GQ: A Graph Toolkit for Multicore Environments

Ananth Grama
Coordinated Systems Lab and,
Computer Science Department,
Purdue University

http://www.cs.purdue.edu/people/ayg

This work is supported by National Institutes of Health, National Science Foundation, Department of Energy, Intel, and Microsoft.

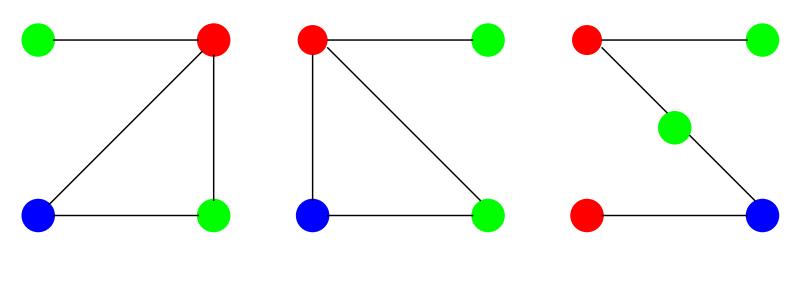
Graph Library Components

- Conservation in Networks
- Alignment of Networks
- Modularity in Networks
- Reputation/Rank
- Graph Grammars and Parsers
- Some Ongoing Work

Conservation in Networks

- Given a collection of networks (say, protein interaction networks belonging to different species), find sub-networks that are common to an interesting subset of these networks (Koyutürk, Grama, & Szpankowski, ISMB, 2004)
 - A sub-network is connected.
 - Frequency: The number of networks that contain a sub-network, is a coarse measure of statistical significance
- Requires solution of the intractable subgraph isomorphism problem
- Must be scalable to potentially large number of networks
- Networks are large (in the range of 10K edges and beyond)

Graph Analysis



Network database

Interaction patterns that are common to all networks

Problem Statement

- Given a set of nodes V, a set of edges E, and a many-to-many mapping from V to a set of ortholog groups $\mathcal{L} = \{l_1, l_2, ..., l_n\}$, the corresponding interaction network is a labeled graph $G = (V, E, \mathcal{L})$.
 - $v \in V(G)$ is associated with a set of ortholog groups $L(v) \subseteq \mathcal{L}$.
 - $uv \in E(G)$ represents an interaction between u and v.
- S is a sub-network of G, i.e., $S \sqsubseteq G$ if there is an injective mapping $\phi:V(S)\to V(G)$ such that for all $v\in V(S)$, $L(v)\subseteq L(\phi(v))$ and for all $uv\in E(S)$, $\phi(u)\phi(v)\in E(G)$.

Computational Problem

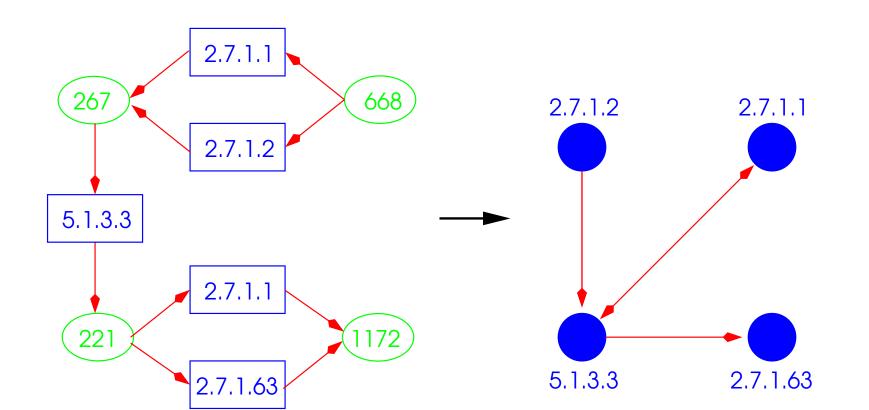
- Conserved sub-network discovery
 - Instance: A set of networks $\mathcal{G}=\{G_1=(V_1,E_1,\mathcal{L}),G_2=(V_2,E_2,\mathcal{L}),...,G_m=(V_m,E_m,\mathcal{L})\}$, and a frequency threshold σ^* .
 - Problem: Let $H(S) = \{G_i : S \sqsubseteq G_i\}$ be the occurrence set of graph S. Find all connected subgraphs S such that $|H(S)| \geq \sigma^*$, i.e., S is a frequent subgraph in $\mathcal G$ and for all $S' \supset S$, $H(S) \neq H(S')$, i.e., S is maximal.

Algorithmic Insight: Ortholog Contraction

- Contract orthologous nodes into a single node
- No subgraph isomorphism
 - Graphs are uniquely identified by their edge sets
- Key observation: Frequent sub-networks are preserved ⇒ No information loss
 - Sub-networks that are frequent in general graphs are also frequent in their ortholog-contracted representation
 - Ortholog contraction is a powerful pruning heuristic

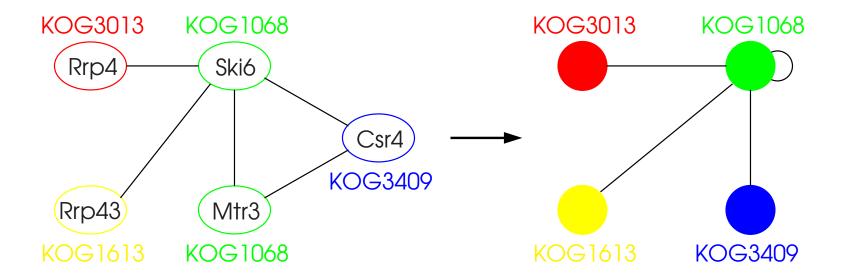
Ortholog Contraction in Real Applications (Metabolic Pathways)

- Directed hypergraph → uniquely-labeled directed graph
 - Nodes represent enzymes
 - Global labeling by enzyme nomenclature (EC numbers)
 - A directed edge from one enzyme to the other implies that the second consumes a product of the first



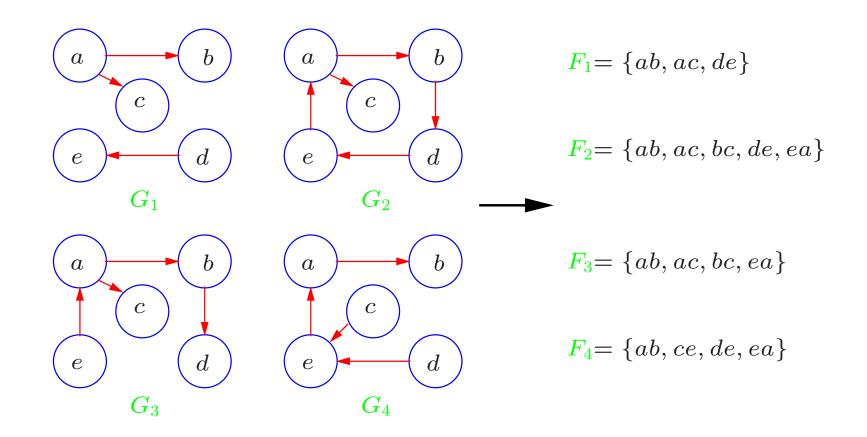
Ortholog Contraction in Real Applications (PPI Networks)

 Interaction between proteins → Interaction between ortholog groups or protein families

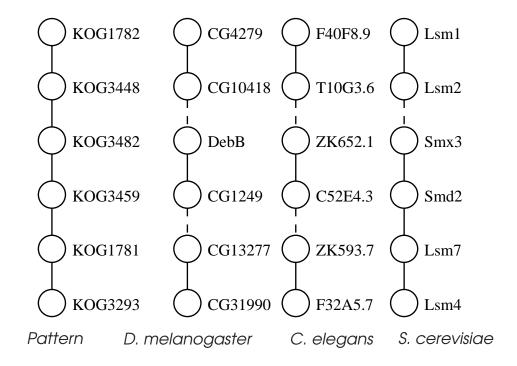


Simplifying the Graph Analysis Problem

- Observation: An ortholog-contracted graph is uniquely determined by the set of its edges.
 - Conserved Sub-network Discovery Problem → Frequent Edge set Discovery Problem

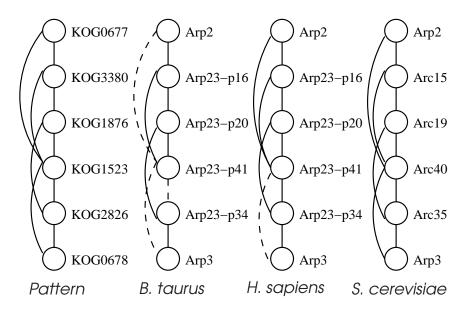


Conserved Protein Interaction Patterns



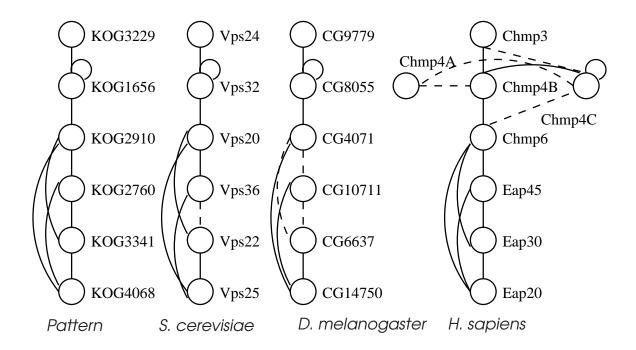
Small nuclear ribonucleoprotein complex (p < 2e - 43)

Conserved Protein Interaction Patterns



Actin-related protein Arp2/3 complex (p < 9e - 11)

Conserved Protein Interaction Patterns



Endosomal sorting (p < 1e - 78)

Runtime Characteristics

	Minimum	Runtime	Largest	Number of	Runtime	Runtime
Dataset	Support (%)	(secs.)	pattern	patterns	2 Cores	4 Cores
Glutamate	12	0.10	13	39	0.08	0.07
	10	0.29	15	34	0.16	0.10
	8	0.99	15	56	0.58	0.37
Alanine	16	0.06	12	21	0.05	0.07
	12	1.06	16	25	0.57	0.33
	10	1.72	16	34	0.90	0.52

All times on a 2.66 MHz i7 Processor.

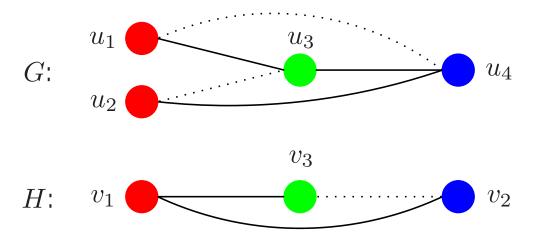
Alignment of Networks

- Given two networks, identify sub-networks that are similar to each other.
 - Optimization function
 - Mathematical modeling
- Existing algorithms
 - PathBLAST aligns pathways (linear chains) to simplify the problem while maintaining biological meaning (Kelley et al., PNAS, 2004)
 - NetworkBLAST compares conserved complex model with null model to identify significantly conserved subnets (Sharan et al., J. Comp. Biol., 2005)

Match, Mismatch, and Duplication

Establishing a Cost Measure

- A match $\in \mathcal{M}$ corresponds to two pairs of homologous nodes such that both pairs interact in both networks. A match is associated with score μ .
- A mismatch $\in \mathcal{N}$ corresponds to two pairs of homologous nodes such that only one pair is interacting. A mismatch is associated with penalty ν .
- A duplication $\in D$ corresponds to a pair of homologous nodes in the same network. A duplication is associated with score δ .



Pairwise Alignment of Networks as an Optimization Problem

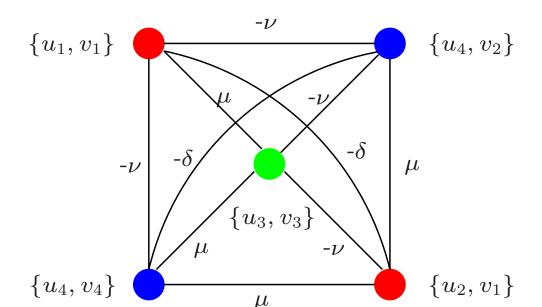
Alignment score:

$$\sigma(\mathcal{A}(P)) = \sum_{M \in \mathcal{M}} \mu(M) - \sum_{N \in \mathcal{N}} \nu(N) + \sum_{D \in \mathcal{D}} \delta(D)$$

- Matches are rewarded for conservation of interactions
- Duplications are rewarded/penalized for functional conservation/differentiation after split
- Mismatches are penalized for divergence.
- Problem: Find all subnet pairs with significant alignment score
- A graph equivalent to BLAST

Weighted Alignment Graph

- $\mathbf{G}(\mathbf{V},\mathbf{E}):\mathbf{V}$ consists of all pairs of homologous nodes $\mathbf{v}=\{u\in U,v\in V\}$
- An edge $\mathbf{v}\mathbf{v}' = \{uv\}\{u'v'\}$ in \mathbf{E} is a
 - match edge if $uu' \in E$ and $vv' \in V$, with weight $w(\mathbf{vv'}) = \mu(uv, u'v')$
 - mismatch edge if $uu'\in E$ and $vv'\notin V$ or vice versa, with weight $w(\mathbf{vv'})=-\nu(uv,u'v')$
 - duplication edge if S(u,u')>0 or S(v,v')>0, with weight $w(\mathbf{v}\mathbf{v}')=\delta(u,u')$ or $w(\mathbf{v}\mathbf{v}')=\delta(v,v')$



Maximum Weight Induced Subgraph Problem

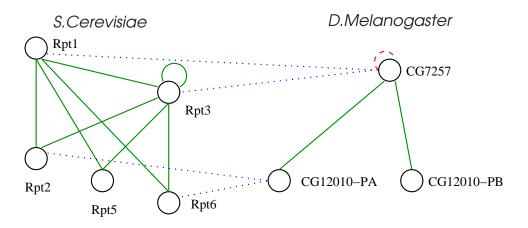
- Definition: (MAWISH)
 - Given graph $\mathcal{G}(\mathcal{V},\mathcal{E})$ and a constant ϵ , find $\tilde{\mathcal{V}} \in \mathcal{V}$ such that $\sum_{\mathbf{v},\mathbf{u} \in \tilde{\mathcal{V}}} w(\mathbf{v}\mathbf{u}) \geq \epsilon$.
 - NP-complete by reduction from Maximum-Clique
- Theorem: (MAWISH = Pairwise alignment)
 - If $\tilde{\mathcal{V}}$ is a solution for the MAWISH problem on $\mathcal{G}(\mathcal{V},\mathcal{E})$, then $P=\{\tilde{U},\tilde{V}\}$ induces an alignment $\mathcal{A}(P)$ with $\sigma(\mathcal{A})\geq\epsilon$, where $\tilde{\mathcal{V}}=\tilde{U}\times\tilde{V}$.
- Solution: Local graph expansion
 - Greedy graph growing + iterative refinement
 - Linear-time heuristic
- Source code available at http://www.cs.purdue.edu/pdsl/

Alignment of Yeast and Fruit Fly PPI Networks

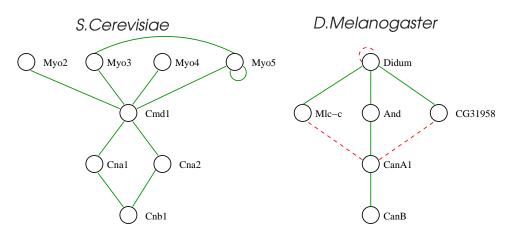
Rank	Score	z-score	# Proteins	# Matches	# Mismatches	# Dups.		
1	15.97	6.6	18 (16, 5)	28	6	(4, 0)		
	protein amino acid phosphorylation (69%)							
	JAK-STAT cascade (40%)							
2	13.93	3.7	13 (8, 7)	25	7	(3, 1)		
	endocy	/tosis (50%)) / calcium-r	nediated sign	naling (50%)			
5	8.22	13.5	9 (5, 3)	19	11	(1,0)		
	invasive growth (sensu Saccharomyces) (100%)							
	oxygen and reactive oxygen species metabolism (33%)							
6	8.05	7.6	8 (5, 3)	12	2	(0, 1)		
ubiquitin-dependent protein catabolism (100%)								
	mitosis	(67%)						
21	4.36	6.2	9 (5, 4)	18	13	(0, 5)		
cytokinesis (100%, 50%)								
30	3.76	39.6	6 (3, 5)	5	1	(0, 6)		
DNA replication initiation (100%, 80%)								

Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet



Calcium-dependent stress-activated signaling pathway



Runtime Characteristics

	Number of	Runtime		
Dataset	Patterns	(secs.)	2 Cores	4 Cores
Yeast/Fruit Fly	8	0.16	0.12	0.10
	13	1.80	1.02	0.68
	20	2.93	1.61	0.94

All times on a 2.66 MHz i7 Processor.

Analytical Assessment of Statistical Significance

- What is the significance of a dense component in a network?
- What is the significance of a conserved component in multiple networks?
- Existing techniques
 - Mostly computational (e.g., Monte-Carlo simulations)
 - Compute probability that the pattern exists rather than a pattern with the property (e.g., size, density) exists
 - Overestimation of significance

Random Graph Models

- Interaction networks generally exhibit power-law property (or exponential, geometric, etc.)
- Analysis simplified through independence assumption (Itzkovitz et al., Physical Review, 2003)
- Independence assumption may cause problems for networks with arbitrary degree distribution
- $P(uv \in E) = d_u d_v / |E|$, where d_u is expected degree of u, but generally $d_{\max}^2 > |E|$ for PPI networks
- Analytical techniques based on simplified models (Koyutürk, Grama, Szpankowski, RECOMB, 2006)
 - Rigorous analysis on G(n, p) model
 - Extension to piecewise G(n,p) to capture network characteristics more accurately

Significance of Dense Subgraphs

- A subnet of r proteins is said to be ρ -dense if $F(r) \ge \rho r^2$, where F(r) is the number of interactions between these r proteins
- What is the expected size of the largest ρ-dense subgraph in a random graph?
 - Any ρ -dense subgraph with larger size is statistically significant!
- G(n,p) model
 - n proteins, each interaction occurs with probability p
 - Simple enough to facilitate rigorous analysis
 - If we let $p=d_{\max}/n$, largest ρ -dense subgraph in G(n,p) stochastically dominates that in a graph with arbitrary degree distribution
- Piecewise G(n, p) model
 - Few proteins with many interacting partners, many proteins with few interacting partners
 - Captures the basic characteristics of PPI networks
 - Analysis of G(n, p) model immediately generalized to this model

Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every edge exists with probability p, then

$$\lim_{n \to \infty} \frac{R_{\rho}}{\log n} = \frac{1}{\kappa(p, \rho)} \tag{pr.}$$

where

$$\kappa(p,\rho) = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}.$$
 (2)

More precisely,

$$P(R_{\rho} \ge r_0) \le O\left(\frac{\log n}{n^{1/\kappa(p,\rho)}}\right),$$
 (3)

where

$$r_0 = \frac{\log n - \log \log n + \log \kappa(p, \rho)}{\kappa(p, \rho)} \tag{4}$$

for large n.

Piecewise G(n, p) model

- The size of largest dense subgraph is still proportional to $\log n/\kappa$ with a constant factor depending on number of hubs
- Model:

$$P(uv \in E(G)) = \left\{ \begin{array}{ll} p_h & \text{if } u,v \in V_h \\ p_l & \text{if } u,v \in V_l \\ p_b & \text{if } u \in V_h,v \in V_l \text{ or } u \in V_l,v \in V_h \end{array} \right.$$

Result:

Let
$$n_h = |V_h|$$
. If $n_h = O(1)$, then $P(R_n(\rho) \ge r_1) \le O\left(\frac{\log n}{n^{1/\kappa(p_l,\rho)}}\right)$, where

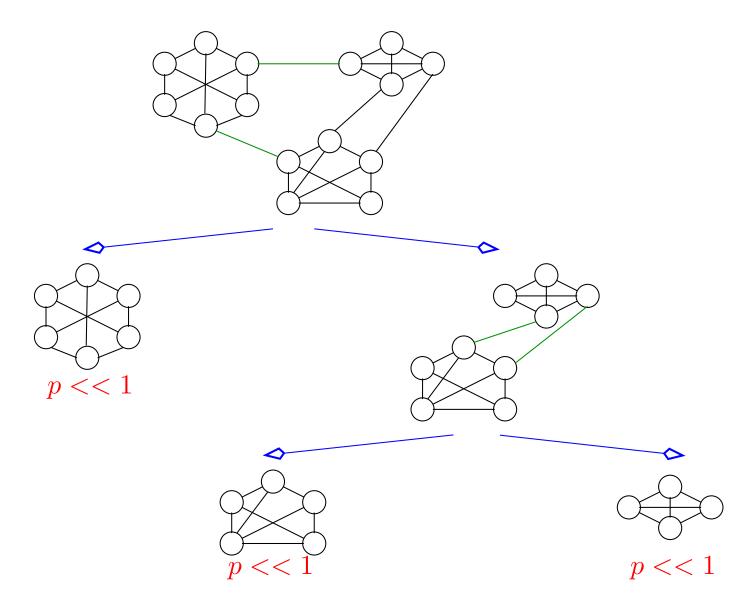
$$r_1 = \frac{\log n - \log \log n + 2n_h \log B + \log \kappa(p_l, \rho) - \log e + 1}{\kappa(p_l, \rho)}$$

and
$$B = \frac{p_b q_l}{p_l} + q_b$$
, where $q_b = 1 - p_b$ and $q_l = 1 - p_l$.

Algorithms Based on Statistical Significance

- Identification of topological modules
- Use statistical significance as a stopping criterion for graph clustering heuristics
- HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)
 - Find a minimum-cut bipartitioning of the network
 - If any of the parts is dense enough, record it as a dense cluster of proteins
 - Else, further partition them recursively
- SIDES: Use statistical significance to determine whether a subgraph is sufficiently dense
 - For given number of proteins and interactions between them, we can determine whether those proteins induce a significantly dense subnet

SIDES **Algorithm**



SIDES is available at http://www.cs.purdue.edu/pdsl

Performance of SIDES

- Biological relevance of identified clusters is assessed with respect to Gene Ontology (GO)
 - Estimate the statistical significance of the enrichment of each GO term in the cluster
- Quality of the clusters with respect to GO annotations
 - Assume cluster C containing n_C genes is associated with term T that is attached to n_T genes and n_{CT} of genes in C are attached to T
 - specificity = $100 \times n_{CT}/n_{C}$
 - sensitivity = $100 \times n_{CT}/n_T$

	SIDES				MCODE		
	Min.	Max.	Avg.	•	Min.	Max.	Avg.
Specificity (%)	43.0	100.0	91.2		0.0	100.0	77.8
Sensitivity (%)	2.0	100.0	55.8		0.0	100.0	47.6

Comparison of SIDES with MCODE (Bader & Hogue, BMC Bioinformatics, 2003)

Runtime Characteristics

	Number of	Runtime		
Dataset	Clusters	(secs.)	2 Cores	4 Cores
Yeast PPI	11	4.80	2.64	1.60
	18	7.32	3.70	1.99
	26	10.19	5.61	2.90

All times on a 2.66 MHz i7 Processor.

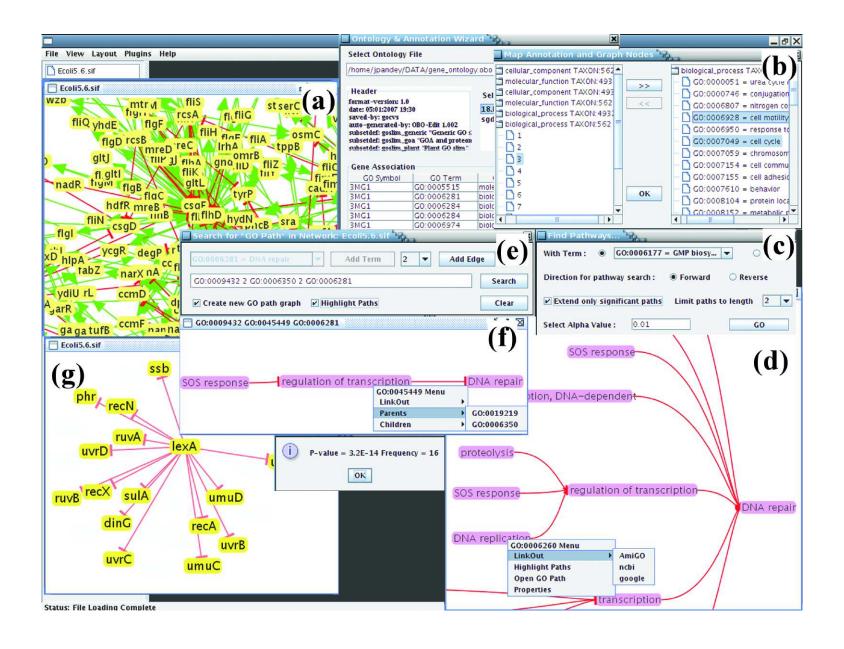
Functional Annotation of Pathways

- Identifying Significant Pathways
- Annotations and Metrics
- Application to Protein/Domain Interaction Networks
- Implementation and Results

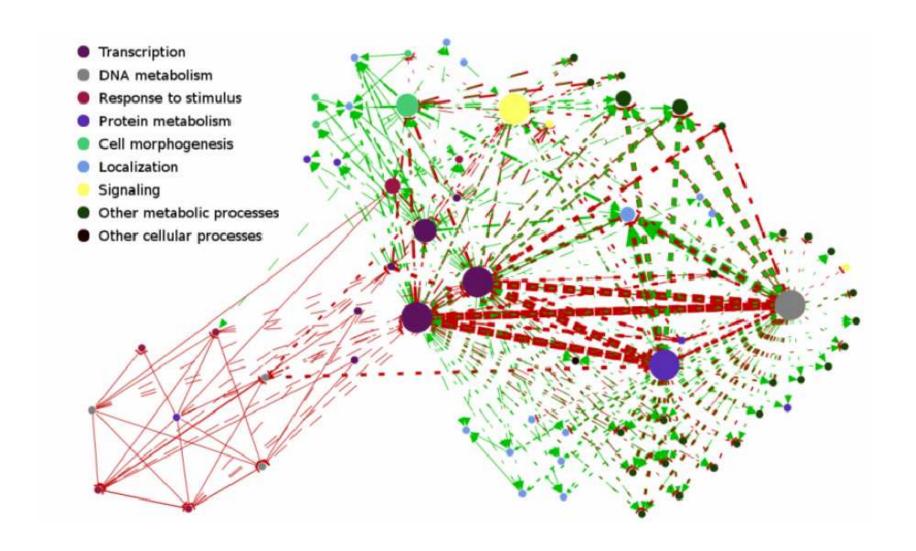
Node Annotation

- Node annotation is in the form of an ontology.
- For instance, Gene Ontology provides a library of molecular annotations (we refer to each annotation class as a functional attribute).

Narada Functionality

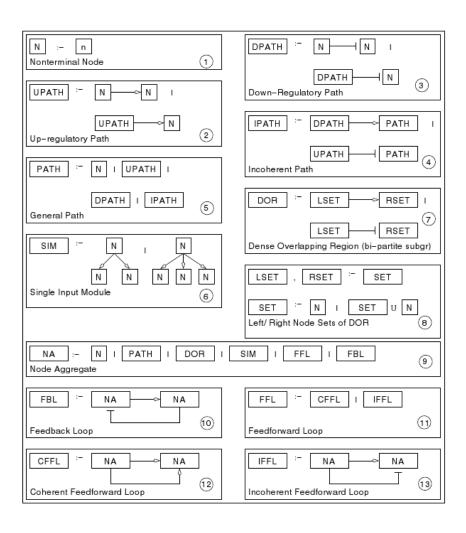


Narada Network Annotation

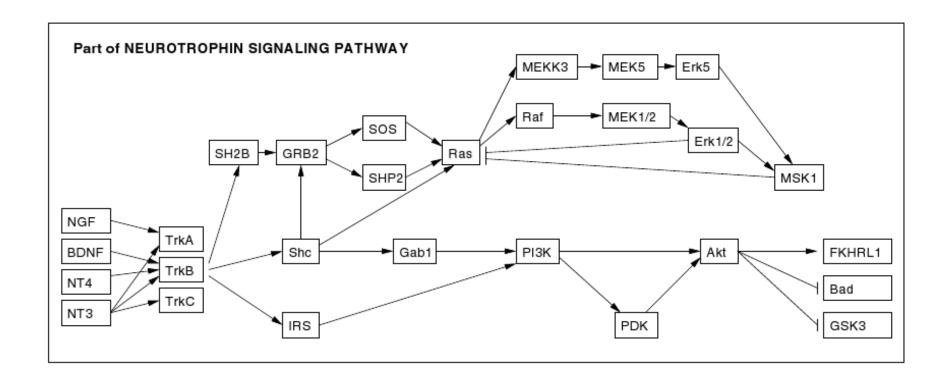


^{*} Parallel implementation ongoing.

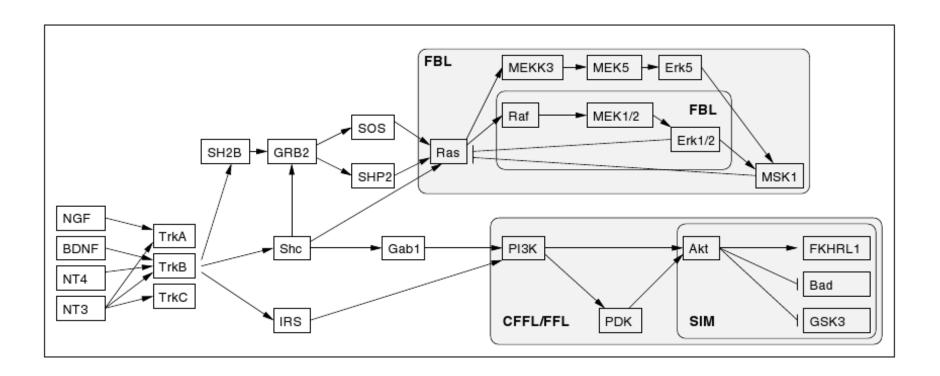
Graph Grammars and Parsing



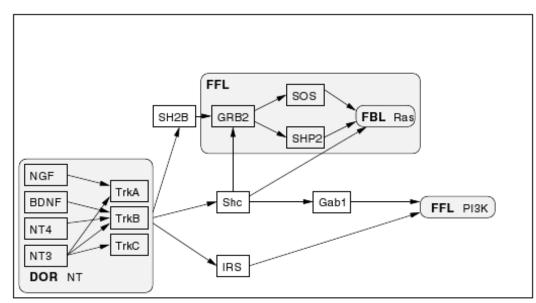
Graph Grammars and Parsing

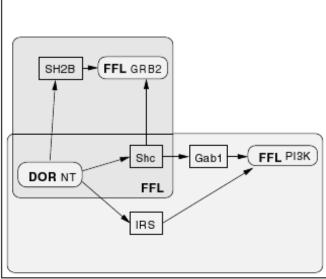


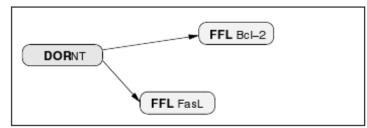
Graph Grammars and Parsing



Graph Grammars and Parsing







Interpretation of Parse:

The input Neurotrophin (sub)pathway primarily consists of two feed-forward loops, feeding from a dense overlapping region. An examination of the literature verifies this to be the case. The first feed-forward loop feeds the Bcl-2 apoptosis regulator and the second feed-forward loop regulates the FASL gene, which is a tumor necrosis factor.

Graph Grammars and Parsing: Status

- Serial parser complete.
- Parallel parser currently in implementation.
- Grammar inference currently under implementation.

Science of Information

"An NSF STC focused on post-Shannon Information theory."