pairs interact in both PPIs. A match is associated

with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each organism such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same organism. A duplication is associated with score δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:



Pairwise Alignment of PPIs as an Optimization Problem

• Alignment score:
σ(A(P )) =

∑

M∈M µ(M)−
∑

N∈N ν(N) +
∑

D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are rewarded/penalized for functional conservation/differentiation

after split

– Mismatches are penalized for functional divergence (what about

experimental error?)

• Scores are functions of similarity between associated proteins

• Problem: Find all protein subset pairs with significant alignment
score

– High scoring protein subsets are likely to correspond to conserved

modules

• A graph equivalent to BLAST



Weighted Alignment Graph

• G(V,E) : V consists of all pairs of homolog proteins v = {u ∈
U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv′) = −ν(uv, u′v′)
– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv′) =

δ(u, u′) or w(vv′) = δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ



Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
∑

v,u∈Ṽ w(vu) ≥ ǫ.

– NP-complete

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ, Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

• Solution: Local graph partitioning

– Greedy graph growing + iterative refinement

– Linear-time heuristic

• Source code available at
http://www.cs.purdue.edu/homes/koyuturk/mawish/

http://www.cs.purdue.edu/homes/koyuturk/mawish/


Alignment of Yeast and Fruit Fly PPI Networks

Rank Score z-score # Proteins # Matches # Mismatches # Dups.

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%)

JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Saccharomyces) (100%)

oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%)

mitosis (67%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)



Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet
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S.Cerevisiae D.Melanogaster

Calcium-dependent stress-activated signaling pathway

Myo2 Myo3 Myo4 Myo5

Cmd1

Cna1 Cna2
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Didum

CG31958Mlc−c And

CanA1

CanB

S.Cerevisiae D.Melanogaster



Statistical Significance of Modularity

• Existing techniques

– Mostly computational (e.g., Monte-Carlo simulations)

– Compute probability that the pattern exists rather than a pattern with

the property (e.g., size, density) exists

– Overestimation of significance

• Random graph models

– PPI networks generally exhibit power-law property (or exponential,

geometric, etc.)

– Analysis simplified through independence assumption

– Independence assumption may cause problems for networks with

arbitrary degree distribution

– P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

• Analytical techniques based on simplified models [Koyutürk,

Grama, & Szpankowski, RECOMB, 2006]



Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

• What is the expected size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

– If we let p = dmax/n, largest ρ-dense subgraph in G(n, p) stochastically

dominates that in a graph with arbitrary degree distribution



Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1− ρ) log

1− ρ

1− p
. (2)

More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (3)

where

r0 =
log n− log log n+ log κ(p, ρ)

κ(p, ρ)
(4)

for large n.



Generalizing Results to Complex Models

• Piecewise G(n, p) model

– Few proteins with many interacting partners, many proteins with few

interacting partners

– Captures the basic characteristics of PPI networks

– The size of largest dense subgraph is still proportional to logn

• More general models

– Increasing the number of pieces, we approach models with

characteristic degree distributions

– Analysis of power-law graphs in progress

• Multiple networks: Conservation

– Superpose graphs based on sequence homology



Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• Use statistical significance to determine whether a subgraph is
sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet



Largest Dense Subgraph for Varying Density
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Pathway Organization: Genetic Interactome

Double mutants exhibit unexpected phenotypes, as compared
to joint single mutations.

Definition 1. • Negative Interactions: more severe phenotype
than expected

– Also known as aggravating or synergistic

• Positive Interactions: Less severe phenotype than expected

– Also known as alleviating or epistatic

Most commonly used:

Phenotype : Growth rate

Model : Multiplicative null model



Organization of Genetic Interactions

Definition 2. • Between-Pathway Model

– Among genes participating in redundant functions

• Within-Pathway Model

– Among genes with additive effect

• Indirect Effect

– Among genes with distant functions that are not directly
related



Between-Pathway Model (BPM)

• Bi-cliquish structure

• Have been used to:

1. Predict co-pathway
membership of gene
pairs

2. Extract redundant
pathways



KEGG Crosstalk Map
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Interaction Port Case Study

Crosstalk Between Protein Processing in ER and Proteasome



The Interaction Map of Aging



Functional PageRank (PR)

Computing PageRank (PR)

• PageRank as a random surfer process: Start surfing from a random node

and keep following links with probability µ restarting with probability 1 − µ;

the node for restarting will be selected based on a personalization vector v.

The ranking value xi of a node i is the probability of visiting this node during

surfing.

• PR can also be cast in power series representation as x = (1 −
µ)

∑k
j=0 µ

jSjv; S encodes column-stochastic adjacencies.

Functional rankings

• A general method to assign ranking values to graph nodes as x =
∑k

j=0 ζjS
jv. PR is a functional ranking, ζj = (1− µ)µj.

• Terms attenuated by outdegrees in S and damping coefficients ζj.



Functional Rankings Through Multidamping [Kollias,

Gallopoulos, AG, TKDE’13]
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Computing µj in multidamping

Simulate a functional ranking by random surfers

following emanating links with probability µj

at step j given by :

µj = 1− 1

1+
ρk−j+1
1−µj−1

, j = 1, ..., k,

where µ0 = 0 and ρk−j+1 =
ζk−j+1
ζk−j

Examples

LinearRank (LR) xLR =
∑k

j=0
2(k+1−j)
(k+1)(k+2)

Sjv : µj = j
j+2, j = 1, ..., k.

TotalRank (TR) xTR =
∑∞

j=0
1

(j+1)(j+2)
Sjv : µj = k−j+1

k−j+2, j = 1, ..., k.

Advantages of multidamping

• Interpretability and Design!

• Reduced computational cost in approximating functional rankings using the Monte Carlo

approach. A random surfer terminates with probability 1− µj at step j.

• Inherently parallel and synchronization free computation.



Multidamping Performance
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Network Alignment

• Node similarity: Two nodes are similar if they are linked by other similar node

pairs. By pairing similar nodes, the two graphs become aligned.

• Let Ã and B̃ be the normalized adjacency matrices of the graphs

(normalized by columns), Hij be the independently known similarity scores

(preferences matrix) of nodes i ∈ VB and j ∈ VA, and µ be the fractional

contribution of topological similarity.

• To compute X, IsoRank iterates:

X ← µB̃XÃ
T
+ (1− µ)H



Network Similarity Decomposition (NSD) [Kollias,

Mohammadi, AG, TKDE’12]

Network Similarity Decomposition (NSD)

• In n steps of we reach X(n) = (1− µ)
∑n−1

k=0 µ
kB̃kH(ÃT )k + µnB̃nH(ÃT )n

• Assume that H = uvT (1 component). Two phases for X:

1. u(k) = B̃ku and v(k) = Ãkv (preprocess/compute iterates)

2. X(n) = (1− µ)
∑n−1

k=0 µ
ku(k)v(k)T + µnu(n)v(n)T (construct X)

This idea extends to s components, H ∼
∑s

i=1 wiz
T
i .

• NSD computes matrix-vector iterates and builds X as a sum of outer

products; these are much cheaper than triple matrix products.

We can then apply Primal-Dual or Greedy Matching (1/2 approximation) to

extract the actual node pairs.



NSD: Performance [Kollias, Madan, Mohammadi, AG,

BMC RN’12]

Species Nodes Edges

celeg (worm) 2805 4572

dmela (fly) 7518 25830

ecoli (bacterium) 1821 6849

hpylo (bacterium) 706 1414

hsapi (human) 9633 36386

mmusc (mouse) 290 254

scere (yeast) 5499 31898

Species pair NSD (secs) PDM (secs) GM (secs) IsoRank (secs)

celeg-dmela 3.15 152.12 7.29 783.48

celeg-hsapi 3.28 163.05 9.54 1209.28

celeg-scere 1.97 127.70 4.16 949.58

dmela-ecoli 1.86 86.80 4.78 807.93

dmela-hsapi 8.61 590.16 28.10 7840.00

dmela-scere 4.79 182.91 12.97 4905.00

ecoli-hsapi 2.41 79.23 4.76 2029.56

ecoli-scere 1.49 69.88 2.60 1264.24

hsapi-scere 6.09 181.17 15.56 6714.00

• We compute similarity matrices X for various pairs of species using Protein-Protein

Interaction (PPI) networks. µ = 0.80, uniform initial conditions (outer product of suitably

normalized 1’s for each pair), 20 iterations, one component.

• We then extract node matches using PDM and GM.

• Three orders of magnitude speedup from NSD-based approaches compared to IsoRank.



NSD: Parallelization [KKG JPDC’13, Submitted, KMSAG

ParCo’13 Submitted]

Parallelization: NSD has been ported to parallel and distributed platforms.

• We have aligned up to million-node graph instances using over 3K cores.

• We process graph pairs of over a billion nodes and twenty billion edges

each (!), on MapReduce-based distributed platforms.



Part 3: Systems Development

In support of graph analytics, we have build extensive systems infrastructure

for programming at scale.

• TransMR – Transactional MapReduce that enables maps to operate on

persistent key-value stores while supporting well-defined semantics.

• TransDF – a Transactional Dynamic Dataflow environment that enables

distributed computations without heavy (three-copy) overheads, while

supporting fault tolerance and speculation.

• Concurrency management schemes for TransMR and TransDF.

• Distributed graph kernel library on TransMR.
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