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Global human interactome is a superset of all possible physical interactions
that can take places in the cell. It does not provide any information as to
which one of these interactions do take place in a given tissue/cell-type
context.
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What we have — What we want

Available data sources:

A global interactome, which contains the set of possible interacting
pairs.

A tissue-specific measurement of gene/protein activity within each
tissue/cell type.

Problem

How can we optimally utilize transcriptional activity of gene products to
construct the most informative tissue-specific sub-network?
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Overview

Node Removal (NR): Tissue-specific network is generated by
removing from the global network proteins that are not expressed in
the relevant tissue.
Edge Reweight (ERW): It modify the edge weights to reflect the
probability that the corresponding interactions take place in the
specific tissue.

= Wwjj *x ak

/
Wij

where 0 < a < 1 is the re-weighting factor and k € {0,1,2} is the
number of end-points for the protein-protein interaction that are
expressed in the tissue of interest.
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Problems with Previous Methods

Rely on an ad hoc threshold for identifying expressed genes.

Utilize only local topology around each edge, specifically its
end-points, to decide about existence/probability of an interaction.
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Outline
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o Example
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Example subnetwork

Example of an upregulated pathway in blood cells— Antigen processing

and presentation
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o Standardizing gene expression profiles
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Universal exPression Codes (UPC)

Computing transcriptional activity of genes

Processes each sample individually

Corrects for platform-specific
background noise

Uses a mixture model to estimate
whether a gene transcriptional activity

Has been demonstrated that, for tissue
samples profiled using both microarrays
and RNA_Seq' UPC Values can be Distribu‘tion of transcriptional activities in three tissues
hlghly concordant with low, medium, and high number of expressed genes
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Universal exPression Codes (UPC)

Validating tissue-specific markers

High Testis Pituitary
11436 Envichment p-value
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muscle system process
contractile fiber

GO enrichment for tissues with high, medium, and low number of markers
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Optimization problem

Inferring functional activity of genes

Minimal number of changes that smooths transcriptional activities over
adjacent nodes in the network:

X

X" = argmin{(l —axbx+a | x—z| }

T
x=1
Subject to:
0<x
Vector z initial value of transcriptional activities estimated by UPC

Matrix L is the Laplacian matrix, defined as A — D, where dj; is the
weighted degree of it" vertex in the global interactome.

Parameter o controls the relative importance of regularization
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Interpretation

Loss function

The first term defines a diffusion kernel that propagates activity of
genes through network links.

We can expand it as >, - w; j(x; — xj)?, which is the accumulated
difference of values between adjacent nodes scaled by the weight of
the edge connecting them.

The Laplacian operator L acts on a given function defined over
vertices of a graph, such as x, and computes the smoothness of x
over adjacent vertices.

It can be also computed as || Bx ||3, where B is the incident matrix of
the graph
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Interpretation

Regularizer

The second term is a regularizer which penalizes changes or deviations

We can expand it as ) ; |x; — zj|, where x; and z; are the (inferred)
functional and the transcriptional activity of gene i, respectively.

It enforces sparsity over the vector of differences between
transcriptional and functional activities.
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Constructing tissue-specific interactome

Updating edges

A = diag(x*) A  diag(x*)

x* is the solution of optimization problem
It represents functional activity of genes
Functional activities are inferred from the global network context

We update each edge according to the functional activity of its
end-points
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Decomposition of global interactome

ActPro ERW

10831 Nodes 11744 Nodes
113823 Edges

" ‘ 128399 Edges
X y’
Pos Pos
3782 Nodes — —_— 1078 Nodes
6195 Edges 1421 Edges
«° Y,
Interactome

9200 Nodes

7610 Nodes
27426 Edges 17624 Edges

Brain-specific network using ERW and ActPro (o = 0.5) methods
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Results

Predicting tissue-specific interactions in known functional pathways

Gain of Area Under the Curve (AUC)
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&
Average performance of different methods in predicting differential
interactions

Edge Set Enrichment Analysis (ESEA)
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Results

Compactness of disease-related genes

global ActPro_0.15 ActPro_0.50 ActPro_0.85 ERW NR
Alzheimer’s disease 4.12E-3 6.96E-3 5.98E-3 5.44E-3 5.32E-3 9.60E-2
breast carcinoma 1.83E-3 1.11E-3 8.40E-4 8.30E-4 4.09E-3 8.15E-2
chronic lymphocytic leukemia 8.20E-4 7.40E-4 4.80E-4 5.10E-4 8.50E-4 2.94E-2
coronary artery disease 3.95E-1 1.58E-1 1.09E-1 1.03E-1 1.33E-1 1.93E-2
Crohn's disease 2.56E-2 1.93E-2 1.50E-2 1.44E-2 8.54E-2 4.14E-1
metabolic syndrome X 1.11E-2 1.09E-2 1.07E-2 1.12E-2 1.02E-1 7.39E-1
Parkinson'’s disease 1.59E-2 1.25E-2 9.89E-3 9.50E-3 1.34E-2 9.62E-2
primary biliary cirrhosis 7.20E-4 1.32E-3 3.16E-3 3.40E-3 2.80E-2 6.86E-1
psoriasis 2.10E-4 1.10E-3 1.16E-3 9.50E-4 4.67E-3 3.24E-1
rheumatoid arthritis 1.70E-2 9.28E-3 1.06E-2 1.10E-2 6.39E-2 3.61E-1
systemic lupus erythematosus 4.98E-2 1.19E-2 7.56E-3 7.22E-3 2.55E-3 1.60E-4
type 1 diabetes mellitus 2.64E-2 3.01E-2 2.38E-2 2.40E-2 2.64E-1 9.39E-1
type 2 diabetes mellitus 1.57E-3 2.90E-4 2.40E-4 1.80E-4 5.60E-4 7.90E-3
vitiligo 1.17E-3 2.13E-3 3.04E-3 3.54E-3 1.84E-2 5.69E-1
schizophrenia 3.47E-1 2.13E-1 1.93E-1 1.84E-1 1.40E-1 4.10E-2
combined 1.53E-13 1.24E-17 6.62E-19 3.70E-19 9.03E-14 2.43E-03

Symmetric random-walk as a measure of distance
Empirical p-value for each tissue

p-value combination using Edgington method
= ActPro yields more significant compactness for known disease genes

S. Mohammadi and A. Grama (Purdue) Tissue-specific interactomes ISMB 25 /28



o

o Identifying disease-related pathways
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Results

Identifying novel disease-related pathways

Prize Collecting Steiner Tree
(PCST)

argmin {ZCG—AZb }

<v,e>eT

Solved using known
message-passing algorithm

Parkinson's Disease
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