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Szpankowsk’s McCoy Nomination Overview

McCoy Nomination of Szpankowski for:

• Solving long-standing open problems: the entropy of hidden Markov
processes and the noisy constrained capacity.

• For developing innovative analytic methods for Shannon information
theory leading to solutions of several open problems (e.g., Ziv’s

conjecture, Wyner-Ziv conjecture, Steinberg-Gutman conjecture, Huffman’s code

redundancy, Csiszár-Shields renewal process redundancy )

• Visionary ideas that led first to the creation of the field of “analytic
information theory,” and subsequently to broadening of Shannon
Information Theory to a new science of information, leading to the
establishment of Indiana’s first NSF Science of Technology Center
for Science of Information (CSoI) and one of only two centers ever
awarded in computing disciplines.



Szpankowsk’s McCoy Nomination Overview

This nomination is based on the following recent technical results:

[1] P. Jacquet, G. Seroussi and W. Szpankowski, On the Entropy of a Hidden Markov

Process, Theoretical Computer Science, 395, 203-219, 2008.

[2] J. Konorski and W. Szpankowski, What is Information? Festschrift in Honor of Jorma

Rissanen, 154-172, 2008.

[3] P. Jacquet and W. Szpankowski, Noisy Constrained Capacity for BSC, IEEE Transaction

on Information Theory, 56, 5412- 5423, 2010.



Outstanding Challenges in Computing

The most pressing challenge of our times is the data deluge and the

transformation from data to information, and subsequently to knowledge.

1. 25.21 billion web pages (2009), over 1 trillion distinct URLs (2008).

2. The amount of data in the deep web far exceeds this.

3. About 56% of the text data is in english.

4. Easy Questions: How much unique data? How much information in

text? Translating this information into actionable form?

5. Increasingly data is not in the form of text – social networks,

tweets, scientific data (interactions, geometries, time series), economic

transactions, etc.

6. Harder Questions: How do we quantify this data, how do we extract

information from these datasets? How do we act on this information?

7. Really Hard Questions: Information has cause and consequence – How

do we reach beyond information?



Outstanding Challenges in Computing

These are profound questions and Wojtek is an acknowledged world

leader in quantitative methods addressing these problems.

• The best researchers from the premier institutions, worldwide, have

rallied around him to define and promote the area [visibility].

• Wojtek has solved some of the longest standing problems in the area

[Depth].

• Wojtek’s unique contributions transcend computing – reaching out to

scientific disciplines such as life sciences and physics [Breadth and

Impact].

• He has driven the research agenda of the community at large, through

his tireless contributions in the form of conferences, journals, and

workshops [Service].



Three Theorems of Shannon

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X);

for distortion level D:

lossy bit rate ≥ rate distortion function R(D).

Theorem 2. [Shannon 1948; Channel Coding ]

In Shannon’s words:
It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.



Theorem 1: AEP and Typical Sequences

Shannon-McMilan-Breiman:

−1
n
log P (Xn

1 ) → H(X) (pr.)

H(X) is the entropy rate.

Asymptotic Equipartition Property: Sequences of length n can be

partitioned into

good set G
ε
n P (w) ∼ 2

−nH(X)
, w ∈ G

ε
n

bad set B
ε
n P (B

ε
n) < ε.

Also, |Gε
n| ∼ 2nH(X).



Theorem 2: Shannon Random Coding

There are 2nH(X) X-typical sequences

There are 2nH(Y ) Y-typical sequences

There are 2nH(X,Y ) jointly X,Y-typical

pair of sequences

Decoding Rule: Declare that sequence sent X is the one that is jointly

typical with the received sequence Y provided there is unique X.

The probability of error (more than one typical pair is):

2nH(X,Y )

2n(H(X)+H(Y ))
= 2

n(H(X)+H(Y )−H(X,Y ))
= 2

−nI(X,Y )
.

Since there are 2nR messages sent, the total error probability is

approximately

minP (error) ∼ 2
−n(supP (X)I(X,Y )−R)

= 2
−n(C−R)

, C = sup
P (X)

I(X, Y ).



[Szpankowsky 2010] Noisy Constrained Channel

Let S denote the set of binary constrained sequences of length n.

Here:

Sd,k = {(d,k) sequences},

i.e., no sequence contains a run of zeros shorter than d or longer than k

(applications: DVD, CD, blue-rays, biology).

Sequence X ∈ S(d,k) can be represented as a MARKOV PROCESS.

C(S, ε) – noisy constrained capacity defined as

C(S, ε) = sup
X∈S

I(X; Y ) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(X
n
1 , Y

n
1 ).

This is/was an open problem since 1948 Shannon work.



Entropy of Hidden Markov Process

Hidden Markov Process: Since

I(X; Y ) = H(Y ) − H(Y |X) = H(Y ) − H(ε)

(H(ε) = −ε log ε − (1 − ε) log(1 − ε)) we need to find H(Y ).

But Y is a Hidden Markov Process (HMP) since it is a noisy version of the

Markov Process X.

Entropy of HMP was first investigated by Blackwell in 1956 but no significant

progress since then. Why?

Theorem 1 (Jacquet, Seroussi, & Szpankowski, 2004). Consider the HMP Y

as defined above. The entropy rate

H(Y ) = lim
n→∞

1

n
E[− log

“

p1M(Y1, Y2) · · ·M(Yn−1, Yn)1
t
”

] = µ(P )

where µ(P ) is a top Lyapunov exponent of random matrices

M(Y1, Y2) · · ·M(Yn−1, Yn) defined as

M(Yn−1, Yn) =

»

(1−ε)PX(Yn|Yn−1) εPX(Ȳn|Yn−1)

(1−ε)PX(Yn|Ȳn−1) εPX(Ȳn|Ȳn−1)

–

.



Asymptotic Expansion

We now assume that P (Ei = 1) = ε → 0 is small (never studied before).

Theorem 2 (Jacquet and Szpankowski, 2004, 2007). Assume rth order

Markov. Then the entropy rate of Y for small ε is

H(Y ) = H(X) − f0(P )ε log ε + f1(P )ε + o(ε)

for explicitly computable f0(P ) and f1(P ); e.g.,

f1(P ) =
X

z
2r+1
1

PX(z
2r+1
1 ) log

PX(z2r+1
1 )

PX(z̄2r+1
1 )

= D

“

PX(z
2r+1
1 )||PX(z̄

2r+1
1 )

”

,

where z̄2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1. In the above, D denotes the

Kullback-Liebler divergence.



Noisy Constrained Capacity

In 2004 Marcus at al. stated:

“. . . while calculation of the noise-free capacity of constrained sequences

is well known, the computation of the capacity of a constraint in the

presence of noise . . . has been an unsolved problem in the half-century

since Shannon’s landmark paper . . ..”

We just showed that

H(Y ) = H(P ) − f0(P )ε log ε + f1(P )ε + o(ε).

Let P max be the maxentropic maximizing H(P ). Then we prove

C(S, ε)=C(S)−(1 − f0(P
max

))ε log ε+(f1(P
max

) − 1)ε + o(ε)

where C(S) is the capacity of noiseless system (ε = 0)

Theorem 3 (Jacquet & Szpankowski, 2007). For k ≤ 2d, we have

C(S, ε)=C(S) + A · ε + O(ε
2
log ε).

For k > 2d, we shall prove that

C(S, ε)=C(S) + B · ε log ε + O(ε),

where A and B are explicitly computable constants.



Broader Vision: What is Information?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning”.

Informally Speaking: A piece of data carries information if it can impact

a recipient’s ability to achieve the objective of some activity in a given

context within limited available resources.

Event-Driven Paradigm: Systems, State, Event, Context, Attributes,

Objective: Objective function objective(R, C) maps systems’ rule R and

context C in to an objective space.

Definition 1. The amount of information (in a faultless scenario) I(E) carried

by the event E in the context C as measured for a system with the rules of

conduct R is

IR,C(E) = cost[objectiveR(C(E)), objectiveR(C(E) + E)]

where the cost (weight, distance) is a cost function.



Post-Shannon Challenges

Classical Information Theory needs a recharge to meet new challenges

of emerging applications in biology, modern communication, knowledge

extraction, economics and physics, . . . .

We need to extend traditional formalisms for information to include

(“meaning”):

structure, time, space, and semantics ,

and others such as:

dynamic information, limited resources, complexity, physical information,

representation-invariant information, and cooperation & dependency.



Structure, Time & Space, and Semantics

Structure:

Measures are needed for quantifying

information embodied in structures

(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).

(Y. Choi & W.S., ISIT, 2009.)

Time & Space:

Classical Information Theory is at its weakest

in dealing with problems of delay

(e.g., information arriving late maybe

useless or has less value).

(P. Jacquet et al., IT 2010.)

Semantics & Learnable information:

Data driven science focuses on extracting information from data.

How much information can actually be extracted from a given data

repository? How much knowledge is in Google’s database?

(M. Sudan et al., 2010.)



Limited Resources, Representation, and Cooperation

Limited Computational Resources:

In many scenarios, information

is limited by available

computational resources

(e.g., cell phone, living cell).

(Helman & Cover, 1970, “Learning with Limited Memory”.)

Representation-invariant of information:

How to know whether two representations

of the same information

are information equivalent?

Cooperation. Often subsystems may be in conflict (e.g., denial of

service) or in collusion (e.g., price fixing). How does cooperation impact

information? (In wireless networks nodes should cooperate in their own

self-interest.)

(Cuff, et al. IT, 2010).



Selected Quotes from Letter-Writers

• “Many of Szpankowski’s research works are jewels of discrete

mathematics.” (Flajolet)

• “I believe that Purdue University, and indeed the worldwide scientific

community in the fields of information theory, communication theory,

computation theory, and systems biology, are fortunate in having a

scientist and a leader of his accomplishments and vision..” (Kumar)

• “I consider his work on the analysis of Lempel-Ziv compression schemes

in information theory his best. Just for this alone, I would not be surprised

to see him capture one day the Shannon award.” (Devroye)

• “.. he has already created a remarkable intellectual atmosphere

where people from different disciplines are coming together drawn by

their interest in various aspects of information science, bringing their

own distinct perspective to the field.” (Datta on Wojtek’s STC Center)



Thank You.



Science of Information

The overarching vision of Science of Information is to develop rigorous

principles guiding the extraction, manipulation, and exchange of

information, integrating elements of space, time, structure, and semantics.



Institute for Science of Information

In 2008 Szpankowski launched at Purdue the

Institute for Science of Information

and in 2010 National Science Foundation established $25M

Science and Technology Center

at Purdue to do ccollaborative work with Berkeley, MIT, Princeton,

Stanford, UIUC and Bryn Mawr & Howard U. integrating research and

teaching activities aimed at investigating the role of information from

various viewpoints: from the fundamental theoretical underpinnings of

greeninformation to the science and engineering of novel information

substrates, biological pathways, communication networks, economics,

and complex social systems.

The specific means and goals for the Center are:

• develope post-Shannon Information Theory,

• Prestige Science Lecture Series on Information to collectively ponder

short and long term goals;

• organize meetings and workshops (e.g., Information Beyond Shannon,

Orlando 2005, and Venice 2008).

• initiate similar world-wide centers supporting research on information.

http://isihub.org
http://www.cs.purdue.edu/homes/spa/info.html
http://komster.net/~msmolenski/venice/index.html


That’s It


