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Background
Interactions

@ Regulation of molecular activity
o Transcriptional regulation: Which genes will be expressed?
o Post-transcriptional regulation & signaling:
Phosphorylation, degradation, transport...

o Protein-protein interactions
o High-throughput screening: Yeast Two-Hybrid, Affinity
Purification
o Noisy & incomplete
o Nature, context, direction not known at a large scale
o Small scale experiments are more reliable and informative




Background

Molecular Interactions: Networks

@ High level description of cellular
organization
o Nodes represent cellular
components
o Protein, gene, enzyme,
metabolite
o Edges represent interactions
o Binding, regulation,
modification, complex
membership, substrate-product
relationship

B.subtilis GRN

S.pombe PPI



Background

)n & Topology in Molecular Networks

How does function relate to network topology?

Robustness

—a— Out

Motifs



Background

o Recurrent functional interaction patterns

o Crosstalk between different processes
o "Periodic table of systems biology"

@ Functional coherence with respect to different types of
interaction
o What does proximity mean in domain-domain interaction
networks?
o Assessing functional similarity between two molecules
o Development of incompleteness-aware approaches
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Annotation Patterns
Annotation

@ Significant progress on
standardizing knowledge on
biological function at the
molecular level

o Protein/domain families (COG,

Gene Ontology

PFAM, ADDA)
@ Molecular annotation provides a
unified understanding of the B

underlying principles
@ Gene Ontology
o A controlled vocabulary of
molecular functions, biological
processes, and cellular
components

i
Cell Differentiation
GO0:0030154




Annotation Patterns
lecules to Systems

o Networks are species-specific
o Annotations are described at the molecular level

@ Map networks from gene space to an abstract function
space
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Annotation Patterns

Regulation

o Assessment of pairwise interactions is simple, but not
adequate
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Annotation Patterns
al Attribute Network

o Multigraph model

o A gene is associated with multiple functional attributes
A functional attribute is associated with multiple genes
Functional attributes are represented by nodes
Genes are represented by ports, reflecting context
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Annotation Patterns
ncy of a Multipath

@ A pathway of functional attributes occurs in various
contexts in the gene network

o Multipath in the functional attribute network

Frequency of Multipath = g g K




Annotation Patterns
y vs. Statistical Significance

o We want to identify patterns with unusual frequency
o These might correspond to modular pathways

@ Frequency alone is not a good measure of statistical
significance
o The distribution of functional attributes among genes is not
uniform
o The degree distribution in the network is highly skewed
o Pathways that contain common functional attributes have
high frequency, but they are not necessarily interesting



Annotation Patterns
l Significance of a Pattern

o Emphasize modularity of pattern (Pandey et al., ISMB,
2007)
o Condition on frequency of building blocks
o Evaluate the significance of the coupling of building blocks

(Il = o(E—~E-HC1)=4
() =p(BHCD) =2 o(E—>M)=5
P(HEH[C) < P(E—~E—E)



Annotation Patterns
nce of a Pattern

@ We denote each frequency random variable by ¢, their
observed value by ¢
723 E—E—
@, o, @, o, o,
0]

123

@ Significance of pattern 23 ( p123 ) is defined as
P(p123 > @123|P12 = P12, P23 = w23, 91 = P1, P2 = P2, ¢3 = ¥3)



Annotation Patterns
g Significance

o Assume that interactions are

o There are p12p23 possible pairs of w12 and o3 edges

o The probability that a pair of 712 and w23 edges go through
the same gene (corresponds to an occurrence of 7y23) is
1/¢2

@ The probability that at least 123 of these pairs go through
the same gene can be bounded by
o P23 < exp(p12p23Hq(t)) where g = 1/¢5 and
t = p123/p12¢23
o Hy(t) =tlog(q/t)+ (1 —t)log((1 —q)/(1 —1t)) is divergence
o Bonferroni-corrected for multiple testing (adjusted by
[T | Vg,er, F(ge))




Annotation Patterns
IC ISSues

o Significance is not monotonic with respect to size
o Need to enumerate all pathways?
o Strongly significant patterns

o A pathway is strongly significant if all of its building blocks
and their coupling are significant (defined recursively)

o Allows pruning out the search space effectively

@ Shoricircuiting common functional attributes

o Transcription factors, DNA binding genes, etc. are
responsible for mediating regulation

o Shortcircuit these terms, consider regulatory effect of
different processes on each other directly



Annotation Patterns

o A software for identification of significant pathways
(Pandey et al., PSB, 2008)
o Given functional attribute T, find all significant pathways
that originate (terminate) at T
o User can explore back and forth between the gene network
and the functional attribute network

ilter common

Significant
Oceurrence of athways
a pathway in
gene network



Annotation Patterns

ple: Molybdate lon Transport
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molybdate ion transport

@ modE regulates various processes directly
o It regulates various other processes indirectly
o Regulation of these mediator processes is not significant on

itself
o NARADA captures modularity of indirect regulation!
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ple: Molybdate lon Transport
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@ modE regulates various processes directly
o It regulates various other processes indirectly

o Regulation of these mediator processes is not significant on
itself

o NARADA captures modularity of indirect regulation!
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al View of E. coli Regulatory Network
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Annotation Patterns

rcuiting Mediator Processes
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cell morphogenesis
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Annotation Patterns
Patterns in Bacteria

@ We use NARADA to identify significant patterns in the
transcriptional networks of two bacterial species
o E. coli: 1502 genes, 3586 regulatory interactions
(RegulonDB)
o B. subtilis: 996 genes, 1381 regulatory interactions
(DBTBS)

Significant patterns (p < 0.01)

Patterns B. subtilis E.coli | BSinEC ECinBS

linear path 34 308 0 0
feedback 27 114 25 25
feedforward 77 659 77 86
sink hub 18 344 18 18

source hub 4907 8331 4270 4815
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Annotation Patterns
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Functional Coherence & Network Proximity

il Coherence in Networks

Modularity manifests itself in terms of high connectivity in
the network
Functional association (similarity) is correlated with
network proximity
Protein-protein interaction (PPI) networks are used
extensively for functional inference
In PPI networks, functional coherence manifests itself in
terms of network proximity

o How about DDI "networks"?

—0
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Network distance

GO semantic similarity
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o

Sharan et al., MSB, 2007



Functional Coherence & Network Proximity

Jomain Interactions

@ Most proteins are composed of multiple domains

@ Many domains are independent units reused in several
related proteins

o Interactions between domains underlie observed
protein-protein interactions

o Inferred by experimental and computational techniques



Functional Coherence & Network Proximity

regulation of cell cycle process
GO:0010564

R

cell cycle process
6G0:0022402

regulation of cell eycle
G0:0051726

@ Gene Ontology (GO)
provides a hierarchical /
taxonomy of biological B ——
process, molecular :

function and cellular j \‘\ &

component

@ Assessment of semantic
similarity between B
concepts in a hierarchical
taxonomy is well studied
(Resnik, IJCAI, 1995)

cell cycle
GO: 0007049
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Functional Coherence & Network Proximity

Similarity of GO Terms

@ Resnik’'s measure based on information content:

I(c) = —loga(|Gel/|Gr|)

o(ci, ¢) = max I(c)
it 1)

G.: Set of molecules that are associated with term ¢

r: Root term

A;: Ancestors of term c¢; in the hierarchy

A(Ci, ¢j) = argmax e 4 14 /(¢): Lowest common ancestor of
¢ and ¢

© 06 06 ©



Functional Coherence & Network Proximity
l Similarity of Molecules

@ Each molecule (protein or domain) is associated with
multiple GO terms

o Available annotations are incomplete
@ Domain annotations are often derived from protein
annotations

o Is it possible to compare functional similarity between
domains and functional similarity between proteins at all?



Functional Coherence & Network Proximity
s of Admissible Measures

What are the basic required properties of an admissible
measure of similarity between two sets?

Q@ Symmetry: p(S;, Sj) = p(S;, S)) for all S, S;

O Consistency: p(S;, Sj) < p(S;, ;) for all S;, S;

@ Monotonicity: p(S;, S) < p(Si U ¢k, SjU ck)

Q Generality: p(S,‘, Sj) < p(S,‘, Sj U Sk) for all S,‘, Sj, Sk

o Incompleteness-aware measures: No conclusions based
on negative evidence!



Functional Coherence & Network Proximity
on of Properties

(R)
() () (=) o Monotonicity:
p(S1, S2) < p(Sa, Ss)
@ @ @ @ o Generality:
S ={cs}, So = {cr} p(Sz2,S3) < p(Sz, Sa)

S3 = {Ce}, Sa = {C4,Cs}
Ss = {cs, C7}



Functional Coherence & Network Proximity

easures are not Admissible

@ Average (Lord et al., Bioinformatics, 2003)

1
pA(Si; Sj) = m Z Z d(Cx cr)

CkES; C/ES/'

o Fails consistency, monotonicity, generality
@ Maximum (Sevilla et al., IEEE TCBB, 2005)

S;,S))= max d(ck, cC
pM( ! j) CkES,',CIESj ( K l)

o Principle: Similarity in a single pair of terms is sufficient
o Fails monotonicity



Functional Coherence & Network Proximity

easures are not Admissible

o Average of Maxima (Schlicker et al., Bioinformatics, 2007)

C/E )

1
Si, S max maxéc,c max d(cx, ¢
( ]) {'Sl Z k /) |S/|C,;SI S ( k /)}

o Principle: Similarity with a single term is sufficient for each
term
o Fails consistency, monotonicity, generality



Functional Coherence & Network Proximity
on Content Based Set Similarity

o Generalize the concept of lowest common ancestor to sets
of terms (Pandey et al., ECCB, 2008)

NS S) = || Aewe)

CkES,',C/GSj

|Gacs.,s)l
pi(Si, Sj) = I(N(S1, §5)) = —logy (!(Gr!j)

o Gas,s) = ﬂ G, is the set of molecules that are
ceNS,S))
associated with all terms in the MCA set



Functional Coherence & Network Proximity
)n of Information Content Based Measure

(R)
0 A(Cs,C4) = Ca,
() (o) (o) A(Cs, Cs) = M(cr,ca) = R
° /\(381, 382) ={c} =
I\©1,92) —
» @O © p(|092(|C72c4|/|GR|) =
S1 ={cy4,Cq,07} |092(5/4)
S = {Cs} o A(S1,83) = {cs, C5} =
S = {0, G} pi(S1, Ss) = 0g5(5/2)
Ss = {cs, 7}

S5 = {C4, C3}



Functional Coherence & Network Proximity

iormation Content Based Measure Is Admissible

Q@ Symmetry: Trivially, p/(S;, Sj) = pi(S;, i) for all S;, S;.

Q Consistency: Clearly, cx < A\(cx, ¢;) for any ck, ¢;. Now
consider any ¢, € A(S;, S;). Since ¢,y = A(ck, ¢) for some
ck € Sjand ¢ € S;, there always exists ¢, € A(S;, S;) such
that ¢, < ¢k < ¢m. Consequently, we must have
G/\(shsl.) - G/\(S/,S/)’ Ieading to ,0/(3,‘, Sj) < /)/(S,', S,)

Q Monotonicity: Since ¢k = ¢, forall ¢, € S; U Sj, we have
A(S;i U ¢, Sj Uck) = N(S;, Sj) UA(S U Sj7 {ck}) U{ck} 2
A(S;, S/) U {ck}, leading to GA(S,UCk,Schk) - G/\(S,'.,Sj) and
|GA(siua,Siuc) | < [Gacs;,sp)|- Consequently,
piI(SiUck, SjU ck) > pi(Si, S))-

Q Generality:

A(S;, Sj U Sk) = A(S;, Sj) LA(S;, Sk) 2 A(S;, Sj).
Therefore, G(s; sus,) € Ga(s;.s)) leading to
pi(Si, SjU Sk) = pi(Si, S)).



Functional Coherence & Network Proximity

al Coherence of Module

Each module is associated with set of molecular entities, and
each molecule associated with set of terms.

(R)
@ Q @ Sets:

0 R1=1{51,52, S3, 54}
) @ @@ © o Ro={S1, S, S5}

S ={cs}, S2 = {a}, 0 Rz ={Ss3, S4}
Sz = {c4, Cs},
84 = {C1,CG}, 85 = {01},
Se = {Cs}



Functional Coherence & Network Proximity
Measure

o Average (Pu et al., Proteomics, 2007)
1
oa(R) = m Z p(Si, Sj).

1<i<j<n

o Example: 04(Sy, Ss, S3,S4) =

1
g (3% 0a(S1, 82, 5) + p(Ss, Sa) + p(St, S4) + p(S2, S4))



Functional Coherence & Network Proximity
ed Information Content

Extend the notion of the minimum common ancestor of pairs of
terms to tuples of terms (Pandey et al., APBC, 2010)

Gy .05 Ciy) = AEMAXoerp A, I(c)

|Gs;.....s)|
O'I(R): I(A(S1,,Sn)) = _|092 <A(|Gr|]) ’
where

/\(817827"'78”): |_| )\(Ci17ci2""’ci”)

cieSj1<j<n

Example: 0'/(81 , Sg, 33, S4) = /(f) =0



Functional Coherence & Network Proximity
] Information Content

Weigh the information content of shared functionality by the
number of molecules that contribute to the shared functionality

> Y a9

1<i<nceA’;

PN

1<i<nceA;

ow(S1, Sz, Sz, S4) = 0.86 ow(S1,S2,S3) =0.75

ow(R)=1-—




Functional Coherence & Network Proximity

g for Multiple Paths

o |s "shortest path" a good measure of network proximity?
o Multiple alternate paths might indicate stronger functional
association
o In well-studied pathways, redundancy is shown to play an
important role in robustness & adaptation (e.g., genetic
buffering)

I <



Functional Coherence & Network Proximity
Based On Random Walks

o Simulate an infinite random walk with random restarts at
protein /

o Proximity between proteins i and j is given by the relative
amount of time spent at protein j

(0) = 1, &(t+1) = (1= )JA(1) + cl, &= lim (1)

©

(i, f): Network proximity between protein i and protein j
A: Stochastic matrix derived from the adjacency matrix of
the network

I: Identity matrix

c: Restart probability

(]

© ©



Functional Coherence & Network Proximity

Proximity & Functional Similarity

correlation

T
03 shortest distance &0
’ proximity (c=0.1) £z
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proximity (c=0.9)

0.25 |- B
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; :

Avg. term IC molecule IC molecule IC (JC)  Avg. term IC (JC)

semantic similarity measures
(a)

Correlation between functional similarity
and network proximity



Functional Coherence & Network Proximity
ison of Similarity Measures
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Network distance vs. functional similarity on C. elegans PP| network



Functional Coherence & Network Proximity

ison of Similarity Measures
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ison of PPl and DDI Networks
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Network distance vs. functional similarity based on molecular functions



Functional Coherence & Network Proximity
ison of PPl and DDI Networks
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Network distance vs. functional similarity based on biological processes



index of detectability

[ generalized IC -
ext. graph IC - o
weighted IC

pvalue < 0.05 --e--

Functional Coherence & Network Proximity

ison of Coherence Meaures
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Index of Dectectability vs. complex sizes
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Conclusions & Avenues for Future Research

ns & Avenues for Future Research

o Computational tools to analyze biological networks in
context of functions of individual bio-molecules
o Conclusions

o Patterns describe essential mechanisms in biological
systems

o Coherence and proximity measures suitable to work with
noisy and incomplete data

o Avenues for Future Research

o Pattern-based protein function prediction
o Phylogenetic analysis of identified patterns
o Using proximity measure to find disease implicated genes
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