A Convex Optimization Approach for Identification of Human Tissue-specific Interactomes

Shahin Mohammadi and Ananth Grama

Department of Computer Science Purdue University

July, 2016

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Travel funding to ISMB/ECCB 2016 was generously provided by ISCB

Thank you!

Global human interactome is a superset of all possible physical interactions that can take places in the cell. It does not provide any information as to which one of these interactions do take place in a given tissue/cell-type context.

Background

Problem statement

- Previous work
- Example

2 Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Available data sources:

- **1.** A global interactome, which contains the set of *possible* interacting pairs.
- 2. A tissue-specific measurement of gene/protein activity within each tissue/cell type.

Problem

How can we optimally utilize transcriptional activity of gene products to construct the most informative tissue-specific sub-network?

Problem statement

Previous work

Example

2 Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Definition

- 1. Node Removal (NR): Tissue-specific network is generated by removing from the global network proteins that are not expressed in the relevant tissue.
- 2. Edge Reweight (ERW): It modify the edge weights to reflect the probability that the corresponding interactions take place in the specific tissue.

$$\mathsf{w}'_{ij} = \mathsf{w}_{ij} * \alpha^k$$

where $0 \le \alpha \le 1$ is the re-weighting factor and $k \in \{0, 1, 2\}$ is the number of end-points for the protein-protein interaction that are expressed in the tissue of interest.

- Rely on an ad hoc threshold for identifying expressed genes.
- Utilize only local topology around each edge, specifically its end-points, to decide about existence/probability of an interaction.

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Example subnetwork

Figure : Example of an upregulated pathway in blood cells– Antigen processing and presentation

S. Mohammadi and A. Grama (Purdue)

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

- Processes each sample individually
- Corrects for platform-specific background noise
- Uses a mixture model to estimate whether a gene transcriptional activity
- Has been demonstrated that, for tissue samples profiled using both microarrays and RNA-Seq, UPC values can be highly concordant

Distribution of transcriptional activities in three tissues with low, medium, and high number of expressed genes

Universal exPression Codes (UPC)

Validating tissue-specific markers

GO enrichment for tissues with high, medium, and low number of markers

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Minimal number of changes that smooths transcriptional activities over adjacent nodes in the network:

$$\begin{split} \mathbf{x}^* &= \operatorname*{argmin}_{\mathbf{x}} \bigg\{ (1 - \alpha) \mathbf{x} \mathbf{L} \mathbf{x} + \alpha \parallel \mathbf{x} - \mathbf{z} \parallel_1 \bigg\} \\ \text{Subject to:} \begin{cases} \mathbf{1}^T \mathbf{x} = 1 \\ 0 \leq \mathbf{x} \end{cases} \end{split}$$

- Vector z initial value of transcriptional activities estimated by UPC
- ► Matrix L is the Laplacian matrix, defined as A D, where d_{ii} is the weighted degree of ith vertex in the global interactome.
- > Parameter α controls the relative importance of regularization

- The first term defines a *diffusion kernel* that propagates activity of genes through network links.
- We can expand it as ∑_{i,j} w_{i,j}(x_i − x_j)², which is the accumulated difference of values between adjacent nodes scaled by the weight of the edge connecting them.
- The Laplacian operator L acts on a given function defined over vertices of a graph, such as x, and computes the smoothness of x over adjacent vertices.
- It can be also computed as || Bx ||²₂, where B is the incident matrix of the graph

- The second term is a regularizer which penalizes changes or deviations
- We can expand it as ∑_i |x_i − z_i|, where x_i and z_i are the (inferred) functional and the transcriptional activity of gene i, respectively.
- It enforces sparsity over the vector of differences between transcriptional and functional activities.

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Updating edges

$$\hat{\mathbf{A}} = \mathbf{diag}(\mathbf{x}^*) * \mathbf{A} * \mathbf{diag}(\mathbf{x}^*)$$

- x* is the solution of optimization problem
- It represents functional activity of genes
- Functional activities are inferred from the global network context
- We update each edge according to the functional activity of its end-points

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

Results

Network statistics

- Predicting known biology
- Identifying disease-related pathways

Decomposition of global interactome

Brain-specific network using ERW and ActPro ($\alpha = 0.5$) methods

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Results Predicting tissue-specific interactions in known functional pathways

interactions

Edge Set Enrichment Analysis (ESEA)

Tissues with the highest gain of AUC for predicting tissue-specific pathway edges

Results Compactness of disease-related genes

	global	ActPro_0.15	ActPro_0.50	ActPro_0.85	ERW	NR
Alzheimer's disease	4.12E-3	6.96E-3	5.98E-3	5.44E-3	5.32E-3	9.60E-2
breast carcinoma	1.83E-3	1.11E-3	8.40E-4	8.30E-4	4.09E-3	8.15E-2
chronic lymphocytic leukemia	8.20E-4	7.40E-4	4.80E-4	5.10E-4	8.50E-4	2.94E-2
coronary artery disease	3.95E-1	1.58E-1	1.09E-1	1.03E-1	1.33E-1	1.93E-2
Crohn's disease	2.56E-2	1.93E-2	1.50E-2	1.44E-2	8.54E-2	4.14E-1
metabolic syndrome X	1.11E-2	1.09E-2	1.07E-2	1.12E-2	1.02E-1	7.39E-1
Parkinson's disease	1.59E-2	1.25E-2	9.89E-3	9.50E-3	1.34E-2	9.62E-2
primary biliary cirrhosis	7.20E-4	1.32E-3	3.16E-3	3.40E-3	2.80E-2	6.86E-1
psoriasis	2.10E-4	1.10E-3	1.16E-3	9.50E-4	4.67E-3	3.24E-1
rheumatoid arthritis	1.70E-2	9.28E-3	1.06E-2	1.10E-2	6.39E-2	3.61E-1
systemic lupus erythematosus	4.98E-2	1.19E-2	7.56E-3	7.22E-3	2.55E-3	1.60E-4
type 1 diabetes mellitus	2.64E-2	3.01E-2	2.38E-2	2.40E-2	2.64E-1	9.39E-1
type 2 diabetes mellitus	1.57E-3	2.90E-4	2.40E-4	1.80E-4	5.60E-4	7.90E-3
vitiligo	1.17E-3	2.13E-3	3.04E-3	3.54E-3	1.84E-2	5.69E-1
schizophrenia	3.47E-1	2.13E-1	1.93E-1	1.84E-1	1.40E-1	4.10E-2
combined	1.53E-13	1.24E-17	6.62E-19	3.70E-19	9.03E-14	2.43E-03

- Symmetric random-walk as a measure of distance
- Empirical p-value for each tissue
- *p*-value combination using Edgington method

 \Rightarrow ActPro yields more significant compactness for known disease genes

Background

- Problem statement
- Previous work
- Example

Activity Propagation (ActPro)

- Standardizing gene expression profiles
- Computing functional activity of genes
- Updating global interactome

- Network statistics
- Predicting known biology
- Identifying disease-related pathways

Results Identifying novel disease-related pathways

Alzheimer's Disease

 Prize Collecting Steiner Tree (PCST)

$$\operatorname*{argmin}_{\in\mathcal{T}}\left\{\sum_{e}c_{e}-\lambda\sum_{v}b_{v}\right\}$$

 Solved using known message-passing algorithm

Questions

PS: I am defending this summer and will be in the job marker for PostDocs.

S. Mohammadi and A. Grama (Purdue)