A Convex Optimization Approach for Identification of Human Tissue-specific Interactomes

Shahin Mohammadi and Ananth Grama

Department of Computer Science
Purdue University

July, 2016
Outline

1 Background
 - Problem statement
 - Previous work
 - Example

2 Activity Propagation (ActPro)
 - Standardizing gene expression profiles
 - Computing functional activity of genes
 - Updating global interactome

3 Results
 - Network statistics
 - Predicting known biology
 - Identifying disease-related pathways
Travel funding to ISMB/ECCB 2016 was generously provided by ISCB

Thank you!
Global human interactome is a superset of all possible physical interactions that can take place in the cell. It does not provide any information as to which one of these interactions do take place in a given tissue/cell-type context.
Outline

1 Background
 ● Problem statement
 ● Previous work
 ● Example

2 Activity Propagation (ActPro)
 ● Standardizing gene expression profiles
 ● Computing functional activity of genes
 ● Updating global interactome

3 Results
 ● Network statistics
 ● Predicting known biology
 ● Identifying disease-related pathways
What we have – What we want

Available data sources:

1. A global interactome, which contains the set of possible interacting pairs.
2. A tissue-specific measurement of gene/protein activity within each tissue/cell type.

Problem

How can we optimally utilize transcriptional activity of gene products to construct the most informative tissue-specific sub-network?
Outline

1. Background
 - Problem statement
 - Previous work
 - Example

2. Activity Propagation (ActPro)
 - Standardizing gene expression profiles
 - Computing functional activity of genes
 - Updating global interactome

3. Results
 - Network statistics
 -Predicting known biology
 - Identifying disease-related pathways
Overview

Definition

1. **Node Removal (NR):** Tissue-specific network is generated by removing from the global network proteins that are not expressed in the relevant tissue.

2. **Edge Reweight (ERW):** It modify the edge weights to reflect the probability that the corresponding interactions take place in the specific tissue.

\[
 w_{ij}' = w_{ij} \times \alpha^k
\]

where \(0 \leq \alpha \leq 1\) is the re-weighting factor and \(k \in \{0, 1, 2\}\) is the number of end-points for the protein-protein interaction that are expressed in the tissue of interest.
Problems with Previous Methods

- Rely on an ad hoc threshold for identifying expressed genes.
- Utilize only local topology around each edge, specifically its end-points, to decide about existence/probability of an interaction.
1 Background
 • Problem statement
 • Previous work
 • Example

2 Activity Propagation (ActPro)
 • Standardizing gene expression profiles
 • Computing functional activity of genes
 • Updating global interactome

3 Results
 • Network statistics
 • Predicting known biology
 • Identifying disease-related pathways
Figure: Example of an upregulated pathway in blood cells—Antigen processing and presentation.
Outline

1 Background
 • Problem statement
 • Previous work
 • Example

2 Activity Propagation (ActPro)
 • Standardizing gene expression profiles
 • Computing functional activity of genes
 • Updating global interactome

3 Results
 • Network statistics
 • Predicting known biology
 • Identifying disease-related pathways
Universal exPression Codes (UPC)
Computing transcriptional activity of genes

- Processes each sample individually
- Corrects for platform-specific background noise
- Uses a mixture model to estimate whether a gene transcriptional activity
- Has been demonstrated that, for tissue samples profiled using both microarrays and RNA-Seq, UPC values can be highly concordant

Distribution of transcriptional activities in three tissues with low, medium, and high number of expressed genes
Universal exPression Codes (UPC)
Validating tissue-specific markers

GO enrichment for tissues with high, medium, and low number of markers
1 Background
 • Problem statement
 • Previous work
 • Example

2 Activity Propagation (ActPro)
 • Standardizing gene expression profiles
 • Computing functional activity of genes
 • Updating global interactome

3 Results
 • Network statistics
 • Predicting known biology
 • Identifying disease-related pathways
Optimization problem
Inferring functional activity of genes

Minimal number of changes that smooths transcriptional activities over adjacent nodes in the network:

\[\mathbf{x}^* = \underset{\mathbf{x}}{\text{argmin}} \left\{ (1 - \alpha)\mathbf{xLx} + \alpha \| \mathbf{x} - \mathbf{z} \|_1 \right\} \]

Subject to: \[
\begin{align*}
1^T \mathbf{x} &= 1 \\
0 &\leq \mathbf{x}
\end{align*}
\]

- Vector \(\mathbf{z} \) initial value of transcriptional activities estimated by UPC
- Matrix \(\mathbf{L} \) is the Laplacian matrix, defined as \(\mathbf{A} - \mathbf{D} \), where \(d_{ii} \) is the weighted degree of \(i^{th} \) vertex in the global interactome.
- Parameter \(\alpha \) controls the relative importance of regularization
The first term defines a *diffusion kernel* that propagates activity of genes through network links.

We can expand it as $\sum_{i,j} w_{i,j} (x_i - x_j)^2$, which is the accumulated difference of values between adjacent nodes scaled by the weight of the edge connecting them.

The Laplacian operator \mathbf{L} acts on a given function defined over vertices of a graph, such as \mathbf{x}, and computes the smoothness of \mathbf{x} over adjacent vertices.

It can be also computed as $\| \mathbf{Bx} \|_2^2$, where \mathbf{B} is the incident matrix of the graph.
The second term is a regularizer which penalizes changes or deviations. We can expand it as $\sum |x_i - z_i|$, where x_i and z_i are the (inferred) functional and the transcriptional activity of gene i, respectively. It enforces sparsity over the vector of differences between transcriptional and functional activities.
1 Background
 - Problem statement
 - Previous work
 - Example

2 Activity Propagation (ActPro)
 - Standardizing gene expression profiles
 - Computing functional activity of genes
 - Updating global interactome

3 Results
 - Network statistics
 - Predicting known biology
 - Identifying disease-related pathways
Constructing tissue-specific interactome

Updating edges

\[\hat{A} = \text{diag}(x^*) \ast A \ast \text{diag}(x^*) \]

- \(x^*\) is the solution of optimization problem
- It represents functional activity of genes
- Functional activities are inferred from the global network context
- We update each edge according to the functional activity of its end-points
Outline

1 Background
 - Problem statement
 - Previous work
 - Example

2 Activity Propagation (ActPro)
 - Standardizing gene expression profiles
 - Computing functional activity of genes
 - Updating global interactome

3 Results
 - Network statistics
 - Predicting known biology
 - Identifying disease-related pathways
Decomposition of global interactome

Brain-specific network using ERW and ActPro ($\alpha = 0.5$) methods
1 Background
- Problem statement
- Previous work
- Example

2 Activity Propagation (ActPro)
- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

3 Results
- Network statistics
- Predicting known biology
- Identifying disease-related pathways
Results

Predicting tissue-specific interactions in known functional pathways

Average performance of different methods in predicting differential interactions

Edge Set Enrichment Analysis (ESEA)

Tissues with the highest gain of AUC for predicting tissue-specific pathway edges
Results

Compactness of disease-related genes

<table>
<thead>
<tr>
<th>Condition</th>
<th>global</th>
<th>ActPro_0.15</th>
<th>ActPro_0.50</th>
<th>ActPro_0.85</th>
<th>ERW</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer’s disease</td>
<td>4.12E-3</td>
<td>6.96E-3</td>
<td>5.98E-3</td>
<td>5.44E-3</td>
<td>5.32E-3</td>
<td>9.60E-2</td>
</tr>
<tr>
<td>breast carcinoma</td>
<td>1.83E-3</td>
<td>1.11E-3</td>
<td>8.40E-4</td>
<td>8.30E-4</td>
<td>4.09E-3</td>
<td>8.15E-2</td>
</tr>
<tr>
<td>chronic lymphocytic leukemia</td>
<td>8.20E-4</td>
<td>7.40E-4</td>
<td>4.80E-4</td>
<td>5.10E-4</td>
<td>8.50E-4</td>
<td>2.94E-2</td>
</tr>
<tr>
<td>coronary artery disease</td>
<td>3.95E-1</td>
<td>1.58E-1</td>
<td>1.09E-1</td>
<td>1.03E-1</td>
<td>1.33E-1</td>
<td>1.93E-2</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>2.56E-2</td>
<td>1.93E-2</td>
<td>1.50E-2</td>
<td>1.44E-2</td>
<td>8.54E-2</td>
<td>4.14E-1</td>
</tr>
<tr>
<td>metabolic syndrome X</td>
<td>1.11E-2</td>
<td>1.09E-2</td>
<td>1.07E-2</td>
<td>1.12E-2</td>
<td>1.02E-1</td>
<td>7.39E-1</td>
</tr>
<tr>
<td>primary biliary cirrhosis</td>
<td>7.20E-4</td>
<td>1.32E-3</td>
<td>3.16E-3</td>
<td>3.40E-3</td>
<td>2.80E-2</td>
<td>6.86E-1</td>
</tr>
<tr>
<td>psoriasis</td>
<td>2.10E-4</td>
<td>1.10E-3</td>
<td>1.16E-3</td>
<td>9.50E-4</td>
<td>4.67E-3</td>
<td>3.24E-1</td>
</tr>
<tr>
<td>rheumatoid arthritis</td>
<td>1.70E-2</td>
<td>9.28E-3</td>
<td>1.06E-2</td>
<td>1.10E-2</td>
<td>6.39E-2</td>
<td>3.61E-1</td>
</tr>
<tr>
<td>systemic lupus erythematosus</td>
<td>4.98E-2</td>
<td>1.19E-2</td>
<td>7.56E-3</td>
<td>7.22E-3</td>
<td>2.55E-3</td>
<td>1.60E-4</td>
</tr>
<tr>
<td>type 1 diabetes mellitus</td>
<td>2.64E-2</td>
<td>3.01E-2</td>
<td>2.38E-2</td>
<td>2.40E-2</td>
<td>2.64E-1</td>
<td>9.39E-1</td>
</tr>
<tr>
<td>type 2 diabetes mellitus</td>
<td>1.57E-3</td>
<td>2.90E-4</td>
<td>2.40E-4</td>
<td>1.80E-4</td>
<td>5.60E-4</td>
<td>7.90E-3</td>
</tr>
<tr>
<td>vitiligo</td>
<td>1.17E-3</td>
<td>2.13E-3</td>
<td>3.04E-3</td>
<td>3.54E-3</td>
<td>1.84E-2</td>
<td>5.69E-1</td>
</tr>
<tr>
<td>schizophrenia</td>
<td>3.47E-1</td>
<td>2.13E-1</td>
<td>1.93E-1</td>
<td>1.84E-1</td>
<td>1.40E-1</td>
<td>4.10E-2</td>
</tr>
<tr>
<td>combined</td>
<td>1.53E-13</td>
<td>1.24E-17</td>
<td>6.62E-19</td>
<td>3.70E-19</td>
<td>9.03E-14</td>
<td>2.43E-03</td>
</tr>
</tbody>
</table>

- Symmetric random-walk as a measure of distance
- Empirical \(p \)-value for each tissue
- \(p \)-value combination using Edgington method

\[\Rightarrow \text{ActPro yields more significant compactness for known disease genes} \]
Outline

1 Background
 - Problem statement
 - Previous work
 - Example

2 Activity Propagation (ActPro)
 - Standardizing gene expression profiles
 - Computing functional activity of genes
 - Updating global interactome

3 Results
 - Network statistics
 - Predicting known biology
 - Identifying disease-related pathways
Results
Identifying novel disease-related pathways

Prize Collecting Steiner Tree (PCST)

\[
\text{argmin}_{\langle v, e \rangle \in T} \left\{ \sum_e c_e - \lambda \sum_v b_v \right\}
\]

Solved using known message-passing algorithm
PS: I am defending this summer and will be in the job marker for PostDocs.